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Abstract— In this paper, the problem of detecting transient 
signals of unknown waveforms and arrival times embedded in 
white Gaussian noise is addressed.  The use of the cepstrum 
coefficients of the 4th order correlations of the transient signal 
for forming a detection statistic is demonstrated. It is 
considered  an adaptive approach for the detection of the signal 
which is assumed to satisfy a linear constant coefficient 
difference equation.  The adaptive approach is a least squares 
realization based on Q-R decomposition of the 4th order 
statistics matrix involved in the computation of the cepstrum 
coefficients. It is shown that the adaptive approach allows for 
detection of short length transients which are of unknown 
arrival times using a single data record even before the whole 
amount of data becomes available.     

Keywords-Detection; Transient signals; Complex Cepstrum; 
Q-R decomposition; Givens Rotations. 

I. INTRODUCTION 

Detection of transient signals of unknown waveforms and 
unknown arrival times is a common problem in several 
signal processing areas. Some applications include detecting 
targets by radar and sonar. Another application is in 
hydraulic and power systems where monitoring sudden 
changes protects the system. In the detection of seismic 
waves and in biomedicine, the signal carries important 
information of the disease and an early detection is 
essential for the treatment. Transients can be either 
deterministic or stochastic signals, are short in duration, and 
are embedded in long periods of background noise.  In both 
cases we have a highly non-stationary problem.  Classical 
signal detection theory has been applied to this problem 
mainly using the autocorrelation or data domain. 

 If the deterministic signal waveform is unknown, but the 
arrival time is known, and the signal is embedded in additive 
white Gaussian noise, a generalized likelihood ratio test is 
discussed in [1], where the signal is the impulse response of a 
proper rational transfer function. However, some a-priori 
knowledge for the signal is required.  Furthermore, the 
detector is not of Constant False Alarm Rate (CFAR). A 
similar approach is presented in [2] where the noise is 
colored Gaussian Autoregressive of order M (AR(M)) 
process.  For the same transient problem, but for unknown 
arrival times, the Gabor representation of the signals is used 
in [3]. 

Higher order statistics have been used for spectrum 
estimation of stochastic signals [4]-[11]. For detection 
problems, their use has not been very extensive.   

Here we propose a new detection scheme for the 
detection of transient signals based on the computed 
cepstrum coefficients of the fourth-order statistics of the 
signal [12]. Cepstrum coefficients are appropriate for 
representation of transient signals because they contain all 
the information of the signal.  Since they also peak around 
the origin, they are suitable for signal detection. The 
proposed method does not require knowledge of the noise 
variance or skewness and it is also able to detect the signal in 
the presence of non-Gaussian white noise as long as it is of 
zero mean independent, identically distributed (i.i.d.) 

Higher order (3rd, 4th, etc.) cumulants are zero for 
Gaussian i.i.d. process [12]. This means that cumulants have 
the ability to suppress the noise. This fact is one of the 
reasons that we present herewith a detection statistic based 
on cepstrum coefficients and particularly the ones based on 
the tricepstrum sequence. However, the same detection 
statistic still works when noise is not Gaussian i.i.d. but non-
skewed (e.g. symmetrically distributed). 

The paper is organized as follows.  In Section II, the 
adaptive approach is presented for the proposed detector.  In 
Section III, its performance is demonstrated by means of 
simulation examples.  Finally, conclusions are drawn in 
Section IV. 

II. ADAPTIVE Q-R DECOMPOSITION OF THE TRISPECTRUM 

CEPSTRAL EQUATION  

A. Problem Definition 

The following detection problem is considered 
 

       𝐻 : 𝑥(𝑛) = 𝑤(𝑛) 
𝐻 : 𝑥(𝑛) = 𝑚(𝑛) + 𝑤(𝑛) 𝑛 = 0, … , 𝑁 − 1                    (1) 

 
where 𝑤(𝑛)  is a stationary, zero mean, white, Gaussian 
noise of unknown variance 𝜎  and 𝑚(𝑛) is a deterministic 
transient signal of unknown waveform.  The complex 
cepstrum of the 4th order statistics of a random process 
{𝑥(𝑛)} is known to satisfy the following identity [12], 
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𝐴(𝑘) 𝑓 (−(𝑚 + 𝑘), −𝑚, −𝑚)

