
A Methodology Based on Model-Driven Engineering for IoT Application
Development

Claudia Maricela Sosa-Reyna, Edgar Tello-Leal, David Lara-Alabazares, Jonathan Alfonso Mata-Torres,
Esmeralda Lopez-Garza

Reynosa-Rodhe Multidisciplinary Academic Unit - Faculty of Engineering and Science
Autonomous University of Tamaulipas

Victoria, Mexico
e-mail: clauqueen1@gmail.com, etello@uat.edu.mx, dlara@uat.edu.mx, mata.jona@gmail.com, elgarza@uat.edu.mx

Abstract—The Internet of Things can be understood as an
infrastructure of the dynamic global network with a capacity
of self-configuration, based on standard communication
protocols, where things -physical and virtual- have an identity,
physical attributes, and virtual personalities. In this paper, we
propose a methodology based on Model-Driven Engineering
with different levels of abstraction, points of view, and
granularity, with the objective of guiding the development of
software applications for Internet of Things. The methodology
is supported by methods of model transformation, enabling the
generation of the code of the software applications for Internet
of Things. In addition, a Service-Oriented Architecture is
presented for the deployment of software applications,
composed of four layers that allow the identification of the
components required for the implementation of the Internet of
Things systems.

Keywords-thing; IoT; MDE; SOA; model; transformation.

I. INTRODUCTION

Nowadays, the advances in research and development of
the Information and Communications Technology (ICT)
encourages to try to connect all things or objects to the world
via the Internet, in order to provide an integrated system to
improve their performance in the transmission of
information, and offer new services over the Internet. This
converts an object into a smart object, allowing to control
any tangible object remotely, and has been called the Internet
of Things (IoT) [1]. IoT consists of a global infrastructure for
the information society, enabling advanced services by
interconnecting (physical and virtual) things based on
existing and evolving interoperable information and
communication technologies [2].

In the IoT paradigm, a thing is an object of the physical
world (physical thing) or the information world (virtual
thing), which is capable of being identified and integrated
into communication networks [2]. Hence, IoT represents a
significant extension of the Internet with a large number of
physical objects and devices that show pervasive sensing,
detection, actuation, and computational capabilities. IoT is
usually related to a physical thing or object, but a
fundamental component in IoT is the software used to
connect and manage things and as well as to analyze their
collected data. This software can be found in different
locations, such as embedded, or at the level of middleware,

applications, logic in the composition of services, or
management tools [3][4].

The advances achieved in automation and intelligent
environments have reached important levels, and some
contributions in this sense through IoT concepts include
smart cities, smart homes, e-health, smart grids, intelligent
transportation systems, and intelligent use of water, among
others [5]-[9]. While these paradigms have their advantages,
their development is complex; that is why new alternatives to
facilitate generation processes and implementation of
innovative applications are sought. Moreover, the principal
characteristic of IoT systems is that heterogeneity between
its components, in where things might be totally different
among themselves in terms of both hardware and software.
However, the very same software functionalities are
expected to be deployable on different devices having only a
limited set of core common features [10]. Therefore, having
models that conceptualize the domain of a specific problem,
and with which the elements that integrate it can be
identified, classified and abstracted, represents the possibility
of achieving efficient automated implementation, as well as
support the complexity of the heterogeneous things.

In this respect, Model-Driven Engineering (MDE) is
based on models that in an early stage in the development
minimize the technological aspects, so that communication
between users, analysts, and system developers, can be more
efficient, allowing the selection of the technological platform
until the end of the process. With the use of MDE, the
automatic generation of the code as the product of a set of
model transformations represents an increase in productivity,
favoring consistency through automation. In the MDE
approach, high-level abstraction models are transformed into
lower-level models, where the relationship between both
models results in a dependence that keeps the process that
has been followed until a technological solution, helping to
understand the consequences of the changes at any point in
the development process [11]. When developing systems
based on models, it is possible to achieve an easy adaptation
to the changes, both technological and the business
requirements that may appear in the development process,
turning the models into reusable and enduring units. As part
of the development process, where models are productive
units from which automated implementations emanate, we
find as core points: 1) the abstraction, represented by high-
level modeling languages; 2) the automation, that allows to

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

transform the models in computer programs; and 3) the
standard, or complementary development tools; with the aim
of obtaining formal models or software artifacts that can be
understood by a computer [12].

Moreover, considering the ubiquity and particularity
existing in intelligent environments in IoT systems, MDE
allows the management of heterogeneous technologies
through automatic transformation methods and generation of
code for specific platforms. In MDE, the transformation of
models can be vertical, where it refines abstract models in
more specific models, or horizontal form, defining mappings
between models of the same level of abstraction, and in this
way to identify the best solution.

