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Abstract—Accurate traffic classification is necessary for
many administrative networking tasks like security monitoring,
providing Quality of Service and network design or planning.
We apply 18 machine learning algorithms to classify network
traffic based on six classes of statistical parameters. In contrast
to other studies, we use a per-packet approach instead of a per-
flow approach to make it possible to use the classification results
for real-time network interception. In this paper we illustrate
the accuracy of the algorithms with different parameter
combinations with the goal to reduce the amount of necessary
parameters needed for high accuracy traffic classification. Our
results indicate that some parameter combinations can be used
to classify a large number of protocols. We identified algorithms
with good and worse classification accuracy and algorithms
which need much time for classification, so that they cannot
be used for real-time classification.

Keywords-flow classification, Internet traffic, traffic identifica-
tion.

I. INTRODUCTION

Network traffic classification or particularly application
classification and identification is the process of identifying
the type of application (or the protocol) that generates
a particular network flow. There is a growing need for
traffic classification. Many tasks that are necessary for
network operation and management as well as for business
models based on providing network access can benefit from
traffic classification. Traffic classification can be used for
QoS (quality of service) mapping, traffic shaping, access
control, content control/filtering, intrusion detection and
prevention, trend analysis, monitoring, lawful interception,
content optimization, billing and metering, load balancing,
traffic engineering, network planning, etc.

In general, there are four kinds of traffic classification
methods. The oldest and most common method is the port
based approach. This uses the well-known-port numbers
of the TCP/UDP protocols assigned by the IANA. Many
client-server applications or protocols use asymmetric port
numbers for client and server, which means that client
port and server port differ. The port based method mostly
refers to the server port to identify an application. But
the server port can be set to any port number by the
server administrator. Not every protocol own well-known
port numbers or they use dynamic ports like P2P (peer-
to-peer) protocols. By using tunnels, this method fails too.

Therefore, we cannot trust in this method.
Another method used is protocol decoding. It is based

on stateful reconstruction of sessions and application
information from packet content. It identifies protocols
by their characteristic protocol headers (magic numbers,
incrementing counters, session identifiers, etc.), packet
sequences, etc. so it avoids needing to trust in port numbers.
This method provides high accuracy but it is very expensive.
Every protocol detection must be implemented manually
and in-depth knowledge of the entire protocol and the
network environment is necessary. Problems of this method
are the amount of network protocols and keeping it up
to date. Furthermore proprietary protocols must be reverse
engineered and encrypted traffic is out of scope for protocol
decoding. Therefore this method is often used only for
dedicated popular protocols, e. g., HTTP and mail protocols
like in Cisco’s Network Based Application Recognition
(NBAR) [1].

The third method is the pattern or signature based ap-
proach [2]. This method uses application specific signatures
and searches for those in the protocol header and content to
identify the application. The problem of this method is to
find good pattern. Furthermore pattern matching for many
patterns across all network traffic can become very expensive
especially for higher data rates. Additionally, the protocol
detection can take up to 100 seconds or more [2].

The fourth method is based on the machine learning
approach. This method uses machine learning algorithms as
used in data mining to identify applications by characteristic
packet or flow statistics. The advantage of this approach is
that the algorithms can be trained with real network traffic.
If a protocol changed or a new protocol appeared, it is
easy to repeat the training to update the protocol identifier.
Probably it can be used to identify some encrypted protocols.
A problem of this method is to find the proper parameters
and effective machine learning algorithms.

The machine learning approach has been discussed in
numerous papers [3], [4], [5], [6], but with focus on just
one algorithm. In this paper we evaluate a wide range
of candidate algorithms and parameters. Furthermore, we
evaluate which of these algorithms are suitable for real-
time traffic classification. In this context, real-time means
that traffic management (e. g., traffic shaping) can be done
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Figure 1: Block diagram of automatic flow labelling

immediately. This approach is mostly used for non real-time
or offline network traffic analysis [3], [4], [6].

