
Flow Table Congestion in Software Defined Networks

Tauseef Jamal∗, Pedro Amaral∗‡, Khurram Abbas
∗Instituto de Telecomunicações, Lisboa, Portugal

‡Dept de Eng Electrotecnica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
tauseef.jamal@lx.it.pt, pfa@fct.unl.pt, abbaskhurram98@gmail.com.

Abstract—Security is a major concern for today’s networks
and network applications. Denial of Service (DoS) is major
threat to availability of service. DoS is easy to detect but hard
to mitigate. There are several types of DoS attacks, such as
flooding etc. Software Defined Networks (SDN) inherit
security threats from traditional networks along with threats
specific to them. Flow table congestion is an example of such
problem specific to SDN networks. The attacker generates
multiple packets as messages to the controller. Because of this,
the switch’s Ternary Content Addressable Memory (TCAM)
is flooded with controller replies. TCAMs are very expensive
and power hungry. To avoid this type of attack, different
aggregation strategies have been proposed. These techniques
save TCAMs at the cost of lost statistics in OpenFlow flow
table. In this paper, we used an improved version of Optimal
Routing Table Construction (ORTC) to perform flow
aggregation similar to Fast Flow Table Aggregation (FFTA).
Some disadvantages of FFTA include loss of flow table
statistics and counts. Our proposed technique reduces the
number of flows to solve Flow Table Congestion Problem
along with maintaining the consistency of statistics.

Keywords- congestion; flow table; optimal routing.

I. INTRODUCTION

Software Defined Networking (SDN) is an innovative
paradigm for computer networking [1]. Traditional
networks are hardware oriented, while SDN shifts the focus
from hardware to software. It makes computer networks
more maintainable by providing logically centralized
control and separating them from the forwarding
functionality. It offers network programmability, agility,
central management, open standards and vendor neutral
solutions.

On the other hand, this separation of network
functionality opens a more targeted attack surface. Potential
attackers can target control or data plane more accurately
than ever before. In addition, if attackers can gain control of
the control plane, the entire network is compromised. SDN
inherits traditional network security issues along with
issues specific to it. SDN centralized monitoring can be
used to cope with security issues more efficiently [1].

One of these security issues is Denial of Service, which
targets the availability of the system and disrupts the
legitimate user to available system services. The attacker
sends a huge amount of useless traffic or exploits some
vulnerability on the target system. This causes the system to
stop responding, crash or reboot. Sources of the DoS can be
single or multiple. The scale of this attack varies i.e. it can
employ a single system to thousands of systems, known as
bots. These types of attacks are a real threat to systems which

are supposed to be providing online services because these
can result into loss of revenue, loss of customer’s trust and
loss of reputation.

This article revolves around the following problem.
A) How flow tables in OpenFlow can be used to avoid

flow table saturation attack.
B) How a secure system can be designed around SDN

control plane to avoid traditional attacks.
The rest of the paper is organized as follows. In Section

II, related work is described; Section II models the problem
statement and discusses the solution, while Section IV details
the implementation.

II. LITERATURE ANALYSIS

A brief description of literature survey is given below.

A) Optimal Routing Table Construction
The backbone routers of the Internet are populated

with routes by Border Gateway Protocol (BGP). Optimal
Routing Table Construction (ORTC) calculates the
minimal number of equivalent routes locally with
modifying BGP [1]. First, the binary tree representation of
IP routing table is constructed. Then, the resultant table is
obtained by performing the following two generalized steps
of netting in sequence on the original table.

1. Sub Netting
2. Super Netting
This causes a huge decrease in flows but ORTC is

applied locally to every router because modifying BGP
along with other protocol on every network device is a
challenging task [1].

B) Fast Flow Table Aggregation
Flow tables of OpenFlow are TCAM hungry because

they contain comparatively more fields in the
header than traditional switches and routers. The flow
table of OpenFlow v1.0.0 contains 12 matching fields for
headers, whose size is more than 237 bits per flow entry.
Newer versions of OpenFlow have increasing number of
matching fields to cope with different dynamic
requirements. On the other hand, TCAM’s are very
expensive and power hungry. Because of this OpenFlow,
switches suffer from Flow Table Congestion Problem
(FTCP).

Aggregation of flows can be used to reduce the demand
of TCAM’s by OpenFlow switches. Flow aggregation is an
economical solution because it is software based. It best
matches the nature of SDN. FFTA provides an improved
technique for aggregation of flows. This technique consists
of three steps [2].

