
Chronomorphic Programs: Using Runtime Diversity to Prevent Code Reuse Attacks

Scott E. Friedman, David J. Musliner, and Peter K. Keller
Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {sfriedman,dmusliner,pkeller}@sift.net

Abstract—Return Oriented Programming (ROP) attacks, in
which a cyber attacker crafts an exploit from instruction se-
quences already contained in a running binary, have become
popular and practical. While previous research has investigated
software diversity and dynamic binary instrumentation for de-
fending against ROP, many of these approaches incur large
performance costs or are susceptible to Blind ROP attacks. We
present a new approach that automatically rewrites potentially-
vulnerable software binaries into chronomorphic binaries that
change their in-memory instructions and layout repeatedly, at
runtime. We describe our proof of concept implementation of
this approach, discuss its security and safety properties, provide
statistical analyses of runtime diversity and reduced ROP attack
likelihood, and present empirical results that demonstrate the
low performance overhead of actual chronomorphic binaries.

Keywords-cyber defense; software diversity; self-modifying code.

I. INTRODUCTION

In the old days, cyber attackers only needed to find a
buffer overflow or other vulnerability and use it to upload
their exploit instructions, then make the program execute those
new instructions. To counter this broad vulnerability, modern
operating systems enforce “write XOR execute” defenses: that
is, memory is marked as either writable or executable, but not
both. So exploit code that is uploaded to writable memory
cannot be executed. Not surprisingly, attackers then developed
a more sophisticated exploit method.

Computer instruction sets are densely packed into a small
number of bits, so accessing those bits in ways that a pro-
grammer did not originally intend can yield gadgets: groups
of bits that form valid instructions that can be strung to-
gether by an attacker to execute arbitrary attack code from
an otherwise harmless program [1][2]. Known as Return
Oriented Programming (ROP), these types of cyber exploits
have been effective and commonplace since the widespread
deployment of W⊕X defenses. Software with a single small
buffer-overflow vulnerability can be hijacked into performing
arbitrary computations using ROP techniques. Hackers have
even developed ROP compilers that build the ROP exploits
automatically, finding gadgets in the binary of a vulnerable
target and stringing those gadgets together to implement the
attacker’s code [3][4].

This paper presents a fully automated approach for trans-
forming binaries into chronomorphic binaries that diversify
themselves during runtime, throughout their execution, to offer
strong statistical defenses against code reuse exploits such as
ROP and Blind ROP (BROP) attacks. The idea is to modify
the binary so that all of the potentially-dangerous gadgets

are repeatedly changing or moving, so that even a BROP
attack tool cannot accumulate enough information about the
program’s memory layout to succeed.

In the following sections, we discuss related research in this
area (Section II) and describe how our prototype Chronomorph
tool converts regular binaries into chronomorphic binaries
(Section III) and review its present limitations. We then
describe an analysis of the safety and security of the resulting
chronomorphic binaries, and performance results on early
examples (Section IV). We conclude with several directions
for future work, to harden the tool and broaden its applicability
(Section V).

II. RELATED WORK

Various defense methods have been developed to try to foil
code reuse exploits such as ROP and BROP. Some of defenses
instrument binaries to change their execution semantics [5] or
automatically filter program input to prevent exploits [6]; how-
ever these approaches require process-level virtual machines
or active monitoring by other processes. Other approahces
separate and protect exploitable data (e.g., using shadow
stacks [7]), but such approaches incur comparatively high
overhead.

To reduce overhead and maintain compatibility with ex-
isting operating systems and software architectures, many
researchers have focused on lightweight, diversity-based tech-
niques to prevent code reuse exploits. For example, Address
Space Layout Randomization (ASLR) is common in modern
operating systems, and loads program modules into different
locations each time the software is started. However, ASLR
does not randomize the location of the instructions within
loaded modules, so programs are still vulnerable to ROP
attacks [8]. Some diversity techniques modify the binaries
themselves to make them less predictable by an attacker. For
example:
• Compile-time diversity (e.g., [9]) produces semantically

equivalent binaries with different structures.
• Offline code randomization (e.g., [10]) transforms a bi-

nary on disk into a functionally equivalent variant with
different bytes loaded into memory.