The remainder of this paper is structured as follows:
Section 2 contains a description of the traffic classification
used as the basis for our research. The statistical parameters
applied and the classifying algorithms examined can be
found in the succeeding Sections 3 and 4. Section 5
describes the experimental setup of our research and Section
6 covers the parameter reduction. Finally, Section 7 provides
a conclusion and the direction for our future work.

II. TRAFFIC CLASSIFICATION TOOLS

To test and train the different machine learning algorithms
(see Section IV) we used different network traffic traces in
PCAP (packet capture library) format [7]. To extract the
necessary information from these capture files, we developed
a tool to generate adequate input data to the algorithms. We
had to develop our own tool because available tools like
GTVS (Ground Truth Verification System) [8] do not fulfil
our constraints for the automatic traffic labelling and we
used many different statistical parameters (see Section III),
which were not included in GTVS.

The processing and labelling of the PCAP file is done in
two consecutive steps: First, the automatic protocol detection
and labelling and second, computation of statistics. The
result of the first step is a text file in CSV (comma separated
values) format. This CSV file is used for manual post-
processing to check for correctly labelled flows or to label
unknown — not automatically detected traffic — manually.
To detect and label the flows automatically we use OpenDPI
[9], which is a library that performs protocol detection by
stateful reconstruction of session and application information
from packet content. Other tools, e. g., GTVS [8] use
heuristics to classify and label the traffic. But we decided
not to use this tool because it is based on port numbers,
which are not aware of, e. g., tunnels etc. (see Section I).

The structure and function of the automatic traffic
labelling is shown in the block diagram on Fig. 1. The
libPCAP-API [7] is used to read single packets from a
PCAP file. A connection tracking is needed to work on
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Figure 2: Block diagram of statistics computation

a per-flow basis. The connection tracking contains a TCP
state machine. As a result the connection tracking provides
only those packets belonging to a correct TCP flow that
was already seen from beginning of the flow (3-way-hand-
shake). Many protocols may only be detected if the first
packets of the flow — which in many protocols contain
a handshake — are present (e. g., SSL/TLS). Therefore
the connection tracking is very important. To deal with
the stateless nature of UDP we used timeouts to split the
UDP traffic for the same 5-tuple into different flows. The
necessary flow information (e. g., current state machine state)
is saved to the connection tracking table with the 5-tuple
(source/destination IP address, source/destination port, the
IP protocol field value) as key.

The second step in PCAP processing is to compute the
statistical parameters. Fig. 2 shows the block diagram of the
flow based statistic generation. The CSV-File from first step
is used to build up a flow table that contains the detected
protocol, the flow start timestamp and the 5-tuple as key. The
start timestamp is prerequisite to differentiate flows with the
same 5-tuple. The computation of the statistical parameters
is done for every packet of a flow. A detailed description of
the parameters and their computation is in Section III.

The output of the statistics processing is in ARFF
(Attribute-Relation File Format)/WEKA file format [10], see
Section IV. The output contains separate training and testing
data. Furthermore there are two kinds of statistical data: (1)
per-packet data (2) per-flow data. The per-packet data can be
used to determine if the classifiers/algorithms can be used for
real-time classification tasks. The per-flow data can be used
to determine the quality of the classifiers/algorithms applied
to offline data or non real-time data like NetFlow (NetFlow
is an industry standard protocol for traffic monitoring by
collecting IP traffic information) data used for monitoring
or forensics.

Traffic classification on a per-packet basis makes it
possible to intercept the network traffic for management and
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traffic engineering in real-time. On a per-flow basis the flow
has finished when it is classified. So, the classification can
only be used for monitoring or statistics.