− 𝑓 −(𝑚 − 𝑘), −(𝑚 − 𝑘), −(𝑚 − 𝑘)

+ 

𝐵(𝑘) 𝑓 −(𝑚 + 𝑘), −(𝑚 + 𝑘), −(𝑚 + 𝑘)

− 𝑓 (−(𝑚 − 𝑘), −𝑚, −𝑚) = 
 
𝑚 ∙ 𝑓 (−𝑚, −𝑚, −𝑚) = 𝑐 (−𝑚, −𝑚, −𝑚)   𝑝, 𝑞 → ∞      (2) 
 
where the minimum phase {𝐴(𝑘)} and maximum 
phase {𝐵(𝑘)} parameters are given by, 
 

𝑔 (𝑘, 0,0)
− ∙ 𝐴(𝑘), 𝑘 = 1, … , 𝑝      

∙ 𝐵(−𝑘), 𝑘 = −1, … , −𝑞
                              (3) 

 
and 𝑔 (𝑘, 𝑙, 𝑛) is the tricepstrum of the 4th order 
statistics 𝑓 (𝑘, 𝑙, 𝑛) of the signal. In this paper, the cepstrum 
coefficients in (2) are being used, for the detection problem 
given by (1). The following assumptions are being made. 
1) Under 𝐻  it is assumed that {𝐴(𝑘)}, {𝐵(𝑘)} for all k are 

equal to zero. 
2) Under 𝐻  since the process {𝑥(𝑛)} is not stationary, it 

is assumed availability of many data records, 
i.e, 𝑥( )(𝑛) = 𝑚(𝑛) + 𝑤( )(𝑛), 𝑖 = 1, … , 𝑀 is the given 
ensemble data set, where 𝑤( )(𝑛)  are different noise 
realizations of identical statistical properties then, 

𝑓 (𝑘, 𝑙, 𝑚) = 𝐸 ∙ 𝑥(𝑛)𝑥(𝑛 + 𝑘)𝑥(𝑛 + 𝑙)𝑥(𝑛

+ 𝑚)                                                           (4) 

3) Since {𝐴(𝑘)}, {𝐵(𝑘)} are decaying sequences they can 
be truncated (2) and p, q  finite integers can be used 
[12]. 

By choosing 𝑝 = 𝑞 then (2) can be written, 

𝑐 (𝑚, 𝑛) = 𝑓 (𝑚, 𝑘, 𝑛) ∙ 𝐴(𝑘, 𝑛)

+ 𝑓 (𝑚, 𝑘, 𝑛) ∙ 𝐵(𝑘, 𝑛), 

 
              𝑚 = −𝑝, … , −1,1, … , 𝑝                                                (5) 
 
where {𝐴(𝑘, 𝑛)}, {𝐵(𝑘, 𝑛)}, 𝑓 (𝑚, 𝑘, 𝑛), 𝑓 (𝑚, 𝑘, 𝑛), denote 
the estimates of the corresponding values of (2) at time 
instant n based on N samples.  In a matrix form, 
                          𝐅(𝑝, 𝑛) ∙ 𝐓(𝑝, 𝑛) = 𝐂(𝑝, 𝑛)                             (6)                                                  
where the elements of 𝐓(𝑝, 𝑛) are 
 

𝑇(𝑘, 𝑛) =
𝐴(𝑘, 𝑛), 𝑘 = 1, … , 𝑝                 

𝐵(𝑘 − 𝑝, 𝑛), 𝑘 = 𝑝 + 1, … ,2𝑝
                          (6.1) 

and 
𝐅(𝑝, 𝑛) = 

 
𝑓 (𝑝, 1, 𝑛) ⋯ 𝑓 (𝑝, 𝑝, 𝑛)

⋮ ⋱ ⋮
𝑓 (−𝑝, 1, 𝑛) ⋯ 𝑓 (−𝑝, 𝑝, 𝑛)

𝑓 (𝑝, 1, 𝑛) ⋯ 𝑓 (𝑝, 𝑝, 𝑛)
⋮ ⋱ ⋮

𝑓 (−𝑝, 1, 𝑛) ⋯ 𝑓 (−𝑝, 𝑝, 𝑛)
 , (6.2) 

 