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

1. Rule list is partitioned into permutable prefixes
2. Modified aggregation of prefixes
3. Merging of bits iteratively
This aggregation is very efficient, but there is a problem

with this approach. It mixes up the entries which results in
coarser grain statistics. It requires some statistical estimates
to fine grain the statistics so that original flow counts and
other parameters can be obtained from the aggregated flow
[3].

C) Flow Table Reduction Scheme
In traditional networks switches perform actions

according to rigid protocols. SDN overcomes this
inflexibility by separating the control function from packet
transmission. Using SDN, the dynamic policies can be
easily implemented. On the other hand, this dynamic nature
can cause redundant entries in flow tables. Flow tables are
very important to SDN. However, due to limited size of
TCAM, this redundancy leads to the problem of congestion
of flow table. Some solutions are proposed to divide the
flows into mice flows and giant flows. FRTS puts three
constraints which every flow table reduction scheme should
follow for proper functioning of OpenFlow enabled
networks. These constraints are

Consistency: Same actions should be allotted to the
flows after the reduction.

Absoluteness: Rules that are manually added should
match and execute on priority.

Accuracy: The statistics should be accurate at any
interval of time.

III. PROBLEM MODELLING

Attack trees [4] are conceptual diagrams well known for
security assessment of a system. These show how an asset
can be attacked. There exist two generic types of security
modeling for systems.

 System oriented
 Attacker oriented

The former system models itself and performs security
analysis on the system. The later one models the attack on
the system with a focus on attacker objectives. An attack
tree contains a single root which represents the overall
objective of the attacker. This objective is iteratively
decomposed into finer grained and quantitative objectives,
which form the child and leaves of the attack tree.

The problem is modeled using attack tree with denial of
service as a root node. Denial of service can be performed
in SDN by attacking controller, switch or any of the hosts.
To conduct a denial of service, the attacker should flood or
exploit any one of these components. This type of relation is
called “OR” relation because the attacker can achieve
its parent objective by performing any one of child
objectives.

Figure 1 shows first level of attack tree. It shows that
denial of service can be achieved by attacking any one of
the child components i.e. OpenFlow switch, controller or
host.

Figure 1. Level one attack tree for DoS.

A simplified attack tree for attack on controller is shown
in Figure 2. This attack tree models the objective of the
attacker having intent of attacking SDN controller. SDN
controller can be exposed to DoS by flooding it or by
performing logical or vulnerability attack on it.
Vulnerability DoS requires three activities i.e. finger
printing of OS, finding vulnerability of that OS and
writing exploit along with payload. These all activities
must be carried out to perform logical DoS on controller.
On the other hand, flooding DoS can be performed by
carrying out any one of the leaf activities, as shown in
Figure 2.

The attack tree in Figure 3 models the actual threat
against which we have proposed a solution. Flow tables
store flow entries in TCAMs. TCAM is now a de facto
industry standard [5][6]. TCAMs are very expensive and
have limited amount of memory. Any attacker can generate
a large amount of Packet_In messages to controller. In the
response of those messages the switch is flooded with
policy replies against messages from controller. However,
due to TCAM’s limited memory, new rules are not
installed. Legal new packets suffer from such attack
because policy against them cannot become part of flow
table. To avoid this type of attack, an efficient and
consistent mechanism of flow aggregation is required. On
the other hand, aggregation of flows results in modification
and generalization of counters. Statistics are mixed up
due to aggregation.

A. Proposed Solution

An improved version of Optimal Routing Table
Construction is used to minimize the flow entries in the
flow table. Moreover, to ensure consistency of statistics
improved ORTC is applied to core switches, which results
in removal of redundant entries without modifying the
statistics. Details of these techniques are provided below.
First of all, we will discuss ORTC. After that, we will use
Bit Weaving [7] approach to create a binary tree
representation of non-prefix OpenFlow entries because
ORTC works only at prefixes. After that, we will discuss
where this technique should be applied along with

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

considering the consistency of statistics of OpenFlow flow
table.

Figure 2. Attack tree for attack on controller.

Figure 3. Attack tree for Flow Table Congestion Attack on OpenFlow
switch.

a) Optimal Routing Table Construction
ORTC [1] is an optimal solution to minimize IP

routing entries or prefixes. It contains 3 steps to get
optimal reduced tree.

Step 1: In the first step, a tree representation of table
in binary format is normalized by setting zero or two
children for every node. This is done by initializing the
next hop for newly created leaf node by the next hop of
nearest ancestor. After the first step, Table I is converted
into Figure 5.

Figure 4. Normalized tree [1].

Figure 5. Results of ORTC application [1].

Table I. EXAMPLE ROUTING TABLE

Destination IPs
(Binary

Action

* 1
00* 2
10* 2
11* 3

Step 2: The second step of ORTC performs
calculation for next hop which are prevalent for every
level of the given table. The following operation
symbolically defined by “#”, shown in Figure 6, is used to
define next hops up the tree.