Furthermore, in the Service-Oriented Architecture (SOA)
approach, a complex system is treated as a set of well-
defined objects or subsystems [13]. These subsystems can be
reused, maintaining their individual form. Hence, software
and hardware components in an IoT architecture,
implemented with SOA, can be efficiently reused and
updated. Therefore, when SOA is applied in IoT, the
generated design can provide extensibility, scalability,
modularity, and interoperability between heterogeneous
things, as well as the functionalities and capabilities that
were encapsulated in a set of services.

In this paper, we propose a methodology supported by
the MDE for solving the challenges in the IoT system
developments. The methodology is composed of four phases
with different levels of abstraction, viewpoint, and
granularity. The phases of the methodology are supported by
methods of transformation of models based on MDE. In
addition, an architecture for IoT systems composed of four
layers is presented, which is based on the SOA approach.
This architecture allows the interoperability between
heterogeneous devices to be guaranteed in multiple ways,
establishing a bridge between the digital and physical world
of IoT. Therefore, the architecture and methodology enable
guides the process of development of software applications
oriented to services, which make it possible to satisfy the
business requirements of the IoT domain.

The reminder of the paper is organized as follows. In
Section II there is a review of the related research which
deals with the technology of Internet of Things and MDE
and their integration. Section III introduces the architecture
based on SOA. In Section IV, we propose the MDE
methodology for Internet of Things, together with
conclusions, in Section V.

II. RELATED WORK

The development of technological solutions for the
specification of software systems for IoT using the
principles of MDD has been previously studied. The most
relevant proposals that are related to the approach proposed
in this research work are discussed in this Section. Nguyen
et al. [14] proposed a Framework for Sensor Application
Development (FRASAD) based on MDD approach, which
aims at improving the re-usability, flexibility, and
maintainability of sensor software. In the highest abstraction
level of your architecture, a rule-based model and a Domain
Specific Language (DSL) are used to describe the

applications. It has been elaborated to uncouple the
programming language and their execution model from the
underlying OS and hardware. The DSL model has been
extended for support to the different operating systems such
as TinyOS or Contiki.

Pramudianto et al. [15] presented a MDD approach for
the development of software components of the IoT domain,
using three levels of abstraction. The Platform Specific
Model (PSM) can be transformed into a Java code, which
requires refinement before implementation. The code
generated run as a standalone application that exposes the
domain objects through different protocols and serialization
formats. Similarly, Conzon et al. [16] proposed a tool using
MDD for extending a platform to be used in factory
automation and on techniques used for energy consumption
optimization and CO2 reduction. This MDD tool allows
developers to discover and compose distributed devices and
services into mashups, enabling developers to model the
integration of IoT components visually and
programmatically, transforming the model into the software
code.

In [17], Einarsson et al. presented a Domain-Specific
Modelling Language (SmartHomeML) for smart home
applications, incorporating a metamodel that enables the
capture the architecture and specifications of smart home
devices, as well as two transformation templates that
generate code from instances of SmartHomeML for Alexa
and SmartThings. This transformation was designed trough
MDD approach, using a model-to-text transformation in a
platform-specific model level to code (implementation
artifact). Brambilla et al. [18] proposed a model-driven
development based approach for the definition of user
interface components and design patterns specific to the IoT
domain. In addition, a proposed an extension of the standard
Interaction Flow Modeling Language (IFML) in order to
support the implementation of the user interfaces. The IFML
extension designed focuses on mobile applications, enable
for expressing the content, user interaction, and control
behavior of the front-end of IoT applications.

In our work, we propose a methodology that explicitly
describes the phases for the design of software applications
for the IoT domain. In this proposal, the abstraction levels
and granularity (of each source or target model required) of
the phases and stages of the methodology are described in
detail, as well as the model transformation methods (based
on MDD) that allow giving support each of the phases of
the methodology.

III. SOA-BASED ARCHITECTURE FOR IOT SYSTEMS

The main requirement of IoT is that things in the network
must be interconnected. The architecture of an IoT system
must guarantee the operations of things, allowing a bridge
between things (physical part) and the virtual world of IoT.
The SOA-based architecture for the development of
proposed IoT systems is composed of 4 layers, as shown in
Figure 1.

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

Figure 1. Architecture based on SOA for IoT systems.

