
Challenges when Realizing a Fully Distributed Internet-of-Things
– How we Created the SensibleThings Platform

Stefan Forsström, Victor Kardeby, Patrik Österberg, and Ulf Jennehag
Department of Information and Communication Systems

Mid Sweden University
Sundsvall, Sweden

Email: {stefan.forsstrom, victor.kardeby, patrik.osterberg, ulf.jennehag}@miun.se

Abstract—The SensibleThings platform is an open source ar-
chitecture for enabling Internet-of-Things based applications.
During its development, multiple problems have been faced and
solved, for example issues related to networking, information dis-
semination, sensors, and application access. This paper describes
these problems and the technical solutions that are implemented
in the platform. We also present the current progress and a
series of demonstrator applications, which show the wide range
of possibilities enabled by the platform. Finally, we present future
work and how it will be used in future research endeavors and
commercial interests.

Keywords-overlay;sensors;actuators;internet-of-things.

I. INTRODUCTION

Applications that utilize information from sensors attached
to different things in order to provide more personalized, au-
tomatized, or even intelligent behavior are commonly referred
to as Internet-of-Things (IoT) applications [1] or Machine-to-
Machine (M2M) applications [2]. The prediction is that these
kinds of applications will be able to interact with an IoT, a
worldwide network of interconnected everyday objects, and
thereby be able to display context-aware behavior [3]. These
applications may address a variety of areas, such as envi-
ronmental monitoring (pollution, earth quake, flooding, forest
fire), energy conservation (optimization), security (traffic, fire,
surveillance), safety (health care, elderly care), and enhance-
ment of social experiences. IoT applications will probably have
a big impact on how we interact with people, things, and the
entire world in the future.

There is also an interesting relationship between the IoT
and big data [4], since all of the connected things will produce
and consume large amounts of data. Current estimations are
in the order of 50 billion connected devices year 2020 [5].
In order to enable a widespread proliferation of IoT services
there must be a common platform for dissemination of sensor
and actuator information on a global scale. This is however
a very difficult goal to achieve, because there is a large
number of practical difficulties that must be solved. We state
that applications on the IoT require the following from an
underlying platform.

1) The platform must be able to quickly disseminate
information to end points. The communication should

be done with low overhead and there should be no
unnecessary proxying of data. This due to that there
exists many scenarios with real-time constraints for
IoT applications.

2) The platform must be stable and handle devices
joining and leaving the system with high churn rates.
There should be no central points of failure and
it should be possible for the system to heal itself,
even when a large number of devices leave at the
same time. For example in IoT scenarios with high
mobility.

3) The platform must be lightweight enough to run
on devices with limited hardware resources, such as
mobile devices, small computers, and sensor motes.
Hence, computational heavy algorithms and large
amounts of data storage is not possible in such end
devices. It is reasonable to expect that the IoT will
include a wide range of different devices with varying
computational and storage resources.

4) The platform must be extensive and adaptive to
conform with a wide range of possible applications
and devices. Applications should be able to create
new functionality on top of the platform, suiting their
own needs. This due to that IoT applications spreads
across a wide range of scenarios and there might be
unknown possible future scenarios.

5) The platform must be easy to adopt and free to
use in commercial products. Since the goal is global
proliferation, there should be no restrictions in terms
of software licenses and fees related to the code
for those companies or enterprises wishing to utilize
the platform. Also, IoT applications must be viable
for pure commercial interests, not just as research
implementations.

This paper addresses the practical difficulties of facing the
above mentioned requirements. We first present a short survey
of related work in terms of the different IoT platforms currently
available, including their relation to the requirements. We
then present our solution called the SensibleThings platform,
describing how it is designed and implemented to meet all of
the requirements in a satisfactory manner.

The paper is outlined as follow. Section II presents the
survey over currently available platforms. Section III describes

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

the SensibleThings platform, whereas Section IV focuses on
the problems faced during the processes. Section V discusses
current results and possible applications. Finally, Section VI
presents the conclusion and future research.

II. RELATED WORK

There currently exists a vast amount of platforms which
claims to enable an IoT, far more than can be listed in this
paper. However, they can generally be categorized into three
categories, centralized (or cloud distributed), semi-distributed,
and fully distributed systems.

