
About M2M standards

M2M and Open API

Manfred Sneps-Sneppe

 Ventspils University College

Ventspils International Radioastronomy Centre

Ventspils, Latvia

manfreds.sneps@gmail.com

Dmitry Namiot

Lomonosov Moscow State University

Faculty of Computational Mathematics and Cybernetics

Moscow, Russia

dnamiot@gmail.com

Abstract—In this paper, we will discuss the current state of

open APIs for M2M applications, as well as propose several

possible changes and extensions. Our article based on open

standards provided by ETSI. An open specification, presented

as an Application Programming Interface (OpenAPI), provides

applications with a rich framework of core network

capabilities upon which to build services while encapsulating

the underlying communication protocols. OpenAPI is a

portable platform for services that may be replicated and

ported between different execution environments and

hardware platforms. We are proposing possible extensions for

ETSI documents that let keep telecom development in sync

with the modern approaches in the web development.

Keywords-m2m; REST; open API; XML; web intents.

I. INTRODUCTION

As per classical definition from Numerex, Machine-to-
Machine (M2M) refers to technologies that allow both
wireless and wired systems to communicate with other
devices of the same ability. M2M uses a device (such as a
sensor or meter) to capture an event (such as temperature,
inventory level, etc.), which is relayed through a network
(wireless, wired or hybrid) to an application (software
program), translates the captured event into meaningful
information [1].

The next related acronym is Internet of things (IoT),
referring to the networked interconnection of everyday
objects [2]; it can be regarded as an extension of the existing
interaction between humans and applications through the
new dimension of “things” communication and integration.
In IoT, devices are clustered together to create a stub M2M
network, and are then connected to its infrastructure, i.e., the
traditional “Internet of people” [3].

Considering M2M communications as a central point of
Future Internet, European commission creates
standardization mandate M/441 [4]. The Standardization
mandate M/441, issued on 12th March 2009 by the European
Commission to CEN, CENELEC and ETSI, in the field of
measuring instruments for the development of an open
architecture for utility meters involving communication
protocols enabling interoperability, is a major development
in shaping the future European standards for smart metering
and Advanced Metering Infrastructures. The general
objective of the mandate is to ensure European standards that

will enable interoperability of utility meters (water, gas,
electricity, heat), which can then improve the means by
which customers’ awareness of actual consumption can be
raised in order to allow timely adaptation to their demands.

Besides the describing the current state of standards, our

goal main here is the proposal for some new additions in
M2M APIs architecture. We are going to propose web
intents as add-on for the more traditional REST approach in
order to simplify the development phases for M2M
applications. The key moments in our proposals are: JSON
versus XML, asynchronous communications and integrated
calls.

The rest of the paper is organized as follows. Section II
contains an analysis of M2M API standardization activities.
In Section III, we consider Open API for M2M, submitted to
ETSI. Sections IV and V are devoted to our offerings. In
Section IV, we offer the never web tool – Web Intents for
enhancement of M2M middleware. Sections V and VI are
devoted to discussions.

II. THE CURRENT STATE OF M2M STANDARDS

Let us start from the basic moments. Right now, market
players are offering own standards for M2M architecture.
We refer to the recent ETSI TC M2M Workshop held on
October 26-28, 2011. Figure 1 illustrates the basics of M2M
infrastructure (as per ETSI) [5].

Figure 1. M2M infrastructure (as per ETSI)

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

The goals for M2M middleware are obvious. M2M
middleware helps us with heterogeneity of M2M
applications. Heterogeneity of service protocols inhibits the
interoperation among smart objects using different service
protocols and/or APIs. We assume that service protocols and
API’s are known in advance. This assumption prevents
existing works from being applied to situations where a user
wants to spontaneously configure her smart objects to
interoperate with smart objects found nearby [6]. M2M API
provides the abstraction layer necessary to implement
interactions between devices uniformly. The M2M API
provides the means for the device to expose its capabilities
and the services it may offer, so that remote machines may
utilize them. Consequently, such an API is necessary to
enable proactive and transparent communication of devices,
in order to invoke actions in M2M devices and receive the
relating responses as well as the simplified management of
resources.