• Load-time code randomization (e.g., [11][12]) makes
the binary load blocks of instructions at randomized
addresses.

These diversity-based approaches incur comparatively lower
overhead than other ROP defenses and they offer statistical
guarantees against ROP attacks.

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

Unfortunately, these compile-time, offline, and load-time
diversity defenses are still susceptible to Blind ROP (BROP)
attacks that perform runtime reconnaissance to map the binary
and find gadgets [13]. So even with compile-time, offline,
or load-time diversity, software that runs for a significant
period of time without being reloaded (e.g., all modern
server architectures) is vulnerable. Some ROP defenses modify
the operating system to augment diversity [14][15] provide
promising results, but these approaches do not modify existing
third-party programs to work on existing operating systems.

Unlike the above diversity techniques, chronomorphic pro-
grams diversify themselves throughout program execution to
statistically prevent code reuse attacks even if the attacker
knows the memory layout.

III. APPROACH

The Chronomorph approach requires changing machine
code at runtime, a technique known as self-modifying code
(SMC). Using SMC, Chronomorph must preserve the func-
tionality of the underlying program (i.e., maintain semantics),
maximize diversity over time, and minimize performance
costs.

Any SMC methodology requires a means to change the
permissions of the program’s memory (i.e., temporarily cir-
cumvent W⊕X defense) to modify the code and then resume
its execution. Different operating systems utilize different
memory protection functions, e.g., mprotect in Linux and
VirtualProtect in Windows, but otherwise, the basic
instruction set architectures (e.g., x86) are equivalent. In this
paper, we describe Chronomorph in a 32-bit Linux x86 setting.

Our approach automatically constructs chronomorphic bi-
naries from normal third-party programs with the following
enumerated steps, also illustrated in Figure 1:

Offline:
1) Transform the executable to inject the Chronomorph

SMC runtime that invokes mprotect and rewrites
portions of the binary during execution. This produces a
SMC binary with SMC functions that are disconnected
from the program’s normal control flow.

2) Analyze the SMC binary to identify potentially-
exploitable sequences of instructions (i.e., gadgets).

3) Identify relocatable gadgets and transform the SMC
binary to make those gadgets relocatable.

4) Compute instruction-level, semantics-preserving trans-
forms that denature non-relocatable gadgets and sur-
rounding program code.

5) Write the relocations and transforms to a morph table
outside the chronomorphic binary.

6) Inject morph triggers into the SMC binary so that the
program will morph itself periodically. This produces
the chronomorphic binary.

Online:
7) During program runtime, diversify the chronomorphic

binary’s executable memory space by relocating and

transforming instructions without hindering performance
or functionality.

We have implemented each step in this process and inte-
grated third-party tools including a ROP compiler [4], the
Hydan tool for computing instruction-level transforms [16],
and the open-source objdump disassembler. We next describe
each of these steps in this process, including the research
challenges and the strategy we employ in our Chronomorph
prototype implementation. We note relevant simplifying as-
sumptions in our prototype, and we address some remaining
research challenges in Section V.

A. Injecting SMC morphing functionality

Before the Chronomorph analysis tool can analyze the
binary and compute transformations, it must inject the
Chronomorph SMC runtime, which contains functions for
modifying memory protection (e.g., mprotect), writing byte
sequences to specified addresses, and reading the morph table
from outside the binary. These Chronomorph functions may
themselves contain gadgets and have runtime diversification
potential, so the SMC-capable binary should be the subject of
all further offline analysis.

We identified three ways of automatically injecting the
Chronomorph runtime code, based on the format of the target
program.

1) Link the target program’s source code against the
compiled Chronomorph runtime. This produces a
dynamically- or statically-linked SMC executable. This
is the simplest solution, and the one used in our exper-
iments, but source code may not always be available.

2) Rewrite a statically-linked binary by extending its binary
with a new loadable, executable segment containing the
statically-linked Chronomorph runtime. This produces a
statically-linked SMC executable.