A. Centralized Systems

Most of the systems being released today seem to focus
on distributing the data on some form of cloud-based IoT
architecture. The cloud is a concept that rise in popularity,
but it is in many cases simply a new word for traditional web
services. Very few of the cloud based systems explain how
the distribution and synchronization is actually done inside
their architecture, how many servers they use, etc. Either way,
cloud-based systems can be considered as centralized systems
since they always relay the sensor and actuator information
through a centralized point, in this case a cloud (be it one
or many connected servers). The main problems with cloud
oriented solutions are that they have difficulties achieving
requirement 1 on direct communication between end devices,
requirement 2 on no central points of failure, and requirement
5 on an open and free to use system, because they are
based on large scale servers. Typical examples of these cloud
based architectures include: SicsthSense [6], ThingSpeak [7],
Sen.Se [8], Nimbits [9], ThingSquare [10], EVRYTHNG [11],
Paraimpu [12], Xively [13], XOBXOB [14], Thingworx [15],
One Platform [16], Carriots [17], and many more.

B. Semi-Distributed Systems

The semi-distributed systems are often based on session
initiation protocols, whereas they afterward use direct com-
munication between the connected devices. Because of this,
they usually contain a centralized point for coordinating the
communication. Thus, semi-distributed systems are faster and
to some extent easier to scale than centralized solutions, but
they still have difficulties coping with requirement 2 and
5. Typical examples of these semi-distributed architectures
include: ETSI M2M [18], SENSEI [19], ADAMANTIUM
[20], and other platforms based on 3GPP IMS [21].

C. Fully Distributed Systems

Fully distributed systems operate in a peer-to-peer manner,
where they both store and administer the information locally
on each entity. To achieve this, they often utilize hash tables
to enable logarithmic scaling when the number of entities
increases in magnitude. These systems do not contain any
single point of failure and are thus more resilient, though the
distribution itself often requires additional overhead in order
to maintain an overlay. The main problem associated with
fully distributed systems is however that they place a larger
responsibility on the end devices, and thus have difficult to
achieve requirement 3. Examples of such systems are SOFIA
[22], COSMOS [23], and MediaSense [24].

III. THE SENSIBLETHINGS PLATFORM

In order to solve the problem and address the stated
requirements we have created the SensibleThings platform,
which is a realization and implementation of the MediaSense
architecture explained in [24]. The SensibleThings platform
can be seen in figure 1, which presents the different layers
and components of the platform. These include an interface
layer, an add-in layer, a dissemination layer, a networking
layer, and a sensor/actuator layer. The layers are explained
in detail in the original article, but they will be summarized
here as well. The actual SensibleThings code is based on a
fork of the MediaSense platform, but has been significantly
improved since then. The focus has been on the open source
aspect and maintaining the commercialization possibilities of
applications that are utilizing the platform. Other differences
include the actual implementation of the lookup architecture,
communication protocol, and code interfaces.

A. Interface Layer

The interface layer is the public interface through which
applications interact with the SensibleThings platform. The in-
terface layer includes a single component, the SensibleThings
application interface, which is a generic Application Pro-
gramming Interface (API) for developers to build their own
applications on top of.

B. Add-in Layer

The add-in layer enables developers to add optional func-
tionality and optimization algorithms to the platform. Add-ins
can for example help the platform meet specific application
requirements, such as specifically demanded features or handle
the available capacity in regards to computational power and
bandwidth. The add-in layer manages different extensible and
pluggable add-ins, which can be loaded and unloaded in run-
time when needed. These add-ins are divided into optimization
and extension components, but the platform can include any
number of them at the same time.

C. Dissemination Layer

The dissemination layer enables dissemination of informa-
tion between all entities that participate in the system and
are connected to the platform. A variant of the Distributed
Context eXchange Protocol (DCXP) is used, which offers
communication among entities that have joined a peer-to-peer
network, enabling exchange of context or sensor information in
real-time. The operation of the DCXP includes resolving of so
called Universal Context Identifiers (UCI) and subsequently
transferring context information directly. Therefore, the dis-
semination layer includes three components, a dissemination
core, a lookup service, and a communication system. The
dissemination core exposes the primitive functions provided by
DCXP, the lookup service stores and resolves UCIs within the
system, and the communication component abstracts transport
layer communication. In short, the dissemination layer enables
registration of sensors in the platform, resolving the location of
a sensor in order to find it, and the communication to retrieve
the actual sensor values.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

Figure 1. Overview of the SensibleThings platform’s architecture

D. Networking Layer

The networking layer enables connection of different en-
tities over current Internet Protocol (IP) based infrastructure,
such as fiber optic networks or wireless and mobile networks.
Hence, the networking layer is separated into two inner com-
ponents, an IP network and the physical network medium. In
short, the networking layer thus abstracts any underlying IP-
based network architecture.