III. STATISTICAL PARAMETERS

The basis for traffic classification using heuristic algo-
rithms are objects which can be classified by the algorithms
used. For this approach, we are using traffic flows as the
foundation for our classification. We define a traffic flow as
one or more related IP-packets between two connected hosts.
Each flow is characterized by a 5-tuple consisting of the
source and destination IP-address, the network layer protocol
number and the source and destination port (referring to TCP
and UDP). For TCP based flows we are using only complete
TCP flows. This implies that the investigated TCP flows
have a 3-Way-Handshake for the connection establishment
and a connection termination, for example with the 4-Way-
Handshake or the reset flag (RST). To collect those complete
TCP flows we used a TCP state machine we implemented in
the tool described in Section II. Incomplete or fragmented
TCP flow traces are subject of our further ongoing research.

A. Flow parameters

Besides the 5-tuple as the unique qualifier, each flow is
described by additional parameters. The most parameters
are differentiated for the whole flow, for upstream and for
downstream. The reason for this differentiation can be found
in the particular differences in upstream and downstream
behaviour of various protocols, e. g., HTTP. Our selection
of flow characterizing parameters is shown in Table I.

According to [11] we describe each flow with three
modes:

• idle: A flow is idle when no packets were sent between
the two hosts for more than two seconds.

• bulk: The bulk mode is defined as the time when
there are more than three packets being successfully
delivered in the same direction without any packet with
data in the other direction.

• interactive: When there are packets sent in both
directions, the flow is in the interactive mode.

Because the interactive mode is also defined as the time
when the flow is not in the idle or in the bulk mode —
which means that the interactive mode correlates with the
other two modes, we decided to gather only the duration
and quota for idle and bulk mode. Furthermore we provide
information about the interarrival time, whole flow duration,
packet count and the payload size.

B. Parameter computation

As shown in [11], there are more possible flow char-
acterizing parameters than we present in Table I. But, a
lot of these parameters are not correlated with the used
protocol. Instead, they are only influenced by the transport
network, e. g., the Internet. For example, the total number

of duplicated SACK packets ([11]: parameter no. 39 and
no. 40) only indicates packet loss in the network and is a
result of TCP congestion control. These network influences
are independent from the protocol characteristics.

Also, often the transport layer (UDP and TCP) port
numbers are used as flow characteristics [4], [5], [11], [12].
Because of the use of network address translation (NAT) or
by intentional administrative changes of server port numbers,
these characteristics are not reliable for traffic classification.
Other parameters, like the median of bytes on wire, are
depending on the used network stack implementation. The
number of bytes on wire, e. g., Ethernet, are influenced by
the different possible options in the IP and TCP header or
the use of IPv4 and IPv6. Thus, there will be a packet with
the same transport layer payload with a different number of
bytes on the wire and this is not dependent on the classifying
protocol.

The target of our research is the usage of heuristic
algorithms for real-time traffic classification. Therefore, we
cannot compute the flow characterizing parameters at the
end of the flow. Instead, we compute all parameters after
each packet of the flow is received. Hence, we compute
moving averages, like the median interarrival time or the
average byte count of the network layer payload. Required
aggregate values are also computed as moving values for
each received packet of the flow.

IV. ALGORTIHMS

To classify the network traffic we are using different ma-
chine learning algorithms, which are also called classifiers.
All the classifiers we used are off the shelf machine learning
algorithms and we treat them as black-box classifiers. For
this work we used the WEKA software suite [10]. The
WEKA suite is written in Java language and contains a
collection of machine learning algorithms for data mining
tasks. WEKA provides a uniform interface for all classifiers,
which made it easy to automate training and testing of
different classifiers.

A. Train and Test suite

The records, generated by the tool described in Section
II and used as training and testing data for the classifiers,
are provided as ARFF files. An ARFF file is an ASCII text
file that contains (1) a header Section, which describes the
used parameters/attributes and (2) the data Section, which
contains the records. Each record is represented by one line
containing all parameters in a comma separated list. The
training record contains all statistical parameters and the
associated protocol. Therefore, we can use the supervised
learning approach for the machine learning algorithms. The
test records contain only the statistical parameters.