ETSI is not the only source for the standardization in
M2M area. Actually, ETSI has created a dedicated Technical
Comittee for developing standards on M2M communications
[7]. This structure aims at developing and maintaining an
end-to-end architecture for M2M systems, as well as
addressing various M2M communication considerations,
such as naming, addressing, location, QoS, security,
charging, management, application interfaces and hardware
interfaces. Additionally, a major concern of the committee is
to integrate sensor networks. The above-mentioned M/411 is
just one example [12]. Other examples cover eHealth [8],
Connected Consumer [9], City Automation [10] and
Automotive Applications [11].

The 3rd Generation Partnership Project maintains and
develops technical specifications and reports for mobile
communication systems. Mobile networks are also
concerned with the integration and support of M2M
communications, as the nature of M2M systems is
substantially differentiated than that of Human-to- Human
services, i.e. plain telephone calls, which mobile networks
originally addressed. Therefore, the 3GPP Technical
Specifications Group dealing with Service and System
Aspects [13], has issued a number of specifications dealing
with requirements that M2M services and M2M
communication imposes on the mobile network.

The Telecommunications Industry Association is the
United States developing industry standards for a wide
variety of telecommunication products. The standardization
activities are assigned to separate Engineering Committees.
The TR-50 Engineering Committee Smart Device
Communications [14], has been assigned the task to develop
and maintain physical-medium-agnostic interface standards,
that will enable the monitoring and bi-directional
communication of events and information between smart
devices and other devices, applications or networks. It will
develop a Smart Device Communications framework that
can operate over different types of underlying transport
networks (wireless, wired, etc.) and can be adapted to a
given transport network by means of an
adaptation/convergence layer.

The International Telecommunication Union as a
specialized agency of the United Nations is responsible for
IT and communication technologies. The
Telecommunications Standardization Sector (ITU-T), covers
the issue of M2M communication via the special Ubiquitous
Sensor Networks-related groups [15]. ITU address the area
of networked intelligent sensors.

Open Mobile Alliance (OMA) [16] develops mobile
service enabler specifications. OMA drives service enabler
architectures and open enabler interfaces that are
independent of the underlying wireless networks and
platforms. An OMA Enabler is a management object
designated for a particular purpose. It is defined in a
specification and is published by the Open Mobile Alliance
as a set of requirements documents, architecture documents,
technical specifications and test specifications. Examples of
enablers would be: a download enabler, a browsing enabler,
a messaging enabler, a location enabler, etc. Data service
enablers from OMA should work across devices, service
providers, operators, networks, and geographies.

As there are several OMA standards that map into the

ETSI M2M framework, a link has been established between
the two standardization bodies in order to provide
associations between ETSI M2M Service Capabilities and
OMA Supporting Enablers [17]. Specifically, the expertise
of OMA in abstract, protocol-independent APIs creation, as
well as the creation of APIs protocol bindings (i.e. REST,
SOAP) and especially the expertise of OMA in RESTful
APIs is expected to complement the standardization
activities of ETSI in the field of M2M communications.
Additionally, OMA has identified areas where further
standardization will enhance support for generic M2M
implementations, i.e. device management, network APIs
addressing M2M service capabilities, location services for
mobile M2M applications [18].

Actually, there should be a mapping of OMA service
enablers to the ETSI M2M framework.

III. OPEN API FROM ETSI

This section describes an Open API for M2M, submitted
to ETSI. By our opinion it is probably the most valuable
achievement at this moment.

The Open API for M2M applications developed jointly in
Eurescom study P1957 [19] and the EU FP7 SENSEI project
makes. The OpenAPI has been submitted as a contribution to
ETSI TC M2M [20] for standardization.