E. Sensor and Actuator Layer

The sensor and actuator layer enables different sensors
and actuators to connect into the platform. The sensors and
actuators can vary greatly and the platform therefore offers
two options to connect them. Firstly, they can be connected
directly if they are accessible from the application code, such
as in the case of smartphone sensors. Secondly, the sensors
and actuators can connect through the sensor and actuator
abstraction. The abstraction enables connectivity either directly
to wireless sensor networks or via more powerful gateways.
Hence, the sensor and actuator layer is separated into five
components: the directly accessible sensors and actuators, an
abstraction component, different sensor and actuator networks,
sensor and actuator gateways, and the physical sensors and
actuators.

IV. ENCOUNTERED PROBLEMS

This section outlines the different problems encountered
during the development of the SensibleThings platform. The
problems are divided according to what layer they belong to
and explained in the following subsections. The last subsection
describes issues related to the source code licensing.

A. Interface Layer Problems

The main problems of the interface layer were related to
requirement 5 on easy usage, how to make the platform easy to

understand and easy to implement. Different approaches were
explored, but since almost all communication on the platform
is done asynchronously, the listener java pattern is typically
used in the application interface. Hence, almost all interface
access with the platform is done through normal function calls,
whereas the values are returned in event listeners.

B. Add-in Layer Problems

The add-in layer have also posed some specific problems,
most prominently how the add-ins should be managed, loaded,
and the API’s chain of command. This relates to requirement
4 on extensibility and in requirement 5 on easy usage. There
are also decisions to be made on what parts of the platform’s
API that should be considered primitive actions or be provided
as add-in features. In the current platform, there are still
some limitations as these issues have not been prioritized.
For example, the add-ins have no chain of command and will
therefore hijack functionality of the platform when enabled.
Thus, some add-ins become mutually exclusive and will not
function properly together.

C. Dissemination Layer Problems

The main problem faced when developing the dissemina-
tion layer was regarding the choice of lookup service that
supports requirement 1, 2, and 3, namely quick dissemination,
good scalability, and lightweight operation. There exists a
number of Distributed Hash Tables (DHT) that the platform
could use, where the most prominent are Chord [25], Kelips
[26], and P-Grid [27]. All three choices have their separate
advantages and disadvantages. Chord uses a ring structure
which is difficult to maintain and has a logarithmic lookup time
O(log(N)). Kelips uses affinity groups with a much simpler
synchronization scheme and has fixed lookup time of O(1),
but it does not scale as well and has a larger overhead. P-Grid

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

has a trie based structure with a logarithmic lookup time of
O(0.5 log(N)), but is more complex and difficult to maintain.

In the current platform, both Chord and Kelips are com-
pletely reimplemented to operate within the platform and
with the same license as the rest of the code. We have also
experimented with the currently available P-Grid code, but
since that is using multiple source code licenses (including
propagating open source licenses), it cannot be a part of
the SensibleThings code at this stage. Currently the platform
defaults to the Kelips DHT implementation, simply because
that code is more stable than the Chord implementation when
nodes join and leave rapidly.

The second problem faced in the dissemination layer was
the choice of communication protocol. Requirement 1 states
that the communication should be fast with low overhead.
Therefore, the aim was to have the useful payload data already
in the first packet. Because of this, a variant of a Reliable User
Datagram Protocol (RUDP) is utilized as the default protocol.
The problem with RUDP is however that the packets are sent
in clear text, but to support industry applications the platform
must provide the possibility of encryption. There exists several
approaches for enabling this, such as different key exchange
schemes with varying degrees of security and overhead. In
the end, the decision was to support standard Secure Sockets
Layer (SSL) encryption to at least make it possible to encrypt
the data if needed. The encryption is however only useful to
prevent eavesdropping, not man in the middle attacks, because
all certificates will be self signed by the end devices. There is
also a significant overhead related to SSL, and since there is
an initial handshake the data will not come in the first packets.