3) Rewrite a dynamically-linked binary by adding
Chronomorph procedures and objects to an alternative
procedure linkage table (PLT) and global object
table (GOT), respectively, and then extend the binary
with a new loadable, executable segment containing
the dynamically-linked Chronomorph runtime. This
produces a dynamically-linked SMC executable.

All three of these approaches inject the self-modifying
Chronomorph runtime, producing the SMC binary shown in
Figure 1. At this point, the self-modification functions are not
yet invoked from within the program’s normal control flow,
so we cannot yet call this a chronomorphic binary.

B. Identifying exploitable gadgets

As shown in Figure 1, the Chronomorph offline analysis
tool includes a third-party ROP compiler [4] that automatically
identifies available gadgets within a given binary and creates
an exploit of the user’s choice (e.g., execute an arbitrary shell
command) by compiling a sequence of attack gadgets from
the available gadgets, if possible. The Chronomorph analysis
tool runs the ROP compiler against the SMC binary, finding

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

Offline analysis & binary rewriting

Target program binary

Target program source
(optional)

ROP Compiler

Transformations

Relocations

Chronomorph SMC runtime

Control flow analysis
Morph table

Chronomorphic
binary

SMC
binary

Triggers

Figure 1. Chronomorph converts a third-party program into a chronomorphic binary.

MorphPoint 0:
 Option 0-0:
 {<85 c0>@0x804ec3e}
 Option 0-1:
 {<23 c0>@0x804ec3e}
 Option 0-2:
 {<21 c0>@0x804ec3e}
 …
MorphPoint 1:
 Option 1-0:
 …
…

Morph Table

Chronomorphic Binary

Normal control flow

Chronomorph SMC runtime

Morph triggers

Figure 2. The resulting chronomorphic binary and its interaction with the morph table.

gadgets that span the entire executable segment, including the
Chronomorph SMC runtime.

The ROP compiler prioritizes Chronomorph’s diversification
efforts as follows, to allocate time and computing resources
proportional to the various threat of exploit within the binary:
• Attack gadgets are highest priority. The chronomorphic

binary should address these with highest-diversity trans-
forms.

• Available gadgets (i.e., found by the ROP compiler but
not present in an attack sequence) are medium priority.
These too should be addressed by high-diversity trans-
forms within acceptable performance bounds.

• Instructions that have not been linked to an available
gadget are lowest priority, but should still be diversified
(i.e., substituted or transformed in-place). Since zero-day
gadgets and code-reuse attack strategies may arise after
transformation time, this diversification offers additional
security.

Our approach attempts all transformations possible, saving

more costly transformations, e.g., dynamic block relocations,
for the high-risk attack gadgets. The ROPgadget compiler
[4] used by Chronomorph may be easily replaced by newer,
broader ROP compilers, provided the compiler still compiles
attacks and reports all available gadgets. Also, a portfolio
approach may be used, running a variety of ROP compilers
and merging their lists of dangerous gadgets.

C. Diversity with relocation

We may not be able to remove a high-risk gadget entirely
from the executable, since its instructions may be integral to
the program’s execution; however, the chronomorphic binary
can relocate it with high frequency throughout execution, as
long as it preserves the control flow.

Relocation is the highest-diversity strategy that
Chronomorph offers. Chronomorph allocates an empty
block relocation space in the binary, reserved for gadget
relocation. Whenever the chronomorphic binary triggers a
morph, it shuffles relocated blocks to random locations in the

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

block relocation space and repairs previous control flow with
recomputed jmp instructions to the corresponding location in
the block relocation space.

For each high-risk attack gadget, Chronomorph performs
the following steps to make it relocatable during runtime:

1) Compute the basic block (i.e., sequence of instructions
with exactly one entry and exit point) that contains the
gadget.

2) Relocate the byte sequence of the gadget’s basic block
to the first empty area in the block relocation space.

3) Write a jmp instruction from the head of the basic block
to the new address in the block relocation space.

4) Write nop instructions over the remainder of the gad-
get’s previous basic block, destroying the gadgets.

5) Write the block’s byte sequence and the address of the
new jmp instruction to the morph table.

The morph table now contains enough information to place
the gadget-laden block anywhere in the block relocation space
and recompute the corresponding jmp instruction accordingly.