If a classifier is trained by WEKA it generates a classifier
model that can be saved to a file. In a test case this model
can be used by the classifier to make a prediction of the
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Table I: Used flow and packet parameters and their description

No. Class Short Name Description
1 1 packet cnt packet count whole flow
2 1 packet cnt us packet count upstream
3 1 packet cnt ds packet count downstream
4 2 intarv time med median interarrival time whole flow
5 2 intarv time max maximum interarrival time whole flow
6 2 intarv time min minimum interarrival time whole flow
7 2 intarv time med us median interarrival time upstream
8 2 intarv time max us maximum interarrival time upstream
9 2 intarv time min us minimum interarrival time upstream

10 2 intarv time med ds median interarrival time downstream
11 2 intarv time max ds maximum interarrival time downstream
12 2 intarv time min ds minimum interarrival time downstream
13 3 bytes payload l4 med median byte count of L4 payload whole flow
14 3 bytes payload l4 max maximum byte count of L4 payload whole flow
15 3 bytes payload l4 min minimum byte count of L4 payload whole flow
16 3 bytes payload range (maximum - minium) byte of L4 payload whole flow
17 3 bytes payload l4 med us median byte count of L4 payload upstream
18 3 bytes payload l4 max us maximum byte count of L4 payload upstream
19 3 bytes payload l4 min us minimum byte count of L4 payload upstream
20 3 bytes payload range us (maximum - minium) byte of L4 payload upstream
21 3 bytes payload l4 med ds median byte count of L4 payload downstream
22 3 bytes payload l4 max ds maximum byte count of L4 payload downstream
23 3 bytes payload l4 min ds minimum byte count of L4 payload downstream
24 3 bytes payload range ds (maximum - minium) byte of L4 payload downstream
25 4 duration flow whole connection duration
26 4 duration flow us connections duration on upstream
27 4 duration flow ds connections duration on downstream
28 5 changes bulktrans mode number of transitions between bulk- and transfermode
29 5 duration bulkmode time spent in bulk transfer mode
30 5 duration bulkmode us time spent in bulk transfer mode for upstream
31 5 duration bulkmode ds time spent in bulk transfer mode for downstream
32 5 quota bulkmode percentage of quota of bulk transfer mode (per mille)
33 5 quota bulkmode us percentage of quota of bulk transfer mode (per mille) on upstream
34 5 quota bulkmode ds percentage of quota of bulk transfer mode (per mille) on downstream
35 6 time idle sum time spent in idle mode for whole flow
36 6 time idle sum us time spent in idle mode for upstream
37 6 time idle sum ds time spent in idle mode for downstream
38 6 quota time idle percentage of quota of time spent in idle mode (per mille)
39 6 quota time idle us percentage of quota of time spent in idle mode (per mille) on upstream
40 6 quota time idle ds percentage of quota of time spent in idle mode (per mille) on downstream

protocol which was the origin of the statistical record. Due
to the generation of training and testing data from one
PCAP file by the tool in Section II, we can evaluate the
quality of prediction by comparing the classifier results with
the training records containing the protocol. This PCAP
file must be a different file than the one which was used
to generate the classifier model. To automate training and
testing of different classifiers we wrote a test suite on top
of WEKA. Fig. 3 shows a block diagram of the test suite.
The test suite provides parallel WEKA instances to speed up
training and tests. Furthermore, the test suite can measure
the memory and time consumption the classifiers need for
training and testing.

B. Preselection of Algorithms
The WEKA software suite contains more than 100

classifiers. So, it was necessary to choose the best candidates
of these classifiers to reduce the amount of time to train, test
and evaluate the classifier results.
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Figure 3: Block diagram of the test suite

In a first preselection of the classifiers, we used a training-
set that was also used as test-set. This means a good classifier
should correctly predict a preponderant part of data. We
dismissed classifiers with accuracy below 90%. The second
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criterion for preselection was the time needed for training
and testing. The third criterion was the memory consumption
of the classifiers. If a classifier needed more than 2 GByte
of RAM for this test, it was also dismissed. The preselected
classifiers are shown in the left row of Table II.