There have also occurred different problems in relation to
the serialization of messages, how the messages are coded
when sent over the Internet (before any encryption). A binary
serialization format is most suitable from a performance per-
spective, but a text based format is most usable from a human-
readable perspective and a code-specific format is most easy
to program. In the end, the choice was to support all different
serialization formats but the default is set to Java’s object
serialization, to make it easier to develop new extensions.
Likely, the Java serializer will be replaced in the future, in
order to make transitions to other platforms and programming
languages feasible.

D. Networking Layer Problems

The major problem faced in the networking layer was
related to requirement 2 on stability and seamless communi-
cation. The first versions of the platform did not take Network
Address Translation (NAT) and firewalls into consideration,
it only worked if all devices was on the public Internet.
However, today almost all consumer devices are connected to
the Internet through either NAT or some type of firewall, either
in their home or at their work, but also on the mobile phone
networks. The NAT and firewall problem is only a question of
configuration, given that the user is allowed to enable features
such as port forwarding on the NAT routers, but that this rarely
the case. For example, most normal users simply want things
to work out of the box, most companies do not allow their
employees to enable such features on their company network,
and many Internet service providers are now enabling carrier
grade NAT [28].

Multiple approaches were considered, ranging from IP
version 6 (IPv6) solutions, to Universal Plug and Play (UPNP),
different hole punching techniques, and finally simple proxy
solutions. The chosen solution first tries the normal ap-
proaches, such as direct connections and UPNP. If this fails it
instead utilizes distributed proxy nodes in the system. As the
proxy solution stands in direct contradiction to requirement 1
on real-time communication without unnecessary relaying of
information and requirement 2 on no central points of failure,
it is only used as a last resort when there are no other solutions
available.

There also exists problems related to the capacity of the
Internet connections and their network delay, but since the
SensibleThings platform is built on top of the existing Internet
architecture, it cannot affect these parameters. Therefore, as
long as useful payload data is sent in the first packet, the
assumption is that it is being transmitted as fast as possible
by the underlying network infrastructure.

E. Sensor and Actuator Layer Problems

In the sensor and actuator layer, there were problems with
the actual sensor hardware platforms that is available today,
especially in regards to requirement 3 on being lightweight.
Different vendors of sensors have different platforms that the
sensors run on, especially when it comes to connecting large
Wireless Sensor Networks (WSN). Typically, cheap analog
sensors can be connected directly to a more powerful device,
such as a smartphone or a Raspberry Pi [29]. But to connect
traditional WSN architectures such as TinyOS [30] or Contiki
[31], the platform must communicate via COAP [32] or other
lightweight protocols that they can handle. Therefore, in most
of the examples we have utilized either smartphones with
sensors already built in, or Raspberry Pi devices with attached
sensors. However, any device that can run the Java code for the
platform can be a part of the system, and any low end device
that can communicate via COAP can easily be connected via
a more capable device.

F. Source Code License Problems

One purpose of the platform is to make it available
for industry partners to develop their own applications and
then commercialize the products, see requirement 5. This
requirement made it impossible to use a strict and propagating
open source license such as GNU General Public License
(GPL). The amount of external code should also be kept to a
minimum, in order to maintain the control over all the licenses
in use. In the end, the decision was to use the GNU Lesser
General Public License (LGPL) that allows companies to make
commercial products on top of the platform, without forcing
their products to be open source as well.

V. RESULTS AND APPLICATIONS

The current results include launching our new development
website for the SensibleThings platform [33]. This website
will act as a portal for all developers who want to utilize the
platform in their applications. The SensibleThings platform
is provided free and under an LGPL version 3 open source
license. Initial testing, demonstration, and evaluation of the
platform has been conducted using a testbed with fixed and

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

(a) Sensor reading (b) Intelligent home (c) Object tracking (d) Surveillance (e) Historical values

Figure 2. Examples of applications using the SensibleThings platform.

mobile access to the Internet. In terms of performance we
have measured the platform to be on par with UDP traffic.
Table I shows the response times measured for resolving, and
retrieving a specific sensor value in the platform. The table
shows both the arithmetic mean µ and the standard devia-
tion σ. The measurements were conducted with 103 devices
connected to the platform. One workstation, one Raspberry
Pi, and 100 emulated devices connected via 1 Gbit fiber optic
based Internet connection. Lastly, one mobile device connected
via 3G mobile Internet connection. The measurements were
conducted on the workstation, the Raspberry Pi, and the mobile
device, to show the difference between them and the effect
of the proxy solution for NAT problems associated with the
mobile device. The other 100 devices were put into the system
to create background traffic, in order to emulate a real-world
scenario with many connected devices.