                        𝐂(𝑝, 𝑛) = 𝑐 (𝑝, 𝑛), … , 𝑐 (−𝑝, 𝑛) ,         (6.3) 

 
"T" denotes the transpose operation. Under H , the matrix 
F(p, n)  is of full, 2p rank. Asymptotically under 𝐻  the 
estimates of the tricepstrum coefficients, {A(k)}, {B(k)}, are 
Gaussian random variables of zero mean and constant 
covariance matrix. It is also assumed that if N →
∞  f (m, k, n),f (m, k, n) become their true values f (m, k), 
f (m, k). Therefore, the following variable can be used as a 
detection statistic: 

𝐿 = (𝐴(𝑘, 𝑛) ) 𝜎 + (𝐵(𝑘, 𝑛) ) 𝜎 ,           (7) 

where, σ , σ  are the variances of A(k, n), B(k, n).  This is 
a central quadratic form (𝑙 ≤ 𝑝). For fixed probability of 
false alarm P , the threshold can be computed using the 
cumulative distribution F  of L  under H , 
 
                  t = F (1 − P )                   (8) 
 

Instead of using 4th order statistics, 3rd order statistics 
can be used.  However, in this case the noise cannot be 
Gaussian, i.i.d.  The Additive White Non-Gaussian Noise 
(AWNGN) with zero mean assumption is enough to 
guarantee asymptotically under H  rank 2p, for the matrix 
 F(p). 

Summarizing the algorithm for detecting deterministic 
transient signals embedded in additive white Gaussian noise, 
we have the following: 
1) Estimate the 4th order statistics of f (k, l, n) [12]. 
2) Estimate A(k), B(k) using a least squares solution to 

the overdetermined system of equations (2) when 
p = q, m = p, … , p − W. W≥2p 

3) Compute 𝐿  and compare it with a threshold chosen 
according to (8). 

 

B. The Recursive Approach of the Higher Order Cepstrum 
Based Detector 

Instead of estimating the cepstrum coefficients {A(k)} 
and {B(k)}  in one step when the whole data record is 
available we seek for a recursive solution of (6) which will 
allow for fast updating of the coefficients when new data 
arrive and the amount of the data is large.  Another reason 
for developing a recursive approach is when the arrival 
times of the transients are unknown.  It is assumed the 
following partition for f (m, k, n),  f (m, k, n). 
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𝑓 (𝑚, 𝑘, 𝑛) = 𝜆 𝑥(𝑖)(𝑥 (𝑖 − 𝑚), 1)

∙ 𝑥 𝑖 − (𝑚 + 𝑘) , −𝑥 𝑖 − (𝑚 − 𝑘)  

 +𝜆 𝑓 (𝑚, 𝑘, 𝑛 ),                                                (9.1) (13.1) 

𝑓 (𝑚, 𝑘, 𝑛) = 𝜆 𝑥(𝑖)(𝑥 (𝑖 − 𝑚), 1)

∙ −𝑥 𝑖 − (𝑚 − 𝑘) , 𝑥 𝑖 − (𝑚 + 𝑘)  

 +𝜆 𝑓 (𝑚, 𝑘, 𝑛 ),                                                (9.2) 
 
where, λ is a weight constant, 0 < 𝜆 ≤ 1  and f(m, k, n ) , 
f (m, k, n )  are computed values from the initialization 
period which will be explained in the sequel.  Also note that 
a time recursion for C(p, n) is 
 
𝐂(𝑝, 𝑛) = 𝜆 ∙ 𝐂(𝑝, 𝑛 − 1) + 𝐚 (𝑛),                                     (10) 

𝐚(𝑛) = 𝑝𝑥 (𝑛 − 𝑝)𝑥(𝑛), … , (−𝑝)𝑥 (𝑛 + 𝑝)𝑥(𝑛)       (11) 

 
To realize this solution matrix F(p, n)  is decomposed into 
two sub matrices, V and U and their Q-R decomposition is 
updated at each time instant that new information is present,  
𝐅(𝑝, 𝑛) = 𝐕 (𝑝, 𝑛) ∙ 𝐔(𝑝, 𝑛)                                                 (12) 
Both V  and U start with, 

 𝐐(1) ∙ 𝐀(1) =
𝐅(1)

0
                                                           (13) 

where  A matrix will represent either V  or U, 𝐅(1) = 𝑥(0) 
and 

𝐐(1) =
0 1
0 0

,    𝐀(1) =
0

𝑥(0)
                   (14) 

Given the above initial values, new data at each iteration i, 
for both V  and U, namely u (i) and u (i) are obtained. 
The general notation u (i)  is used here. Then, Q-R 
decomposition is applied on A(1) 

𝐀(2) =
𝐀(1) 𝟎( )

 

𝐮 (𝑖)
                    (15) 

In the subsequent steps of the initialization period, we input 
new data until we finally obtain Q-R decompositions for V  
and U. 