Actually, in this Open API we can see the big influence
of Parlay specification. Parlay Group leads the standard, so
called Parlay/OSA API, to open up the networks by defining,
establishing, and supporting a common industry-standard
APIs. Parlay Group also specifies the Parlay Web services
API, also known as Parlay X API, which is much simpler
than Parlay/OSA API to enable IT developers to use it
without network expertise [21].

The goals are obvious, and they are probably the same as
for any unified API. One of the main challenges in order to
support easy development of M2M services and applications
will be to make M2M network protocols “transparent” to

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

applications. Providing standard interfaces to service and
application providers in a network independent way will
allow service portability [22].

At the same time, an application could provide services
via different M2M networks using different technologies as
long as the same API is supported and used. This way an
API shields applications from the underlying technologies,
and reduces efforts involved in service development.
Services may be replicated and ported between different
execution environments and hardware platforms [23]

This approach also lets services and technology platforms
to evolve independently. A standard open M2M API with
network support will ensure service interoperability and
allow ubiquitous end-to-end service provisioning.

The OpenAPI provide service capabilities that are to be
shared by different applications. Service Capabilities may be
M2M specific or generic, i.e., providing support to more than
one M2M application.

Key points for Open API:

- It supports interoperability across heterogeneous

transports
- ETSI describes high-level flow and does not

dictate implementation technology
- It is message-based solution
- It combines P2P with client-server model
- It supports routing via intermediaries

At this moment, all points are probably well developed

except the message-based decision. Nowadays, publish-
subscribe method is definitely not among the favorites
approaches in the web development, especially for heavy-
loading projects.

Main API sections are:

- Subscription and Notification (e.g.,
Publish/Subscribe).

- Grouping.
- Transactions.
- Application Interaction: Read, Do, Observe.
- Compensation (micro-payment).
- Sessions.

Let us provide more details for Open API categories and

make some remarks:

Grouping
A group here is defined as a common set of attributes

(data elements) shared between member elements. On
practice, it is about the definition of addressable and
exchangeable data sets. Just note, as it is important for our
future suggestions, there are no persistence mechanisms for
groups

Transactions
Service capability features and their service primitives

optionally include a transaction ID in order to allow relevant

service capabilities to be part of a transaction. Just for the
deploying transactions and presenting some sequences of
operations as atomic.

In the terms of transactions management, Open API
presents the classical 2-phase commit model. By the way, we
should note here that this model practically does not work in
the large-scale web applications. We think it is very
important because without scalability we cannot think about
“billions of connected devices”.

Application Interaction
The application interaction part is added in order to

support development of simple M2M applications with only
minor application specific data definitions: readings,
observations and commands.

Application interactions build on the generic messaging

and transaction functionality and offer capabilities
considered sufficient for most simple application domains.

Messaging
The Message service capability feature offers message

delivery with no message duplication. Messages may be
unconfirmed, confirmed or transaction controlled. The
message modes supported are single Object messaging,
Object group messaging, and any object messaging; (it can
also be Selective object messaging); thinking about this as
Message Broker.

Event notification and presence
The notification service capability feature is more generic

than handling only presence. It could give notifications on an
object entering or leaving a specific group, reaching a certain
location area, sensor readings outside a predefined band, an
alarm, etc.

It is a generic form. So, for example, geo fencing [32]
should fall into this category too.

The subscriber subscribes for events happening at the

Target at a Registrar. The Registrar and the Target might be
the same object. This configuration offers a
publish/subscribe mechanism with no central point of failure.

Compensation
Fair and flexible compensation schemes between

cooperating and competing parties are required to correlate
resource consumption and cost, e.g., in order to avoid
anomalous resource consumption and blocking of incentives
for investments. The defined capability feature for micro-
payment additionally allows charging for consumed network
resources.

It is very similar to Parlay’s offering [33] for Charging

API. Again, it is a big question from the modern large-scale
applications point of view: shall we develop a special API
for the compensations or create a rich logging functionality
where the external log processing should be responsible for
the things as charging.