A. Object Layer

The Object layer is composed of hardware objects
available on the network that detect the state of things. In the
object layer, the intelligent systems through labels or sensors,
are able to automatically detect the environment and perform
data exchange between devices. The objects in this layer
must have a digital identity (universal identifier, UUID),
allowing to trace the object in the digital domain, making it
possible to meet IoT’s expectation of being a physical
interconnected network all over the world, where things are
seamlessly connected and can be controlled remotely [13].

B. Network Layer

The Network layer consists of the infrastructure that
supports wired, wireless or mobile connections between
things, allowing to detect their environment, which enables
to share data between connected things, enabling event
management and intelligent IoT processing. The network
layer enables to manage the communication in the IoT
environment and to transmit messages between the objects
and systems. In the SOA approach, services will be
consumed by things that have been enabled in the network
layer. The network layer is crucial in any IoT approach,
considering QoS functionalities, efficient energy
management in the network and in things, signal and data
processing, security and privacy, among others.

C. Service Layer

In the Service layer, there are created and managed the
services required by the users or software applications. The
service layer is based on middleware technologies, which is
fundamental for consuming services and the execution of
IoT applications, where hardware and software platforms can
be re-usable. Middleware plays a key role in supporting the
development of such IoT enhanced applications and services.
The IoT systems introduce significant new challenges for
middleware stemming from the vast number of connected
objects, the volume and variety of the data produced, the
patterns of communication required, the heterogeneity of
communicating components, and new challenges in terms of
quality-of-service, privacy, and security [7]. It is one of the

architecture’s critical layers of operation, which operates in
bidirectional mode. This layer operates as an interface
between the object layer (at the bottom of the architecture),
and the application layer (at the top of the architecture). It is
responsible for functions such as device management,
information management, data filtering, data aggregation,
semantic analysis, and information discovery [19]. The
services layer consists of: service discovery, service
composition, APIs, and reliability management (see Figure
2), among others. The discovery of services allows to find
the objects that can provide the required service and the
necessary information in an efficient way, through the UUID
in the registry of services or repository of services. The
composition of services allows the interaction between
connected things by combining the available services to
perform a specific task, that is, when the services are created
and stored in the service repository, they can be combine in
services of higher level of complexity from the business
logic.

D. Application Layer

The Application layer is responsible for delivering the
applications to different IoT users. The application layer
usually plays the role of providing services or applications
that integrate or analyze the information received from the
other three layers. The intent of the architecture is to support
vertical applications. The development of applications in IoT
has focused on the areas of health, agriculture,
transportation, intelligent cities, home automation, complex
systems for decision making, water use management, etc.
[4][5][8][9].

Figure 2. Scheme of the SOA service layer.

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

IV. MDE METHODOLOGY FOR IOT APPLICATIONS

The proposed methodology is oriented to the use of
conceptual models in different points of view, levels of
abstraction, and granularity. The output artifacts of the
phases of this methodology are represented by models,
generated by the application of the principles of MDE. The
end result are software implementation artifacts, that is, the
code of the applications or software systems for IoT. In
Figure 3, the phases that make up this methodology are
presented: 1) analysis of business requirements, 2) definition
of the business logic, 3) design of the integrated services
solution, and 4) generation of the technological solution.

A. Phase 1. Analysis of business requirements.

In this phase, the problem domain is analyzed and the
business requirements are identified. This is done
considering the functional and non-functional requirements
of the system. In order to define the business requirements
model, the UML language is used, capturing the flow of the
software process through use case diagrams and activity
diagrams, generating a model defined in a Platform
Independent Model (PIM) level. A PIM is a platform-
independent system view, that is, a model with a high level
of abstraction independent of any technology or
implementation language that exhibits a sufficient degree of
platform independence to allow mapping to one or more
platforms.

B. Phase 2. Definition of the business logic.

This phase focuses on the design of the business
processes required to support the business logic and business
requirements. Then, the pre-generated business requirements
model is used as input to the phase, and is complemented by
the definition of the business process logic, using the
Business Process Model and Notation language (BPMN),
which allows to generate a model of the business solution
defined in a PIM level of the MDE, describing the behavior
and interactions of the business process from a global
viewpoint.

C. Phase 3. Design of the integrated services solution.

In this phase, a model of the IT architecture is defined, at
a platform independent level to separate the business logic
solution from the technical aspects of implementation (IT),
which allows that this type of implementation can be
generated on different target platforms. The IT architecture
model is derived from the model of the business solution
generated in the previous phase, the generated model
remains unchanged on any platform. In this case, the IT
architecture model is generated following the approach
oriented to SOA services. The output of this stage is a model
defined in a PIM level.