It remains to describe the orthogonal 
transformations that are used to compute the Givens rotation 
parameters and then the Givens transformation matrix G(i).  
In particular for each step, the partially triangularized matrix 
is assumed, 

𝐅(𝑖) =
𝐃

/ (𝑖) ∙ 𝐅 (𝑖)

𝟎
,                    (16) 

𝑗 =
𝑖, 𝑖 ≤ 2𝑝 
2𝑝, 𝑖 > 2𝑝

  ,                     (17) 

where D / (i)  is diagonal matrix and F(i)  is a unit upper 
triangular matrix.  The requirement is to find rotation 
parameters so that we can annihilate the new input vector 
u (i).  Thus, a sequence of Givens rotations [13] is used, 
described by 

𝐺 (𝑖, 𝑘, 𝑙) =

⎩
⎪
⎨

⎪
⎧

𝑐 (𝑖), 𝑘 = 𝑙 = 𝑚              

𝑠 (𝑖), 𝑘 = 𝑖, 𝑙 = 𝑖 + 1     

−𝑠 (𝑖), 𝑘 = 𝑖 + 1, 𝑙 = 𝑚

𝑐 (𝑖), 𝑘 = 𝑙 = 𝑖 + 1
1, 𝑘 = 𝑙, 𝑘 ≠ 𝑚, 1 ≤ 𝑘 < 𝑖

                      (18) 

and the Givens transformation matrix itself is 

G(i) = ∏ G (i)                                                           (19) 

l =
k + 1, k < 2𝑝
2p, k = 2p        

                                                         (20) 

where k  is the dimension of the input vector.  

After the end of the initialization period, initial Q-R 
decompositions for V (p, n) and U(p, n) are available.  It is 
denoted again in general each one of them by  A(p, n).  For 
U(p, n) the new data sets for the next iteration are its last two 
lines, i.e, per iteration its Q-R decomposition is updated 
twice.  For   V (p, n), per iteration its Q-R decomposition is 
updated 4p + 2 times, using equal number of new data sets, 
u (n, i), which are described as follows, 

𝐮𝒊𝒏(𝑛, 𝑖) =

⎩
⎪
⎨

⎪
⎧

𝐮𝒊𝒏𝟏(𝑛, 𝑖) = 𝑥(𝑛 − 𝑝 + 𝑖) ∙ 𝐮𝒊𝒏𝟐(𝑛, 𝑖),                              

𝐮𝒊𝒏𝟐(𝑛, 𝑖) = 0, . . . ,0 , 𝑥(𝑛 + 1), … , 𝑥 𝑛 − (2𝑝 − 𝑖) ,

𝑖 = 1, … ,2𝑝 + 1                                                                      

   (21) 

where the step i = p + 1 (which corresponds to m = 0, row 
of F(p, n) in (6)) is ignored.  The decomposition of the first 
step i = 1 is stored for each time instant n  and is used as 
initial for the iterations, i = 1, … ,2p + 1  of the next time 
instant n + 1  for V (p, n) .  I.e, summarizing the update 
process for both V (p, n), U(p, n) for every time instant n 
we have the following, 

Q (𝑝, 𝑛) ∙ A (𝑝, 𝑛) =
F (𝑝, 𝑛)

0( )
,                    (22.1) 

F (p, n) = D
⁄ (p, n) ∙ F (p, n),                    (22.2) 

where j = 2(n − n ) + 8p + 2  for U(p, n)  and j =
2(n − n ) + 4p + 2  for V (p, n)  and it was assumed that 
n = 2p.  At the next time instant n + 1, new information is 
available (note that at time instant n, samples of a growing 
rectangular window are available up to time instant n + 2p, 
i.e, when it is said new available information it is meant that 
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this window is moved one position forward) and A(p, n) and 
F(p, n) matrices are updated, 