Intuitively, diversity of the binary increases with the size of
the block relocation space. For a single gadget block g of with
byte-size |g|, and block relocation space of size |b|, relocating
g adds V (g, b) = |b| − |g| additional program variants.

If we relocate multiple gadget blocks G = {g0, ..., g|G|−1},
the we add the following number of variants:

V (G, |b|) =
|G|−1∏
i=0

(|b| −
i∑

j=0

|gj |). (1)

The probability of guessing all of the relocated gadgets’
addresses is therefore 1/V (G, |b|), which diminishes quickly
as the block relocation space increases.

Our Chronomorph prototype has the following constraints
for choosing gadget blocks for relocation:
• Relocated blocks cannot contain a call instruction.

When a call instruction is executed, the subsequent
instruction’s address is pushed onto the stack, and if the
calling block is relocated, execution would return into an
arbitrary spot in the block relocation space.

• Relocated blocks must be at least the size of the jmp
to the block relocation space, so that Chronomorph has
room to write the jmp.

• Relocated blocks must end in an indirect control flow
(e.g., ret) instruction; otherwise, we would have to
recompute the control flow instruction at the block’s tail
at every relocation. Empirically, the vast majority of these
blocks end in ret.

• Relocated gadgets cannot span two blocks.
We discuss some improvements in the conclusion of this

paper for hardening Chronomorph and removing some of these
constraints.

D. Diversity with in-place code randomizations

Chronomorph uses in-place code randomization (IPCR)
strategies to randomize non-relocated instructions [10]. IPCR

performs narrow-scope transformations without changing the
byte-length of instruction sequences.

At present, Chronomorph use two IPCR strategies to com-
pute transformations. The first, instruction substitution (IS),
substitutes a single instruction for one or more alternatives.
For example, comparisons can be performed in either order,
xor’ing a register with itself is equivalent to mov’ing or
and’ing zero, etc. These instructions have the same execution
semantics, but they change the byte content of the instruction,
so unintended control flow instructions (e.g., 0xC3 = ret)
are potentially transformed or eliminated. A single IS adds as
many program variants as there are instruction alternatives.

Another IPCR strategy, register preservation code reorder-
ing (RPCR) reorders the pop instructions before every ret
instruction of a function, and also reorders the corresponding
push instructions at the function head to maintain symmetry.
A register preservation code reordering for a single function
adds as many variants as there are permutations of push or
pop instructions.

Importantly, RPCR changes the layout of a function’s stack
frame, which may render it non-reentrant. For instance, if
control flow enters the function and it preserves register values
via push’ing, and then the chronomorphic binary runs RPCR
on the function, it will likely pop values into unintended
registers and adversely affect program functionality.

Any stack-frame diversity method such as RPCR should
only be attempted at runtime if execution cannot reenter the
function, e.g., from an internal call, after a SMC morph
operation. We enforce this analytically with control flow graph
(CFG) analysis: if execution can reenter a function f from the
morph trigger (i.e., if the morph trigger is reachable from f in
the CFG), the stack frame of f should not be diversified. Stack
frame diversification is a valuable tool for ROP defense, but
it requires these special considerations when invoked during
program execution.

E. Writing and reading the morph data

The morph table is a compact binary file that accompa-
nies the chronomorphic binary, as shown in Figure 2. The
morph table binary represents packed structs: MorphPoint
structs with internal MorphOption byte sequences. Each
MorphPoint represents a decision point (i.e., an IS or RPCR
opportunity) where any of the associated MorphOption
structs will suffice. Each MorphPoint is stateless (i.e., does
not depend on the last choice made for the MorphPoint),
and independent of any other MorphPoint, so random
choices are safe and ordering of the morph table is not
important.

The relocation data is a separate portion of the morph table,
containing the content of relocatable blocks alongside their
corresponding jmp addresses. Like IPCR operations, reloca-
tions are stateless and independent, provided the Chronomorph
runtime does not overlay them in the block relocation space.

Intuitively, the morph table cannot reside statically inside
the binary as executable code, otherwise all of the gadgets
would be accessible.