Figure 6. Table after step 1 [1].

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

Step 3: This step uses sub netting to remove redundant
entries from the tree by selecting next hops. Pre order
traversal can be used. Also, one can traverse by level down
the root. If the nearest ancestor has a next hop, than it
will be inherited by the node. The state of table during
step 3 is shown in Figure 7, while Figure 4 shows the
resultant binary tree representation. The equivalent table for
routes is shown in Table II.

Figure 7. Prevalent hop calculation.

Figure 8. Table after step 2 [1].

Figure 9. Table during step 3.

TABLE II. RESULTANT TABLE AFTER ORTC

Destination IPs
(Binary

Format)

Action

* 2
01* 1
11* 3

b) Bit Weaving
ORTC i s p r e f i x b a s e d a p p r o a c h . So, i t i n

n o t d i r e c t l y applicable to OpenFlow based flows
because they can include wild card anywhere. Therefore,

we need to get a binary tree representation of OpenFlow
based flows by applying bit weaving initial permutation.
The output of this permutation can be now directly utilized
by ORTC engine.

c) Avoiding loss of statistics in OpenFlow Table
Consider the topology shown in Figure 8. In this

topology S1 is the first level core switch. Similarly, S5
and S2 are second level core switches. While S3, S4, S6
and S7 are end switches. Consider Host 1 with IP 10.0.0.1.
Different statistics and counts related to Host 1 may be
available on every switch. But actual aggregated statistics
of Host 1 in this case will be available at switch S3. On
all other switches the statistics regarding Host 1 are
redundant entries. Same is the case with all o t h e r h o s t s .
Generally, we c a n say that end switches contain total
statistics related to the connected host, while when we
move from end switches to core switches, the statistics
found here are redundant.

By comparing statistics for Host 1 at different switches,
we can conclude that total statistics regarding Host 1 are
available at end switch connected to it i.e. switch S1. While
core switches contain only redundant statistics regarding to
different hosts in network. Hence, it is safe to apply flow
aggregation on core switches without the fear of losing
statistics. Core switches also contain more flows than end
switches in real life cases.

B. Implementations

There exist two types of development techniques for
SDN application and policy enforcement.

Reactive Approach:
When a new packet arrives at OpenFlow switch, its

header is matched against flow table entries. Packet is sent
to controller if no match occurs in flow table. In reaction to
that controller installs appropriate policy in flow table
against that packet. This approach is called reactive
approach, which is event based.

Proactive Approach:
In this approach all necessary policies are installed

proactively. REST API’s are widely used for this approach.
We used both approaches in our solution appropriately.

For rate limiting and filtering reactive approach was used.
To install reduced flows and remove the original flows
from core switches proactive approach was used [8].

C. Data Collection

We classified data into two types.
a) Input Data:
There were two types of input data.
1. Flow rules for OpenFlow table were generated

by using a wrapper around ClassBench [9] tool. This
wrapper used same seed files generated and used by
ClassBench.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

2. To overflow switch TCAM storage with flow
rules huge amount of Packet_In messages needed to
generate. These messages were generated by Scapy [10].
Scapy is used to craft custom packets.

b) Output Data:
Output data was collected from three sources.
 CLI of different tools such as Mininet.
 Data written by custom utilities in log files.
 Web interface of SFlow tool was also used to

collect some data.

IV. EVALUATION

In this section, statistics and results are presented
against attacks carried out in the SDN environment, using
attack trees. There were two types of attacks through which
an attacker can achieve the objective of DoS in SDN. The
first type of attack is a traditional attack which SDN
inherits from traditional networks i.e., attack against host.
While the second attack is specific to SDN network i.e.,
attack against switch. The evaluation presents the later type
of attack.

A. Attack Against Switch

To avoid this type of attack, a solution is proposed in
design and methodology. We used switch as learning
switch to conduct the desired behavior. Script for POX
learning switch [11] is available as learningswitch.py while
for Opendaylight learning switch [27] is implemented using
Service Abstraction Layer SAL with the name of MD-SAL
Layer 2 switch. CBench is a tool used for benchmarking of
controller. It measures throughput and latency of different
SDN controllers. It connects to controller and simulates
millions of devices sending messages to the controller.
Throughput of Opendaylight, Floodlight and POX [12][13]
are shown in Figure 10. The figure shows throughput of
controllers in terms of flows per second for a given number
of switches. These statistics are collected from a machine
with Ubuntu 14.04 LTS and single core with 4 gb ram.