𝐀(𝑝, 𝑛 + 1, 𝑖) =
𝐀(𝑝, 𝑛, 𝑖)

𝐮𝒊𝒏(𝑛, 𝑖)
,                 (23.1) 

𝐅∗(𝑛 + 1, 𝑖) =

𝐅𝟐𝒑𝒙𝟐𝒑(𝑝, 𝑛, 𝑖)

𝟎(𝒋 𝟐𝒑)𝒙𝟐𝒑

𝐮𝒊𝒏(𝑛, 𝑖)

,                                     (23.2) 

The index i is used here to indicate the iterations for every 
time instant n. Note that, A(p, n) = A(p, n, 1) and F(p, n) =
F(p, n, 1) also for U(p, n), i = 1, where as for V (p, n), i =
1, … , 2p + 1. 

The rotation parameters are computed and the 
sequence of the square root Givens rotations are applied at 
time instant n on F(p, n) to annihilate all 2p elements of the 
last row.  Then, 

𝐆(𝑛 + 1, 𝑖) ∙ 𝐅(𝒋 𝟏)𝒙𝟐𝒑
∗ (𝑛 + 1, 𝑖) =

𝐅𝟐𝒑𝒙𝟐𝒑(𝑝, 𝑛, 𝑖)

𝟎(𝒋 𝟏 𝟐𝒑)𝒙(𝟐𝒑)
,                 (24.1) 

𝐐(𝒋 𝟏)𝒙(𝒋 𝟏)(𝑝, 𝑛 + 1, 𝑖) = 𝐆(𝑛 + 1, 𝑖) ∙
𝐐𝒋𝒙𝒋(𝑝, 𝑛, 𝑖) 𝟎𝒋𝒙𝟏

𝟎𝟏𝒙𝒋 1
,         (24.2) 

which gives the following Q-R decomposition at time instant 
n + 1, 

𝐀𝒋𝒙𝟐𝒑(𝑝, 𝑛 + 1) = 𝐐𝒋𝒙𝒋
𝑻 (𝑝, 𝑛 + 1) ∙

𝐅𝟐𝒑𝒙𝟐𝒑(𝑝, 𝑛 + 1)

𝟎(𝒋 𝟐𝒑)𝒙(𝟐𝒑)
,                     (25) 

where now j = 2(n + 1 − n ) + 8p + 2  for both V (p, n) , 
U(p, n). If indexes u, v are used to denote the corresponding 
Q , F  matrices for V (p, n) , U(p, n)  then the least squares 
solution (6) can be realized as, 

𝐅( ) ∙ 𝐓 = 𝐐( ) 𝐐( ) ∙ 𝐅( ) ∙ 𝐂,                     (26) 

The two square matrices on the right hand side of (26) are 
invertible because of the way that they were constructed 
using the Givens rotations and the above linear system of 
equations can be solved using back substitution. 

III. SIMULATION EXAMPLES  

Test Case 1 (Minimum phase transient, unknown arrival 
time). The z-transforms of the infinite duration signal is 
given by, example 1, 

𝐹(𝑧) =
( . ) .

                                                   (27) 

and we assume that it is of unknown arrival time at 200 
samples.  The signal plus noise records for AWGN of 
variance, σ = 3.162x10 , 0.1, for 15 sample signal are 
shown in Figure 1a, 1b.  In Figure 2a, 2b, we plot the 
detection statistics for the tricepstrum method and for the 
Infinite Impulse Response (IIR) adaptive algorithm versus 

time (the same way as for the definition of L , we use the 
sum of the squares of the estimated coefficients of the 
recursive IIR model as a detection statistic for the 
comparison algorithm).  For the tricepstrum p = q = 2 and 
l = 2 and for the IIR model order, 2 were the choices for this 
experiment.  For all the experiments below, including this 
one we keep l equal to the order of the model.  Both methods 
under H (0, … ,199)  samples remain in the zero state and 
when the transient appears they jump and slowly converge 
again to the zero state.  The weighting constant λ was for 
both methods 0.99.  In Figure 2c, we show operation of the 
algorithms for noise variance σ = 1 and λ = 0.98. 