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

func8048b70

func804f4ab

func804d5f2

func804c517

Blk 116 @ 0x8048b70 [6]
jmp *0x8052134

Blk 1990 @ 0x804f4ab [19]
push %ebp
mov %esp,%ebp
sub $0x38,%esp
movl $0x1,-0xc(%ebp)
lea -0x28(%ebp),%eax
mov %eax,-0x10(%ebp)

Blk 1991 @ 0x804f4be [11]
mov 0xc(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1992 @ 0x804f4c9 [9]
mov %eax,-0x14(%ebp)
cmpl $0xffffffff,-0x14(%ebp)
je 0x804f513

default

Blk 1993 @ 0x804f4d2 [8]
mov -0x14(%ebp),%eax
cmp 0x14(%ebp),%eax
jne 0x804f4e4

default

Blk 1999 @ 0x804f513 [1]
nop

je

Blk 1994 @ 0x804f4da [10]
subl $0x1,-0xc(%ebp)
cmpl $0x0,-0xc(%ebp)
jle 0x804f514

default

Blk 1995 @ 0x804f4e4 [8]
mov -0x14(%ebp),%eax
cmp 0x10(%ebp),%eax
jne 0x804f4f0

jne

default

Blk 2000 @ 0x804f514 [36]
mov -0x10(%ebp),%edx
lea -0x28(%ebp),%eax
mov %edx,%ecx
sub %eax,%ecx
mov %ecx,%eax
mov %eax,%edx
mov 0x8(%ebp),%eax
mov %edx,0x8(%esp)
lea -0x28(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f426

jle

Blk 1996 @ 0x804f4ec [4]
addl $0x1,-0xc(%ebp)

default

Blk 1997 @ 0x804f4f0 [33]
mov -0x14(%ebp),%eax
mov %eax,%edx
mov -0x10(%ebp),%eax
mov %dl,(%eax)
addl $0x1,-0x10(%ebp)
mov -0x14(%ebp),%eax
mov %eax,0x4(%esp)
movl $0x805027e,(%esp)
call 0x8048af0

jne

default

Blk 1998 @ 0x804f511 [2]
jmp 0x804f4be

default

jmp

default

Blk 2001 @ 0x804f538 [10]
sub $0x4,%esp
mov 0x8(%ebp),%eax
leave
ret $0x4

default

Blk 1443 @ 0x804d5f2 [33]
push %ebp
mov %esp,%ebp
sub $0x48,%esp
movl $0x0,-0x10(%ebp)
movl $0x804c5ac,0x4(%esp)
movl $0x2,(%esp)
call 0x8048b60

Blk 1444 @ 0x804d613 [21]
movl $0xffffffff,0x80521ec
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1445 @ 0x804d628 [8]
mov %eax,-0xc(%ebp)
jmp 0x804da48

default

Blk 1529 @ 0x804da48 [10]
cmpl $0xffffffff,-0xc(%ebp)
jne 0x804d630

jmp

Blk 1446 @ 0x804d630 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1447 @ 0x804d63b [13]
mov %eax,-0x20(%ebp)
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804d650

default

Blk 1448 @ 0x804d648 [8]
mov -0x20(%ebp),%eax
mov %eax,0x80521ec

default

Blk 1449 @ 0x804d650 [38]
mov -0x10(%ebp),%eax
mov %eax,-0x14(%ebp)
movl $0x0,-0x10(%ebp)
mov -0x20(%ebp),%eax
mov -0x14(%ebp),%edx
mov %edx,0x8(%esp)
mov %eax,0x4(%esp)
mov -0xc(%ebp),%eax
mov %eax,(%esp)
call 0x804c610

jne

default

Blk 1450 @ 0x804d676 [9]
cmp $0xa,%eax
ja 0x804da42

default

Blk 1451 @ 0x804d67f [9]
mov 0x805009c(,%eax,4),%eax
jmp *%eax

default

Blk 1528 @ 0x804da42 [6]
mov -0x20(%ebp),%eax
mov %eax,-0xc(%ebp)

ja

Blk 1452 @ 0x804d688 [17]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804da32