We used the classifiers as black-box with the default
parameters as proposed by WEKA.

V. EXPERIMENTAL SETUP

For training and testing we used the test suite described in
Section IV. The used data and the results of our experiments
are shown below in this section.

A. Used Data

During this study we have used data collected from
different sources. We manually generated network traffic
and captured network traffic from the campus network.
Additionally we used trace files from [13], [14].

All captured network traffic was automatically classified
with the tool described in Section II. The whole traffic
was verified by hand. False or not classified traffic was
completed by hand. Then, we split this data into two parts
and generated the training and testing data in ARFF-format.
Table III contains the composition of network packets for
training and testing data.

Many of the investigated protocols use cryptographic
encryption to protect their data, making it difficult to
classify these protocols. Bittorrent, eDonkey, IMAP, POP3
and SMTP use encryption. IMAP, POP3 and SMTP can
cryptographically protect their communication before they
start their session or they can request encryption during the
session (STARTTLS). In the second case the establishment
of the session is not encrypted. Our data contains both kinds
of IMAP, POP3 and SMTP traffic. The other protocols do
not use encryption. Also, the HTTP traffic contains only
unencrypted traffic; it does not contain HTTPS (TLS) traffic.

The results of the test run for all classifiers with the
computed classifier-models and the particular test data are
deterministic.

B. Results

Table II contains the results of this study. It shows if it is
possible for an algorithm with any parameter combination

Table III: Used training and testing data (number of packets)

Protocol Training Testing Encryption
Bittorrent 7772 10461 yes
eDonkey 19961 48420 yes
Flash 21373 21212 no
HTTP 4743 1236 no
IMAP 2797 1025 yes
Oscar 315 257 no
POP3 673 3044 most
RTP 24404 57428 no
SIP 414 760 no
SMTP 560 774 yes

to detect a protocol with an accuracy greater than or equal
to 90%.

Additionally, Table II contains the time needed for training
and testing. These times are measured by using the HPROF
tool for heap and CPU profiling, which is part of the Java
Virtual Machine. We measured the CPU usage time for every
algorithm and used the fastest algorithm (OneR) as reference
to scale the timing results. As we can see, in Table II the
amount of time spent for training is much higher than for
testing. But, this is not a problem in general. Training is
done only once but testing is done permanently for protocol
classification. All the algorithms have very similar CPU time
consumption, but four algorithms (BayesNet, NaiveBayes,
NaiveBayesUpdateble and ND) have a notedly higher CPU
time consumption. This could make these four algorithms
unusable for real-time traffic classification. Furthermore, the
algorithms NaiveBayes and NaiveBayesUpdateble provide
nearly the same results, which can be seen in Table II as
well as in Fig. 4.

It can be seen from Table II that not all used algorithms
are suitable for protocol classification with the selected
statistical parameters. Also, it shows that the observed
protocols have very different behaviour, so that some could
be detected with high accuracy (Bittorrent, RTP, Flash) while
other protocols (eDonkey, IMAP) are hard to detect.

VI. PARAMETER REDUCTION

As described in Section III and listed in Table I, we
used 40 parameters, which can be divided into six different
parameter classes. Table II shows on which protocols our
18 preselected classifiers have a classification accuracy with
greater than or equal to 90%. However, Table II does not
show which parameter combinations were suitable for the
best classification results.

One important target of our research is the reduction
of the used parameters — first, to eliminate unnecessary
or disruptive parameters according to the classification
accuracy and second, to eliminate parameters and thus
reduce the complexity of the classification for optimization
according to real-time classification. Therefore, we tested all
classifiers with all possible combinations of the parameter
classes from Table I. Hence, we tested our 18 classifiers
with our training PCAP trace and all 63 combinations
of the parameter classes — the 64th combination (all
classes removed) was omitted. The results of these tests are
evaluated below in this section.