Proof-of-concept demonstrator applications have been built
using many different devices, sensors, and actuators, in or-
der to show the versatility of the SensibleThings platform.
The applications presented in figure 2 show some of these
demonstrators. From left to right they are: (a) sensor value
readings (radon, carbon dioxide, temperature, and humidity),
(b) home automation with energy consumption measuring (for
interacting with an intelligent home), (c) object tracking (for
tracking different objects with attached sensors), (d) surveil-
lance (for detecting trespassers), and (e) a set of historical
measurements (for statistical usage). But the platform itself is
versatile enough to be applied to even more areas. We foresee
possible applications ranging from intelligent home, health-
care, logistics, emergency response, tourism, and smart-grids,
to more social-oriented applications such as crowd sourcing,
dating services, and intelligent collaborative reasoning.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the challenges we have encoun-
tered when researching and developing the SensibleThings
platform. The first contribution of this paper is the identifica-
tion of the requirements for a functional and fully distributed
IoT platform in Section I. The second contribution is a short
survey of existing IoT platforms, presented in Section II.

TABLE I
MEASURED RESPONSE TIMES FOR PLATFORM.

Workstation Raspberry Pi Mobile

Resolve µ 4.8 ms 31 ms 230 ms
σ 2.2 ms 14ms 68 ms

Retrieve µ 4.8 ms 31 ms 280 ms
σ 2.0 ms 12 ms 56 ms

The main contribution is however the explanation of the
problems faced when building the SensibleThings platform,
and the solutions that solve these problems. The proposed
SensibleThings platform is shown to fulfill all the requirements
stated in Section I. The platform can disseminate information
to end devices quickly with low overhead (requirement 1). It
is stable and operates without any central points of failure
(requirement 2). The platform is lightweight and can run on
mobile devices where the only central point is the bootstrap
device (requirement 3), but any node can act as a bootstrap
if this original node goes offline. It is extensible (requirement
4) as shown with the demonstrator applications. Finally, the
platform is licensed under a well known and widely accepted
open source license making it free to use and at the same time
encouraging development of commercial a products (require-
ment 5). In comparison to related work, the SensibleThings
platform can be classified as a fully distributed solution, where
the overhead and communication is kept as lightweight as
possible. We predict that this is the only type of solution that
will scale for billions of connected devices and still be able to
disseminate sensor information with real-time demands.

Our current efforts are directed toward improving and
optimizing the existing code, as well as investigating other
possible choices of DHT and communication protocol. We will
also develop more extensions to satisfy specific applications
demands, such as seamless integration with other IoT platforms
and cloud infrastructures.

ACKNOWLEDGMENT

This research has been supported by grant 2010-00681 of
VINNOVA the Swedish Governmental Agency for Innovation

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

Systems, and by grant 00163383 of the EU European Regional
Development Fund, Mellersta Norrland, Sweden. The authors
also want to thank our partners from industry and academia,
in particular Acreo AB and Stockholm University.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, 2010, pp. 2787–2805.

[2] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. Johnson, “M2M:
From mobile to embedded Internet,” Communications Magazine, IEEE,
vol. 49, no. 4, 2011, pp. 36–43.

[3] J. Hong, E. Suh, and S. Kim, “Context-aware systems: A literature
review and classification,” Expert Systems with Applications, vol. 36,
no. 4, 2009, pp. 8509–8522.

[4] D. E. O’Leary, “Big data, the internet of things and the internet of
signs,” Intelligent Systems in Accounting, Finance and Management,
vol. 20, no. 1, 2013, pp. 53–65.