Blk 1453 @ 0x804d699 [14]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804da32

default

Blk 1522 @ 0x804da32 [3]
nop
jmp 0x804da42

je

Blk 1454 @ 0x804d6a7 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call
Blk 1455 @ 0x804d6b2 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da32

default

jmp

Blk 1456 @ 0x804d6ba [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1457 @ 0x804d6c5 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1458 @ 0x804d6cd [17]
mov -0x20(%ebp),%eax
mov %eax,-0xc(%ebp)
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1459 @ 0x804d6de [29]
mov %eax,-0x20(%ebp)
mov -0x20(%ebp),%eax
mov %eax,0x80521ec
lea -0x28(%ebp),%eax
mov %eax,0x4(%esp)
mov -0xc(%ebp),%eax
mov %eax,(%esp)
call 0x804ef4a

default

Blk 1460 @ 0x804d6fb [8]
test %eax,%eax
jne 0x804da35

default

Blk 1461 @ 0x804d703 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1523 @ 0x804da35 [3]
nop
jmp 0x804da42

jne

Blk 1462 @ 0x804d715 [13]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804d73a

default

Blk 1463 @ 0x804d722 [10]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804d73a

default

Blk 1466 @ 0x804d73a [11]
lea -0x28(%ebp),%eax
mov %eax,(%esp)
call 0x804f084

je

Blk 1464 @ 0x804d72c [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call

Blk 1465 @ 0x804d737 [3]
mov %eax,-0x20(%ebp)

default

default

Blk 1467 @ 0x804d745 [8]
test %eax,%eax
jne 0x804da38

default

Blk 1468 @ 0x804d74d [8]
mov -0x28(%ebp),%eax
cmp $0x1,%eax
jne 0x804d76c

default

Blk 1524 @ 0x804da38 [3]
nop
jmp 0x804da42

jne

Blk 1469 @ 0x804d755 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1471 @ 0x804d76c [8]
mov -0x28(%ebp),%eax
cmp $0x2,%eax
jne 0x804d7c0

jne

Blk 1470 @ 0x804d767 [5]
jmp 0x804da38

default

jmp

Blk 1472 @ 0x804d774 [11]
lea -0x28(%ebp),%eax
mov %eax,(%esp)
call 0x804c57b

default

Blk 1478 @ 0x804d7c0 [20]
movl $0xffffffff,0x4(%esp)
movl $0x804fc9e,(%esp)
call 0x804db5f

jne

Blk 1473 @ 0x804d77f [9]
cmp $0x4,%eax
jne 0x804da38

default

Blk 1474 @ 0x804d788 [10]
mov 0x8052274,%eax
cmp $0x1,%eax
je 0x804d79c

default

jne

Blk 1475 @ 0x804d792 [10]
mov $0x0,%eax
jmp 0x804da9f

default

Blk 1476 @ 0x804d79c [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x805003c,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

je

Blk 1539 @ 0x804da9f [2]
leave
ret

jmp

Blk 1477 @ 0x804d7bb [5]
jmp 0x804da38

default

jmp

Blk 1479 @ 0x804d7d4 [5]
jmp 0x804da38

default

jmp

Blk 1480 @ 0x804d7d9 [10]
mov 0x8052274,%eax
cmp $0x1,%eax
je 0x804d7ed

Blk 1481 @ 0x804d7e3 [10]
mov $0x0,%eax
jmp 0x804da9f

default

Blk 1482 @ 0x804d7ed [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x805003c,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

je

jmp

Blk 1483 @ 0x804d80c [17]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804da3b

default

Blk 1484 @ 0x804d81d [14]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804da3b

default

Blk 1525 @ 0x804da3b [3]
nop
jmp 0x804da42

je

Blk 1485 @ 0x804d82b [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call
Blk 1486 @ 0x804d836 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da3b

default

jmp

Blk 1487 @ 0x804d83e [34]
mov 0x8(%ebp),%eax
mov %eax,0x8052278
mov -0xc(%ebp),%eax
mov %eax,0x8052280
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1488 @ 0x804d860 [36]
mov 0x80521e4,%edx
lea -0x1c(%ebp),%eax
lea -0x20(%ebp),%ecx
mov %ecx,0xc(%esp)
mov %edx,0x8(%esp)
movl $0x804c517,0x4(%esp)
mov %eax,(%esp)
call 0x804e109