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

Sessions
In the context of OpenAPI, a session shall be understood

to represent the state of active communication between
Connected Objects

OpenAPI is REST based, so, the endpoints should be

presented as some URI’s capable to accept (in this
implementation) the basic commands GET, POST, PUT,
DELETE.

Actually, ETSI uses the Smart Meter profile as ‘proof of

concept’ for the M2M service platform in Release 1.

For example: requests execution of some function.

URI: http://{nodeId}/a/do
Method: POST

Request

<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>
<appint-do-request

xmlns="http://eurescom.eu/p1957/openm2m">
<requestor>9378f697-773e-4c8b-8c89-

27d45ecc70c7</requestor>
<commands>
<command>command1</command>
<command>command2</command>
</commands>
<responders>9870f7b6-bc47-47df-b670-

2227ac5aaa2d</responders>
<transaction-

id>AEDF7D2C67BB4C7DB7615856868057C3</transactio
n-id>

</appint-do-request>

Response

<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>
<appint-do-response

xmlns="http://eurescom.eu/p1957/openm2m">
<requestor>9378f697-773e-4c8b-8c89-

27d45ecc70c7</requestor>
<timestamp>2010-04-

30T14:12:34.796+02:00</timestamp>
<responders>9870f7b6-bc47-47df-b670-

2227ac5aaa2d</responders>
<result>200</result>
</appint-do-response>

Note that because we are talking about server-side

solution, there is no problem with so called sandbox
restrictions. But, it means of course, that such kind of request
could not be provided right from the client side as many
modern web applications do.

IV. THE MODERN WEB VS. OPEN API FROM ETSI

Let us describe the proposed standards from the modern
web development points of view. As seems to us it is a
correct approach, because Open API declares REST support
right for the web development. In other words, support for
web developers as the first class citizens is one of the
obvious goals for ETSI.

It is almost impossible for developers to anticipate every
new service and to integrate with every existing external
service that their users prefer and thus they must choose to
integrate with a few select APIs at great expense to the
developer.

As per telecom experience we can mention here the
various attempts for unified API that started, probably, with
Parlay. Despite a lot of efforts, Parlay API’s actually
increase the time for development. It is, by our opinion, the
main reason for the Parlay’s failure.

Web Intents solves this problem. Web Intents is a
framework for client-side service discovery and inter-
application communication. Services register their intention
to be able to handle an action on the user's behalf.
Applications request to start an action of a certain verb (for
example share, edit, view, pick etc.) and the system will find
the appropriate services for the user to use based on the
user's preference. It is the basic [24].

Intents play the very important role in Android
Architecture. Three of the four basic OS component types -
activities, services, and broadcast receivers - are activated by
an asynchronous message called as intent.

Intents bind individual components to each other at
runtime (you can think of them as the messengers that
request an action from other components), whether the
component belongs to your application or another.

Created intent defines a message to activate either a

specific component or a specific type of component - an
intent can be either explicit or implicit, respectively.

For activities and services, an Intent defines the action to
perform (for example, to "view" or "send" something) and
may specify the URI of the data to act on (among other
things that the component being started might need to know).
For example, our intent might convey a request for an
activity to show an image or to open a web page. In some
cases, you can start an activity to receive a result, in which
case, the activity also returns the result in an Intent (for
example, you can issue an intent to let the user pick a
personal contact and have it returned to you - the return
intent includes a URI pointing to the chosen contact) [25].

Going to M2M applications, it means that our potential
devices will be able to present more integrated data for the
measurement visualization for example. The final goal of
any M2M based application is to get (collect) measurements
and perform some calculations (make some decisions) on the
collected dataset. We can go either via low level APIs or use
(at least for the majority of use cases) some integrated
solutions. The advantages are obvious. We can seriously
decrease the time for development.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

Web Intents puts the user in control of service
integrations and makes the developers life simple.