The evaluation of the test results are shown in different
histograms. Each parameter combination is expressed as a
decimal number in these histograms (see Fig. 4, Fig. 5, Fig.
6 and Fig. 7). These decimal numbers are the sum of the
values of each parameter class as shown in Table IV. For
example, the combination of the payload size (4) and bulk
(16) parameters is the decimal number 20 = 4 + 16.
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Table II: Protocol classification with greater than or equal to 90% accuracy and time factor

Time Factor
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Train Test
AttributeSelectedClassifier X X X X X X X 27.8 2.8
Bagging X X X X X X 127.4 1.4
BayesNet X X X X X X X 40.0 42.5
DataNearBalancedND X X X X X X X X X 92.0 5.2
DecisionTable X X X X X 388.4 1.9
FilteredClassifier X X X X X X 21.9 2.1
J48 X X X X X X X X X 37.7 2.1
J48graft X X X X X X X X X 49.6 3.0
NaiveBayes X X X X X X X 54.1 118.9
NaiveBayesUpdateable X X X X X X X 54.7 119.4
nestedDichotomies.ND X X X X X X X X 137.2 42.7
OneR X X X X X 5.0 1.0
PART X X X X X X X X 60.2 2.2
RandomCommittee X X X X X X X X X 42.3 2.3
RandomForest X X X X X X X X 35.0 2.3
RandomSubSpace X X X X X X X X X 71.6 1.9
RandomTree X X X X X X X X X 5.3 1.1
REPTree X X X X X X 13.7 1.3

Table IV: Binary coding of parameter combinations

Binary Decimal Parameter Class
20 1 packet count
21 2 interarrival
22 4 payload size
23 8 duration
24 16 bulk
25 32 idle

A. Classifier Based Parameter Reduction

The first basic approach to reduce the parameters is to
evaluate all classifiers according to their classification ac-
curacy with the different classifier combinations. Therefore
we first filtered all parameter combinations for each classifier
which have a classification accuracy greater than or equal
to 90% on each of the protocols of Table III. Afterwards,
we counted for each classifier, which of these parameter
combinations were present on at least five protocols. The
results of this evaluation are shown in the histograms of Fig.
4. For each of the 18 preselected classifiers one histogram
is shown.

As you can see in the histograms of Fig. 4 nearly two-
thirds of all possible parameter combinations — 39 out of 63
— have a classification accuracy of greater than or equal to
90% on at least five protocols with the used classifiers. Thus,
one third of all parameter combinations is not reaching this
limit and can already be dismissed for the further evaluation.
Furthermore, on 32 of these 39 parameter combinations the
parameter class payload size is included, which means that
all possible parameter combinations with the parameter class
payload size is present on at least one classifier. The other
five parameter classes are only present in combinations with

other parameter classes and not on their own like payload
size (4).

Comparing the histograms in Fig. 4 with the results of
Table II illustrates the low accuracy of the classifiers De-
cisionTable, OneR and filteredClassifier. In the histograms
there are only fewer or no parameter combinations which
have a classification accuracy greater than or equal to 90%
on at least five protocols. Furthermore the best classi-
fiers with the most classification accuracy greater than or
equal to 90% in Table II are DataNearBalancedND, J48,
J48graft, RandomCommittee, RandomSubSpace and Ran-
domTree with nine out of ten protocols. But, the histograms
in Fig. 4 show no parameter combination on these classifiers
which can be used on all of the nine protocols. With
the classifiers DataNearBalancedND, J48 and J48graft it is
only possible to classify at the most seven protocols with
one parameter combination to get a classification accuracy
greater than or equal to 90%. For example, for DataNear-
BalancedND it is the parameter combination 36 (payload
size and idle) and for J48 the two parameter combinations 12
(payload size and duration) and 44 (payload size, duration,
idle). The classifier J48graft has six possible parameter
combinations which can be used to classify seven protocols
with a classification accuracy greater than or equal to 90%.