D. Phase 4. Generation of the technological solution.

In this phase, specific concepts of the implementation
platform are used in order to convert this solution into an
executable code of a particular software application. This
phase is accomplished through the implementation of two

stages: 1) design of the IT platform specific solution, and 2)
generation of the specifications or code of the software
system. The first stage consists of the definition of the
specifications model based on a standard or specific
technology (for example, TinyOS 2.0 or WSN Operating
Systems), using as input to the phase, the IT architecture
model, previously generated. The output of this stage is a
model defined in a Platform-Specific Model (PSM) level. A
PSM presents a view of the system from the perspective of a
specific technological platform, that is, an associated
solution model to a platform that includes the details of the
PIM and describes how the implementation is performed on
that platform. The technology solution model contains the
information required for the specific platform (specific
messages in the send or receive format for things or objects,
transport protocols used, sensor UUID, sender or receiver).
The second stage consists of a transformation of the PSM to
text, which represents the code skeleton or executable code
of an application, usually in XML-based specifications.

E. Model transformation methods.

The methodology is supported by methods based on the
MDE approach, to reduce costs and development time,
allowing automatic and semi-automated model
transformations to generate the output models of each phase.
A model transformation consists of a set of transformation
rules, which define how an input model is mapped to one or
more models or executable code. In order to support the
necessary model transformations for the methodology, it is
proposed the application of different model transformation
methods.

Figure 3. MDE based methodology to IoT applications deployment.

The proposed MDE methods to generate the
technological solutions in IoT environments, through
software applications oriented to services, consist of 4

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

transformations. Through the T1 transformation, a
conceptual model of the business solution is generated based
on a business requirements model, complemented with the
business logic and the business process designed through a
horizontal PIM-to-PIM transformation. This transformation
is derived from the business solution model, using the
concepts of the Service Oriented Architecture (SOA),
maintaining an independence of the implementation
platform. Figure 4 shows an example of a transformation
rule (T2), where the BPMN language meta-model is used as
input and the SOA architecture meta-model is used as a
destination (Rule 1). The transformation methods and
proposed rules were defined using the Eclipse Atlas
Transformation Language (ATL).

Figure 4. Example of transformation rules for method T2 (Rule 1) and T3
(Rule 2).

The technological solution is generated by two model-
driven methods. The first method applies a model-to-model
transformation T3, generating an output model based on the
specific implementation platform that is selected, using a
model of the IT architecture as input. The generated model is
defined at a specific level of the PSM platform, using
concepts from the IoT implementation platform. Figure 4
shows an example of a transformation rule (Rule 2) of the
SOA meta-model (PIM level) to a meta-model at a PSM
level. In the example, the data to be sent to a sensor of a
software application of a smart vehicle simulator is
generated. The second method is done by the direct model-
to-text transformation T4, which consists of the generation of
a document with the source code that represents the structure
and behavior of the object when an event occurs.

V. CONCLUSIONS

In this paper, a methodology was presented for the
development of software applications for IoT. The
methodology is based on the principles of Model-Driven
Engineering (MDE), where a set of model transformation
methods were defined and specified with different
viewpoints, abstraction levels, and granularity. The proposed
methodology allows guiding the process of developing
software applications oriented to services, from conceptual
models to the code of a specific application and a selected
technology platform.

The objective of the proposed approach is to reduce the
time and costs in software development by implementing
automatic and semi-automatic model transformations. In
addition, an architecture to support the applications or
software systems for IoT was proposed. The architecture
describes, in a generic way, the different layers required for

the deployment of software applications in IoT, using the
concepts of Service-Oriented Architecture (SOA).

ACKNOWLEDGMENT

This work was supported by the National Council of
Science and Technology (CONACYT) of Mexico under
Grant 256922.

REFERENCES

[1] C.-W. Tsai, C.-F. Lai, and A. V. Vasilakos, “Future internet of things:
open issues and challenges,” Wireless Networks, vol. 20, no. 8, pp.
2201–2217, 2014.

[2] ITU-T, “Overview of the internet of things,” Telecommunication
Standardization Sector of ITU, Specification ITU-T Y.2060, January
2013. [Online]. Available: http://handle.itu.int/11.1002/1000/11559

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[4] S. Stastny, B. A. Farshchian, and T. Vilarinho, “Designing an
application store for the Internet of Things: Requirements and
challenges,” Proc. Ambient Intelligence: 12th European Conference
(AmI 2015), Springer International Publishing, Nov 2015, pp. 313–
327, doi:10.1007/978-3-319-26005-1_21

[5] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David, “A
literature survey on smart cities,” Science China Information
Sciences, vol. 58, no. 10, Oct 2015, pp. 1–18. [Online]. Available:
https://doi.org/10.1007/s11432-015-5397-4