Here, is the modified example for web intents integration
for the hypothetical web intents example:

1. Register some intent upon loading our HTML

document
document.addEventListener("DOMContentLoaded",

function() {
 var regBtn = document.getElementById("register");
 regBtn.addEventListener("click", function() {
 window.navigator.register("http://webintents.org/m2m",

undefined); }, false);

2. Start intent’s activity

 var startButton =

document.getElementById("startActivity");
 startButton.addEventListener("click", function() {
 var intent = new Intent();
 intent.action = "http://webintents.org/m2m";
 window.navigator.startActivity(intent); }, false);

3. Get measurements (note – in JSON rather than XML)

and display them in our application

 window.navigator.onActivity = function(data) {
 var output = document.getElementById("output");
 output.textContent = JSON.stringify(data);
 }; }, false);

Obviously, that it is much shorter than the long sequence

of individual calls as per M2M Open API.
The key point here is onActivity callback, which returns

JSON (not XML!) formatted data. In contrast, as per
suggested M2M API, we should perform several individual
requests, parse XML responses for the each of them and only
after that make some visualization. Additionally, Web
Intents based approach is asynchronous by its nature, so, we
don need to organize asynchronous calls by our own.

Also, Web Intents approach let us bypass sandbox
restrictions. In other words developers can raise requests
right from the end-user devices, rather than always call the
server. The server-side only solution becomes bottleneck
very fast, and vice-versa, client side based request let
developers deploy new services very quickly. Why do not
use the powerful browsers in the modern smart-phones? At
the end of the day Parlay spec were born in the time of WAP
and weak phones. Why do we ignore HTML5 browsers and
JavaScript support in the modern phones?

Generally speaking, we expect the initiatives from
software companies that will opposite to telecom approach.
For example, Paho project [26] (IBM et al.) directly declares
the need to provide open source implementations of open
and standard messaging protocols that support current and
emerging requirements of M2M integration with Web and
Enterprise middleware and applications. It will include
client implementations for use on embedded platforms along
with corresponding server support as determined by the

community. This will enable a paradigm shift from legacy
point-to-point protocols and the limitations of protocols like
SOAP or HTTP into more loosely coupled yet determinable
models. It will bridge the SOA, REST, Pub/Sub and other
middleware architectures already well understood by Web
2.0 and Enterprise IT shops today, with the embedded and
wireless device architectures inherent to M2M.

We think that XML days are over, JSON (and especially
JSONP) is a key.

But, here goes the next big question: persistence.

V. DATA PERSISTENCE

The next question we would like to discuss relating to the
M2M API’s is probably more discussion able. Shall we add
some persistence API (at least in the form of generic
interface)?

The reasons are obvious – save the development time.
Again, we should keep in mind that we are talking about the
particular domain – M2M. In the most cases our business
applications will deal with some metering data. As soon as
we admit, that we are dealing with the measurements in the
various forms we should make, as seems to us a natural
conclusion – we need to save the data somewhere. It is very
simple – we need to save data for the future processing.

So, the question is very easy – can we talk about M2M
applications without talking about data persistence? Again,
the key question is M2M. It is not abstract web API. We are
talking about the well-defined domain.

As seems to us, even right now, before the putting some
unified API in place, the term M2M almost always coexists
with the term “cloud”. And as we can see, almost always has
been accompanied by the terms like automatic database
logging, backup capabilities etc.

So, maybe this question is more for the discussions or it
even could be provocative in the some forms, but it is: why
there is no reference API for persistence layer in the unified
M2M API? It is possible in general to create data gathering
API without even mentioning data persistence? Shall we
define cloud database API as a part of M2M standard or not?

The use of cloud computing means that data collection,
processing, interface, and control can be separated and
distributed to the most appropriate resource and device. In
contrast, currently M2M implementations tend to combine
data collection, processing, interface, and control.