Like the classifiers RandomCommittee, RandomSubSpace
and RandomTree, the classifiers PART and RandomForest
have parameter combinations which can be used to classify
eight different protocols with a classification accuracy
greater than or equal to 90%. For all of these classifiers, the
eight protocols which can be classified with one parameter
combination having a classification accuracy greater than or
equal to 90% are: Bittorrent, Flash, HTTP, Oscar, POP3,
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Figure 4: Distribution of parameter combinations for classifiers
(x-axis: parameter combinations, y-axis: number of occurrences)

RTP, SIP and SMTP. In fact, all of the possible parameter
combinations contain the parameter class payload size. In
addition, the most parameter combinations consist of at
least three parameter classes. The only exception is the
parameter combination 6 (interarrival and payload size) for
the RandomCommittee classifier.

Fig. 5 shows a histogram with the number of classifiers
on which each of the 39 parameter combinations has a
classification accuracy of greater than or equal to 90% at

least on five protocols. There are 16 parameter combinations
which facilitate a wide spectrum — at least two-thirds of all
classifiers (12 out of 18) — on the protocol classification:
7, 14, 15, 21, 29, 31, 36, 37, 44, 45, 47, 53, 54, 60, 61, 63.
Also, these 16 parameter combinations contain the parameter
class payload size and the most parameter combinations
consist of at least three parameter classes — only exception
is the parameter combination 36 (payload size and idle). In
addition, the parameter combinations which are only present
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Figure 5: Number of parameter combinations for clas-
sifiers (x-axis: parameter combinations, y-axis:
number of classifiers)

on one classifier (9, 18, 19, 27, 43, 51, 58) do not contain
the parameter class payload size.

Finally, the results of these tests show that combinations
of many or all parameter classes do not imply higher
accuracy on the classification of the investigated protocols.
But, for a good classification accuracy according to the
classification of as many protocols as possible with one
parameter combination, mostly combinations of three or
more parameter classes are required.

B. Protocol Based Parameter Reduction

In contrast to the evaluation of all classifiers according
to their classification accuracy with the different parameter
combinations, the second approach to reduce the parameters
for the classification is to evaluate the classification accuracy
of the different parameter combinations depending on the
network protocols. As in the first basic approach, we started
with filtering all parameter combinations which have a
classification accuracy greater than or equal to 90%. In
the next step we counted for each protocol, which of
these parameter combinations were present on at least nine
different classifiers. The results of this evaluation are shown
in the histograms of Fig. 6. For each of the ten protocols
from Table III one histogram is shown.

The histograms of Fig. 6 include all 63 parameter
combinations, but the protocol classes interarrival, duration,
bulk and idle are mostly present in combination with other
parameter classes and not on their own.

Table II shows some protocols (Bittorrent, Flash, POP3,
RTP, SIP) which have a good classification accuracy with
the most classifiers. The histograms of these protocols in
Fig. 6 indicate this fact with a lot of possible parameter
combinations having a classification accuracy of greater than
or equal to 90% on at least nine classifiers. Furthermore,
there are parameter combinations of the protocols Bittorrent,
Flash and RTP with a classification accuracy of greater than
or equal to 90% on all 18 classifiers. For Bittorrent these
are 16 (bulk) and 48 (bulk and idle), for Flash these are 29
(packet count, payload size, duration, bulk) and 53 (packet
count, payload size, bulk, idle) and for RTP these are 1
(packet count), 32 (idle) and 33 (packet count, idle).
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Figure 7: Number of parameter combinations for proto-
cols (x-axis: parameter combinations, y-axis:
number of protocols)

Fig. 7 shows a histogram with the number of protocols
on which each of the parameter combinations has a
classification accuracy of greater than or equal to 90% on at
least nine classifiers. There are 18 parameter combinations
which facilitate a wide spectrum — at least two-thirds of
all protocols (7 out of 10) — on the protocol classification:
5, 7, 15, 22, 23 ,29, 30, 31, 37, 39, 47, 52, 54, 55, 60,
61, 62, 63. Also, these 18 parameter combinations contain
the parameter class payload size and the most parameter
combinations consist of at least three parameter classes —
only exception is the parameter combination 5 (packet count
and payload size). In addition, the parameter combinations
which are only present on one protocol (8, 16, 17, 24, 25, 32,
48, 49, 56, 57) do not contain the parameter class payload
size.