[6] E. Al Nuaimi, H. Al Neyadi, N. Mohamed, and J. Al-Jaroodi,
“Applications of big data to smart cities,” Journal of Internet Services
and Applications, vol. 6, no. 1, Dec 2015, pp. 1-15. [Online].
Available: https://doi.org/10.1186/s13174-015-0041-5

[7] G. Blair, D. Schmidt, and C. Taconet, “Middleware for internet
distribution in the context of cloud computing and the internet of
things,” Annals of Telecommunications, vol. 71, no. 3, pp. 87–92,
2016. [Online]. Available: https://doi.org/10.1007/s12243-016-0493-z

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (IoT): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol. 29, no. 7, 2013, pp. 1645-
1660. [Online].Available:https://doi.org/10.1016/j.future.2013.01.010

[9] B. d. T. Pereira, L. C. Melo, F. J. da Silva, L. E. Talavera, and M.
Endler, “A comprehensive and scalable middleware for ambient
assisted living based on cloud computing and internet of things,”
Concurrency and Computation: Practice and Experience, vol. 29, no.
11, 2017, pp. 1-19. [Online]. Available:
http://dx.doi.org/10.1002/cpe.4043

[10] F. Ciccozzi, and R. Spalazzese, “MDE4IoT: Supporting the Internet
of Things with Model-Driven Engineering,” Proc. 10th International
Symposium on Intelligent Distributed Computing (IDC 2016),
Springer International Publishing, October 2016, pp. 67–76, doi:
10.1007/978-3-319-48829-5_7

[11] E. Tello-Leal, A. B. Rios-Alvarado, I. Lopez-Arevalo, O. Chiotti, and
P. D. Villarreal, Methodology based on Model-Driven Development
for the execution of collaborative processes through software agents,
1st ed. México, Ediciones UAT - Plaza y Valdes, 2016.

[12] C. Pons, R. Giandini, and G. Perez, Model-Driven Software
Development, 1st ed. Argentina, Editorial Universidad Nacional La
Plata - McGraw Hill, 2010.

[13] L. Shancang, X. L. Da, and Z. Shanshan, “The internet of things: a
survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259,
2015. [Online]. Available: http://dx.doi.org/10.1007/s10796-014-
9492-7

[14] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “FRASAD: A
Framework for Model-Driven IoT Application Development,” Proc.
IEEE 2nd World Forum on Internet of Things (WF-IoT 2015), 2015,
pp. 387–392. Available: doi:10.1109/WF-IoT.2015.7389085

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

[15] F. Pramudianto, C. A. Kamienski, E. Souto, F. Borelli, L. L. Gomes,
D. Sadok, and M. Jarke, “IoT Link: An Internet of Things prototyping
toolkit,” Proc. 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence
and Computing, and IEEE 11th Intl Conf on Autonomic and Trusted
Computing, and IEEE 14th Intl Conf on Scalable Computing and
Communications (UTC-ATC-ScalCom), 2014, pp. 1–9. [Online].
Available: doi:10.1109/UIC-ATC-ScalCom.2014.95

[16] D. Conzon, P. Brizzi, P. Kasinathan, C. Pastrone, F. Pramudianto, and
P. Cultrona, “Industrial application development exploiting IoT
vision and Model-Driven programming,” Proc. 18th International
Conference on Intelligence in Next Generation Networks (ICIN
2015), 2015, pp. 168–175. [Online]. Available:
doi:10.1109/ICIN.2015.7073828

[17] A. F. Einarsson, P. Patreksson, M. Hamdaqa, and A. Hamou-Lhadj,
“SmarthomeML: Towards a domain-specific modeling language for
creating smart home applications,” Proc. IEEE International Congress
on Internet of Things (ICIOT 2017), June 2017, pp. 82–88. [Online].
Available: doi:10.1109/IEEE.ICIOT.2017.35

[18] M. Brambilla, E. Umuhoza, and R. Acerbis, “Model-Driven
Development of user interfaces for IoT systems via domain-specific
components and patterns,” Journal of Internet Services and
Applications, vol. 8, no. 1, pp. 1-21, 2017. [Online]. Available:
https://doi.org/10.1186/s13174-017-0064-1

[19] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and
challenges in technology and standardization,” Wireless Personal
Communications, vol. 58, no. 1, pp. 49–69, 2011. [Online].
Available: https://doi.org/10.1007/s11277-011-0288-5

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-615-6

ICDS 2018 : The Twelfth International Conference on Digital Society and eGovernments