[5] Ericsson. More than 50 billion connected devices. White Paper.
[Online]. Available: http://www.ericsson.com/res/docs/whitepapers/wp-
50-billions.pdf [retrieved: December, 2013]

[6] SicsthSense. [Online]. Available: http://sense.sics.se [retrieved:
December, 2013]

[7] ThingSpeak. [Online]. Available: https://www.thingspeak.com [re-
trieved: December, 2013]

[8] Sen.se. [Online]. Available: http://open.sen.se [retrieved: December,
2013]

[9] Nimbits. [Online]. Available: http://www.nimbits.com [retrieved:
December, 2013]

[10] Thingsquare. [Online]. Available: http://thingsquare.com [retrieved:
December, 2013]

[11] EVRYTHNG. [Online]. Available: http://www.evrythng.com [retrieved:
December, 2013]

[12] Paraimpu. [Online]. Available: http://paraimpu.crs4.it [retrieved:
December, 2013]

[13] Xively. [Online]. Available: https://xively.com [retrieved: December,
2013]

[14] XOBXOB. [Online]. Available: http://www.xobxob.com [retrieved:
December, 2013]

[15] ThingWorx. [Online]. Available: http://www.thingworx.com [retrieved:
December, 2013]

[16] One platform. [Online]. Available: http://exosite.com/products/onep
[retrieved: December, 2013]

[17] Carriots. [Online]. Available: https://www.carriots.com [retrieved:
December, 2013]

[18] ETSI, “Machine-to-machine communications (m2m); functional archi-
tecture,” (TS 102 690 V1.1.1), Tech. Rep., 2011.

[19] M. Presser, P. Barnaghi, M. Eurich, and C. Villalonga, “The SENSEI
project: integrating the physical world with the digital world of the
network of the future,” Communications Magazine, IEEE, vol. 47, no. 4,
2009, pp. 1–4.

[20] H. Koumaras, D. Negrou, F. Liberal, J. Arauz, and A. Kourtis,
“ADAMANTIUM project: Enhancing IMS with a PQoS-aware mul-
timedia content management system,” International Conference on
Automation, Quality and Testing, Robotics, vol. 1, 2008, pp. 358–363.

[21] G. Camarillo and M.-A. Garcia-Martin, The 3G IP multimedia sub-
system (IMS): merging the Internet and the cellular worlds. Wiley,
2007.

[22] A. Toninelli, S. Pantsar-Syväniemi, P. Bellavista, and E. Ovaska, “Sup-
porting context awareness in smart environments: a scalable approach to
information interoperability,” in Proceedings of the International Work-
shop on Middleware for Pervasive Mobile and Embedded Computing.
ACM, 2009, pp. 1–4.

[23] P. Bellavista, R. Montanari, and D. Tibaldi, “Cosmos: A Context-Centric
Access Control Middleware for Mobile Environments,” in Mobile
Agents for Telecommunication Applications, 2003, pp. 77–88.

[24] T. Kanter, S. Forsström, V. Kardeby, J. Walters, U. Jennehag, and
P. Österberg, “Mediasense–an internet of things platform for scalable
and decentralized context sharing and control,” in ICDT 2012, The
Seventh International Conference on Digital Telecommunications, 2012,
pp. 27–32.

[25] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
vol. 31. New Yourk, NY, USA: ACM Press, 2001, pp. 149–160.

[26] I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse, “Kelips:
Building an efficient and stable p2p dht through increased memory and
background overhead,” in Peer-to-Peer Systems II. Springer, 2003, pp.
160–169.

[27] K. Aberer, “P-grid: A self-organizing access structure for p2p informa-
tion systems,” in Cooperative Information Systems. Springer, 2001,
pp. 179–194.

[28] S. Jiang, D. Guo, and B. Carpenter, “An Incremental Carrier-Grade
NAT (CGN) for IPv6 Transition,” RFC 6264, Tech. Rep., 2011.

[29] Raspberry pi. [Online]. Available: http://www.raspberrypi.org
[retrieved: December, 2013]

[30] P. Levis et al., “TinyOS: An operating system for sensor networks,” in
Ambient intelligence. Springer, 2005, pp. 115–148.

[31] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flex-
ible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, pp. 455–462.

[32] Z. Shelby, K. Hartke, and C. Bormann. Constrained application
protocol (COAP). [Online]. Available: http://tools.ietf.org/html/ietf-
core-coap-14.txt (2013)

[33] SensibleThings. [Online]. Available: http://www.sensiblethings.se
[retrieved: December, 2013]

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-316-2

ICDT 2014 : The Ninth International Conference on Digital Telecommunications