Once transmitted to the cloud, data can be stored,
retrieved and processed without having to address many of
the underlying computing resources and processes
traditionally associated with databases. For M2M
applications, this type of virtualized data storage service is
ideal [27]

As soon as ETSI standards define the interfaces, the
developers we will be able to introduce various
implementations. For example, it looks like NoSQL
solutions are perfect fit for M2M applications.

These data stores operate by using key-value

associations, which allows for a flatter non-relational form of
association. NoSQL databases can work without fixed table
schemes. It makes easy to store different data formats as well

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

as change and expand formats over time. It is very important
for M2M applications (as well as for any type of applications
tied with hardware). There are no “unified” devices in the
real word. We simply cannot create an efficient schema that
will serve all the devices (including new entrants). So M2M
stores should be schema-less.

NoSQL databases could be easily scaled horizontally.
Data is distributed across many servers and disks. Indexing is
performed by keys route the queries to the datastore for the
range that serves that key. This means different clusters
respond to requests independently from other clusters, what
increases throughput and response times. Quick adding new
servers, database instances and disks and changing the
ranges of keys can accommodate growth.

There are more then enough NoSQL systems on the
market, they all have own APIs, so the question for M2M
standardization body becomes even more important: shall we
include the “unified” interface to data store into standard?

Suppose we do not as it is now. Does it mean that for
OMA interfaces for example we will define own persistence
approach each time we need data saving?

The topic that is tight linked with data persistence is a
cloud. Obviously, for big data we should be able to integrate
the information gathered via M2M into a large virtual
information platform in a cloud [28]. This moment is
completely missed in Open API. Shall we live with it, shall
we pass problem to OMA enablers or what? As seems to us,
this question should be addressed and answered.

We think, that in addition to developing open interfaces
and standard system architectures, M2M ecosystems also
need to establish a set of common software and hardware
platforms to substantially reduce development costs and
improve time to market.

VI. NEW SIGNALING DEMAND

Eventually, billions of devices — such as sensors,
consumer electronic devices, smart phones, PDAs and
computers — will generate billions of M2M transactions.
For example, price information will be pushed to smart
meters in a demand-response system. Push notifications will
be sent to connected devices, letting a client application
know about new information available in the network. The
scale of these transactions will go beyond anything today’s
largest network operators have experienced. Signaling traffic
will be the primary bottleneck as M2M communications
increase. Alcatel-Lucent Bell Labs traffic modeling studies
support this by comparing network capacity against
projected traffic demand across multiple dimensions (such as
signaling processing load on the radio network controller,
air-interface access channel capacity, data volume and
memory requirement for maintaining session contexts). The
limiting factor is likely to be the number of session set-ups
and tear-downs. For the specific traffic model and network
deployment considered in the study, it is seen that up to 67
percent of computing resources in the radio network
controller is consumed by M2M applications. [29].

How much of the traffic sent is network overhead? As an

analysis carried on by A. Sorrevad [30] shows for ZigBee

solution, a node is sending at least 40 Mbytes per year with
the purpose of maintaining the network and polling for new
data. The trigger data traffic for a year is much less -
around1-10 Mbytes. Thus we see that the relationship
between network and trigger traffic can range between 40:1
to 4:1 in a ZigBee solution that is following the home
automation specification.

The traffic sent when maintaining a 6LoWPAN network
is application specific. The relationship between network and
trigger traffic can then be in the range 2:1 to 5:1.

As per [31], we can describe the several traffic-related
issues for M2M. Time-controlled traffic is transmitted and
received at periods of time that are defined well in advance.
Time-tolerant traffic can support significant delays in data
transmission and reception. This implies that the system can
give lower access priority to or defer data transmission of
time-tolerant traffic. When data traffic is “one way,” it is
only control signaling that is transmitted in the opposite
direction. Digital signage and consumer devices are use
cases where data may be device-terminated. One-way traffic
may require changes to the network entry and addressing
protocols. Extremely low latency requires that both network
access latency and data transmission latency be reduced.
This feature is required in many emergency situations (e.g.,
healthcare). Changes to the bandwidth request and network
entry/re-entry protocols may be required to support
extremely low latency. Infrequent traffic is common in many
M2M use cases. This feature may enable sleep/idle mode
improvements that save power and channel resources.