 

 
Figure 1. Signal plus noise records for the minimum-phase signal, 

example 1, 15 samples, arrival time, 200 samples:  (a) σ =
3.162x10 , (b) σ = 0.1. 
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Figure 2. Additive White Gaussian Noise, minimum-phase signal, 
example 1, 15 samples, arrival time, 200 samples, L  versus 
time λ = 0.99 , (a) Tricepstrum, p = 2  and IIR(2), σ =
3.162x10 , (b) σ = 0.1, (c) σ = 1, λ = 0.98. 

 

Test Case 2 (Mixed phase transients, unknown arrival 
times),  

example 2, 

 

𝐹(𝑧) =
( . ) ( . ) ( . )

( . ) .
                  (28.1) 

 

example 3, 

 

𝐹(𝑧) =
( . )( . ) ( . ) ( . ) ( . ) .

( . ) ( . ) ( . ) .
         (28.2) 

For example 2, we use 15 sample signal and arrival time at 
150 samples.  The tricepstrum and IIR detection statistics 
versus time are shown in Figures 3a, 3b.  The noise variance 
is σ = 0.1, 3.162x10  and we choose p = 2  for the 
tricepstrum and order 6 for the IIR, λ = 0.99 for both.  It is 
clear that because of the inability of the IIR model to catch 
the non-minimum phase character of the signal its 
performance becomes much worse.  This becomes more 

apparent if we compare Figures 3a and 3b, where the SNR 
values are 13.8 db and 12 db correspondingly.  

 

 

 

 

 
 

Figure 3. Additive White Gaussian Noise, mixed-phase signal, example 
2, 15 samples, arrival time, 150 samples:(a) L  versus time, 
λ = 0.9 , Tricepstrum, p = 2  and IIR(6), σ = 0.1 , (b) L  
versus time, λ = 0.99, σ = 3.162x10 . 

 

 

In example 3, we make the non-minimum phase character of 
the signal even stronger and we plot also the detection 
statistics for both methods in Figures 4a-4c, for 25 sample 
signal and corresponding noise variances, σ =
3.162x10 , 0.1, 3.162x10 , 10 . The orders of the 
tricepstrum and IIR methods were 2 and 10 with λ = 0.99.  
The performance of the first improves and for the second 
becomes worse with respect to examples 2 and 1.  
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Figure 4. Additive White Gaussian Noise, mixed-phase signal, example 

3, 25 samples, arrival time 150 samples:(a) L  versus time, 
λ = 0.9, Tricepstrum, p = 2 and IIR(10), σ = 3.162x10 , 
(b) L  versus time, λ = 0.99 , σ = 0.1 , (c) L  versus time, 
λ = 0.99 , σ = 3.162x10 , 10  for IIR(10) and σ =
3.162x10  for tricepstrum. 

 

In Figure 5, we plot for p = 3, λ = 0.99  and σ =
3.162x10 , 0.1  the tricepstrum detection statistic for 
examples 2, 3 to demonstrate performance with increased 
order.  Note that varying the order of the IIR method does 
not change the situation shown in Figures 2-4. 

 

 

 

 

Figure 5. Additive White Gaussian Noise, mixed-phase signals, 
examples 2, 3, 15, 25 samples, arrival time 150 samples, L  
versus time, σ = 0.1, 3.162x10 ,Tricepstrum p = 3, λ =
0.99, (a) example 2, (b) example 3. 

 

 

IV. CONCLUSION AND FUTURE WORK 

Using a suitable partition of the 4th order statistics 
involved in (2), a recursive solution for the cepstral equation 
was formulated. Because of the high variance in the 
estimation of the 4th order statistics, the recursive approach 
was based on orthogonal Q-R decompositions of the 
partioned data matrices which consist the cepstral equation. 
By means of simulation examples, it was demonstrated that 
the proposed algorithm is capable to detect transients of 
unknown arrival times. Comparing this technique with a fast 
adaptive algorithm based on an IIR model for the signal, 
significant improvement in terms of signal detection 
capability was demonstrated. Future work could 
investigate the performance of the proposed algorithm in 
the presence of i.i.d. noise with probability density 
function which follows non Gaussian distribution either 
symmetric (for example non-skewed) or asymmetric.  
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