If considerable number of packets are generated on some
given switch interface using scapy than packet_in messages
will be generated and because of controller’s response
switch memory will be exhausted. After that, new incoming
legitimate packets will be dropped at that switch, because
rules against these packets will not be installed. Also, when
several times a switch fails to install a flow, controller starts
to ignore the packet in messages from that controller. This
causes packet loss too. Figure 11 shows packet loss after
flow table congestion for different controllers with link
bandwidth set to 100 Mbps.

To cope with this type of problem, we used flow
aggregation. Figure 12 shows the results of reduced set of
rules along with original rule sets against number of switches
and hosts. This shows that for core switches, where
aggregation does not disturb statistics in our scenario, we
were successfully able to reduce rule from 23% to 41%.

This technique also causes reduced bandwidth
consumption between controller and switch, because now
switch communicates with the controller less frequently in
case of Packet_In messages.

Figure 10. Throughput analysis.

Figure 11. Packets loss analysis.

Figure 12. Reduced flows analysis.

V. CONCLUSIONS

Flow table congestion is a problem specific to SDN.
Optimal routing table construction was used with
enhancement to prevent this type of attack. Existing
aggregation techniques also prevent flow table congestion,
but these also cause in loss of counts and statistics. A simple
strategy was used to identify redundant statistics. Next,
aggregation was applied on those identified flow tables to
avoid loss of statistics in OpenFlow table successfully. This
caused about 23% to 40% percent compression in different
cases.

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

A simple idea was also proposed to reconstruct
redundant statistics for our sample topology. But that idea
needs to be generalized with the use of different degree of
equation along with statistical estimation. This technique
can also be matured to be applied even on original flows and
their reconstruction, so that aggregation can also be useful
for edge switches. As a future work we aim to apply
cooperative mechanism [14][15][16] to identify early
congestion to avoid inefficiency in routers.

ACKNOWLEDGMENT

This work is funded by FCT/MEC through national
funds and when applicable co-funded by FEDER – PT2020
partnership agreement under the project
UID/EEA/50008/2013.

REFERENCES

[1] Richard P. Draves, Christopher King, Srinivasan
Venkatachary and Brian N. Zill, " Constructing Optimal IP Routing
Tables " 1998.

[2] Shouxi Luo "Fast incremental flow table aggregation in SDN"
Aug. 2014.

[3] B. Leng, L. Huang and Y. Zhang, "A Mechanism for Reducing
Flow Tables in Software Defined Network " 2015.

[4] V. Saini and V. Paruchuri, "Threat modeling using attack trees"
J.Comput. Sci. Coll., 23(4):124{131, April 2008.

[5] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary, “Algorithms for advanced packet classification with
ternary CAMs,” in Proc.ACM SIGCOMM, Aug. 2005, pp. 193–

204.

[6] “Content addressable memory,” Integrated Device
Technology, Inc.,

[7] Chad R. Meiners, Alex X. Liu, and Eric Torng "Bit Weaving: A
Non-Prefix Approach to Compressing Packet Classifiers in TCAMs"
April 2012.

[8] T. Jamal and P. Mendes, "Cooperative relaying in user-centric
networking under interference conditions", Communications
Magazine IEEE, vol. 52, pp. 18-24, 2014, ISSN 0163-6804.

[9] T. Jamal, P. Mendes, and A. Zúquete, “Wireless Cooperative
Relaying Based on Opportunistic Relay Selection,” International
Journal on Advances in Networks and Services, vol. 05, no. 2, pp.
116–127, Jun. 2012.

[10] S Kaur and J Singh, "Network Programmability Using POX
Controller" 2014.

[11] T. Jamal, M Alam and M Umair, “Detection and Prevention against
RTS Attacks in Wireless LANs” in Proc of IEEE C-CODE,
Islamabad, Pakistan 2017.

[12] Jeremy M. Dover "A denial of service attack against the SDN
controller" 2013.

[13] Open Floodlight The OpenDaylight Platform |
OpenDaylight https://www.opendaylight.org, Accessed on 7 October
2015.

[14] T. Jamal, P. Mendes, A. Zuquete, “Analysis of hybrid relaying in
cooperative WLAN” In proc. of IEEE/IFIP Wireless Days 2013.

[15] T. Jamal and P. Mendes, “Relay Selection Approaches for Wireless
Cooperative Networks,” in Proc. of IEEE WiMob, Niagara Falls,
Canada, Oct. 2010.

[16] T. Jamal, P. Mendes, and A. Zúquete, “RelaySpot: A Framework for
Opportunistic Cooperative Relaying,” in Proc. of IARIA ACCESS,
Luxembourg, Jun. 2011.

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