Due to the salient features of M2M traffic it may not be
supported efficiently by present standards [31].

Why do we think also it is a time for traffic-related talks?
By our opinion the reason is very simple. It is not obvious
exactly how can we support transactional APIs (as per ETSI
draft), without the dealing with the increased traffic. Simply
– in our transactions we need the confirmation that device is
alive, that operation has been performed, etc. All this is
signaling traffic. Actually, this may lead to next provocative
questions: do we really need transactional calls for all use
cases? For example, the modern large-scale web applications
(e.g. social networks) are not transactional internally.

VII. CONCLUSION

In this article, we briefly described the current state for
the open unified M2M API from ETSI. We proposed some
new additions – Web Intents as add-on for the more
traditional REST approach. The main goal for our
suggestions is the simplifying the development phases for
M2M applications. The key advantages are JSON versus
XML, asynchronous communications and integrated calls.
Also we would like to point attention of readers to the couple
of important questions that are not covered yet by our
opinion: data persistence, clouds and signaling traffic.

VIII. ACKNOWLEDGEMENT

The paper is financed from ERDF's project SATTEH
(No. 2010/0189/2DP/2.1.1.2.0/10/APIA/VIAA/019) being
implemented in Engineering Research Institute «Ventspils

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

International Radio Astronomy Centre» of Ventspils
University College (VIRAC).

REFERENCES

[1] Bob Emmerson, "M2M: The Internet of 50 Billion Devices",

WinWin Magazine, Jan. 2010, pp.19-22.

[2] Commission of the European communities, Internet of Things
in 2020, EPoSS, Brussels, 2008.

[3] Antoine de Saint-Exupery, Internet of Things – Strategic
Research Roadmap, Sep. 15, 2009. http://www.internet-of-
things-research.eu Retrieved: Jan, 2012

[4] Standartisation mandate to CEN, CENELEC and ETSI in the
field of measuring instruments for the developing of an open
architecture for utility meters involving communication
protocols enabling interoperability, European Commission,
M/441, 2009.

[5] ETSI Machine-to-Machine Communications
http://www.etsi.org/website/technologies/m2m.aspx Revised:
Feb, 2012

[6] Hyunho Park, Byoungoh Kim, Yangwoo Ko, and Dongman
Lee, “InterX: A service interoperability gateway for
heterogeneous smart objects” in in: Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2011
IEEE International Conference 21-25 March 2011 pp. 233 -
238.

[7] http://www.etsi.org/Website/Technologies/M2M.aspx
Retrieved: Jan, 2012

[8] ETSI TR 102 732 V0.3.1, Machine to Machine
Communications (M2M); Use cases of M2M applications for
eHealth.

[9] ETSI TR 102 857 V0.3.0, Machine to Machine
Communications (M2M); Use cases of M2M applications for
Connected Consumer

[10] ETSI TR 102 897 V0.1.1, Machine to Machine
Communications (M2M); Use cases of M2M applications for
City Automation

[11] ETSI TR 102 898 V0.4.0, Machine to Machine
Communications (M2M); Use cases of Automotive
Applications in M2M capable networks.