Additionally, the results of these tests show that combina-
tions of many or all parameter classes do not imply higher
accuracy on the classification of the investigated protocols.
But, for a good classification accuracy according to the clas-
sification of a protocol with as many classifiers as possible
with one parameter combination, mostly combinations of
three or more parameter classes are required.

VII. CONCLUSION AND FURTHER WORK

In this paper, we have determined how accurately 18
machine learning algorithms can be used to classify network
traffic with 63 combinations of six statistical parameter
classes consisting of 40 parameters. In contrast to many
other studies, we used a per-packet approach instead of the
per-flow approach.

As a result, we can say that the parameter class
payload size has a significant influence on the classification
accuracy. The four algorithms BayesNet, NaiveBayes,
NaiveBayesUpdateble and ND have a time factor for testing,
which is between 40 and 120 times greater than the
fastest algorithm OneR. Thus these algorithms appear to be
unsuitable for real-time traffic classification on high data rate
links. The other algorithms have a time factor with nearly the
same dimension. The algorithms DesicionTable and OneR
reach only a low accuracy with the used parameters. The
DataNearBalancedND, J48, J48graft, RandomCommittee,
RandomSubSpace, RandomTree algorithms classified the
most network protocols with an accuracy of 90% or more.
The algorithms PART, RandomCommittee, RandomForest,
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Figure 6: Distribution of parameter combinations for protocols
(x-axis: parameter combinations, y-axis: number of occurrences)
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RandomSubSpace and RandomTree could classify eight
of ten protocols with one parameter combination with
an accuracy of 90% or more. Also the results show
also that many parameters do not automatically cause a
better classification. Furthermore, parameter reduction can
improve the performance of per-packet classification which
is necessary for the real-time traffic analysis of “fast”
networks. A classification accuracy of 90% and above is
a good result in comparison to other papers [3], [4], [5],
[6], [15] where the classification accuracy often falls below
90%.

As a main result, we can say that the parameter
combination needed for good classification results is
depending on the machine learning algorithm used and the
protocols to classify. There is no parameter combination,
which can be used on all classifiers to get a high
classification accuracy on all protocols. This implies that
the results of the other studies [3], [4], [5], [6] can only be
used with the same algorithm used in the particular paper.

Further Work

Other studies (e. g., [11]) showed that classification
accuracy is decreasing by tests on network traffic of different
locations. So we have to evaluate our results with other
traces. To enhance the accuracy of traffic classification
we have to find other parameters. All common statistical
parameters were determined in this paper. New parameters
should represent more characteristic properties of network
protocols and their payload.

Another way to enhance the accuracy could be to split
the protocols into those using TCP and those using UDP.
Furthermore the parameter classes we are using consist of
different parameters that represent information about upload,
download and the whole flow. We will determine the benefit
of this distinction, because possibly some of them can be
dismissed.

Another field of research is the real-time classification of
network traffic with machine learning algorithms.

Furthermore, we want to investigate if it is possible with
machine learning algorithms to train the algorithms for
different protocol classes like e-mail, bulk data transfer,
P2P, interactive, gaming or multimedia to be able to classify
unknown protocols which belong to a protocol class.

Finally, it would be interesting to study the best suitable
algorithms in detail — instead of using them as a black box
model — in order to improve them for better classification,
to find out why they are more suitable than the others,
and to find systematics which explains why there are some
algorithms which are more suitable than others.
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