[12] ETSI TR 102 691 V1.1.1, Machine-to-Machine
communications (M2M); Smart Metering Use Cases

[13] 3GPP TS 22.368 V11.0.1, 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;
Service requirements for Machine-Type Communications
(MTC); Stage 1, (Release 11)

[14] TR-50 standards http://www.tiaonline.org/standards/
committees/committee.cfm?comm=tr-50 Retrieved: Jan, 2012

[15] Jea-Il Han, Anh-Duy Vu, Jin-Won Kim, Jun-Soo Jeon,
Seung-Min Lee, and Young-Man Kim The fundamental
functions and interfaces for the ITU-T USN middleware
components Information and Communication Technology
Convergence (ICTC), 2010 International Conference on 17-
19 Nov. 2010 pp.: 226 – 231 Print ISBN: 978-1-4244-9806-2
DOI=10.1109/ICTC.2010.5674664

[16] OMA http://www.openmobilealliance.org/ Retrieved: Jan,
2012

[17] Niklas Blum, Irina Boldea, Thomas Magedanz, and Tiziana
Margaria Service-oriented access to next generation
networks: from service creation to execution Journal Mobile
Networks and Applications archive Volume 15 Issue 3, June

2010 Kluwer Academic Publishers Hingham, MA, USA
DOI=10.1007/s11036-010-0222-1 Retrieved Feb, 2012

[18] IoT project: http://www.iot-a.eu/public Retrieved Feb, 2012

[19] EURESCOM project P1957, Open API for M2M
applications, http://www.eurescom.de/public/projects/P1900-
series/P1957/. Retrieved Feb, 2012

[20] Draft ETSI TS 102 690 V0.13.3 (2011-07) Technical
Specification

[21] Jong-choul Yim, Young-il Choi, and Byung-sun Lee Third
Party Call Control in IMS using Parlay Web Service Gateway
Advanced Communication Technology, 2006. ICACT 2006.
The 8th International Conference Issue Date: 20-22 Feb. 2006
pp. 221 – 224

[22] Grønbæk I., Architecture for the Internet of Things (IoT): API
and interconnect, The Second International Conference on
Sensor Technologies and Applications, IEEE August 2008,
DOI 10.1109/SENSORCOMM.2008.20, 809.

[23] Inge Grønbæk and Karl Ostendorf Open API for M2M
applications In: ETSI M2M Workshop Oct. 2010

[24] Web Intents http://webintents.org/ Retrieved: Feb, 2012

[25] Android Developers
http://developer.android.com/guide/topics/fundamentals.html
Retrieved: Jan, 2012

[26] Paho project: http://eclipse.org/proposals/technology.paho/
Retrieved: Jan, 2012

[27] Cloud + Machine-to-Machine:
http://www.readwriteweb.com/cloud/ 2011/03/cloud-
machine-to-machine-disruptive-innovation-part-1p2.php
Retrieved: Jan, 2012

[28] T. Osawa Practice of M2M Connecting Real World Things
with Cloud Computing FUJITSU Sci. Tech. J. vol. 47 No. 4
pp. 401-407

[29] Harish Viswanathan, “Getting Ready for M2M Traffic
Growth” http://www2.alcatel-
lucent.com/blogs/techzine/2011/getting-ready-for-m2m-
traffic-growth/ Retrieved: Jan, 2012

[30] A. Sorrevad M2M Traffic Characteristics, KTH Information
and Communication Technology Master of Science Thesis
Stockholm, Sweden 2009 TRITA-ICT-EX-2009:212
http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/091201-Anders_Orrevad-with-cover.pdf
Retrieved: Feb, 2012

[31] Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat,
and Kevin D. Johnson, M2M: From Mobile to Embedded
Internet IEEE Communications Magazine, April 2011 pp. 35-
43

[32] A. Greenwald, G. Hampel, C. Phadke, and V. Poosala An
economically viable solution to geofencing for mass-market
applications Bell Labs Technical Journal Special Issue:
Application Enablement Volume 16, Issue 2, September 2011
pp. 21–38,

[33] SunHwan Lim, JaeYong Lee, and ByungChul Kim Open API
and System of Short Messaging, Payment, Account
Management Based on RESTful Web Services Advanced
Communication and Networking Communications in
Computer and Information Science, 2011, Volume 199, pp.
66-75, DOI: 10.1007/978-3-642-23312-8_9

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-193-9

ICDT 2012 : The Seventh International Conference on Digital Telecommunications