default

Blk 1489 @ 0x804d884 [21]
sub $0x4,%esp
mov -0x1c(%ebp),%eax
mov -0x18(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1490 @ 0x804d899 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1491 @ 0x804d8a4 [8]
test %eax,%eax
je 0x804da3e

default

Blk 1492 @ 0x804d8ac [5]
jmp 0x804da6f

default

Blk 1526 @ 0x804da3e [3]
nop
jmp 0x804da42

je

Blk 1536 @ 0x804da6f [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x804fdcf,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

jmp

Blk 1493 @ 0x804d8b1 [18]
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1494 @ 0x804d8c3 [34]
lea -0x30(%ebp),%eax
movl $0x5d,0xc(%esp)
movl $0x5b,0x8(%esp)
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f4ab

default

call

Blk 1495 @ 0x804d8e5 [26]
sub $0x4,%esp
mov -0x30(%ebp),%eax
mov -0x2c(%ebp),%edx
mov %eax,-0x28(%ebp)
mov %edx,-0x24(%ebp)
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1496 @ 0x804d8ff [8]
test %eax,%eax
jne 0x804da68

default

Blk 1497 @ 0x804d907 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1533 @ 0x804da68 [3]
nop
jmp 0x804da6f

jne

Blk 1498 @ 0x804d919 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1499 @ 0x804d924 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1500 @ 0x804d92c [18]
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1501 @ 0x804d93e [37]
mov 0x8052214,%edx
lea -0x30(%ebp),%eax
movl $0xa,0xc(%esp)
movl $0xa,0x8(%esp)
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f4ab

default

call

Blk 1502 @ 0x804d963 [28]
sub $0x4,%esp
mov -0x30(%ebp),%eax
mov -0x2c(%ebp),%edx
mov %eax,-0x28(%ebp)
mov %edx,-0x24(%ebp)
mov 0x8052214,%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1503 @ 0x804d97f [8]
test %eax,%eax
jne 0x804da6b

default

Blk 1504 @ 0x804d987 [11]
mov -0x24(%ebp),%eax
mov %eax,(%esp)
call 0x804f542

default

Blk 1534 @ 0x804da6b [3]
nop
jmp 0x804da6f

jne

Blk 1505 @ 0x804d992 [8]
mov %eax,(%esp)
call 0x804dbda

default

Blk 1506 @ 0x804d99a [14]
lea -0x28(%ebp),%eax
add $0x4,%eax
mov %eax,(%esp)
call 0x804f391

default

Blk 1507 @ 0x804d9a8 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1508 @ 0x804d9b3 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1509 @ 0x804d9bb [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1510 @ 0x804d9c6 [5]
mov %eax,-0x20(%ebp)
jmp 0x804d9cc

default

Blk 1512 @ 0x804d9cc [8]
mov -0x20(%ebp),%eax
cmp $0xffffffff,%eax
je 0x804d9dc

jmp

Blk 1511 @ 0x804d9cb [1]
nop

default

Blk 1513 @ 0x804d9d4 [8]
mov -0x20(%ebp),%eax
cmp $0xa,%eax
jne 0x804d9bb

default

Blk 1514 @ 0x804d9dc [8]
mov -0x20(%ebp),%eax
cmp $0xffffffff,%eax
je 0x804da41

je

jnedefault

Blk 1515 @ 0x804d9e4 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

Blk 1527 @ 0x804da41 [1]
nop

je

call
Blk 1516 @ 0x804d9ef [5]
mov %eax,-0x20(%ebp)
jmp 0x804da41

default

jmp

Blk 1517 @ 0x804d9f4 [9]
movl $0x1,-0x10(%ebp)
jmp 0x804da42

jmp

Blk 1518 @ 0x804d9fd [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

Blk 1519 @ 0x804da08 [4]
test %eax,%eax
jne 0x804da6e

default

Blk 1520 @ 0x804da0c [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x8050074,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

default

Blk 1535 @ 0x804da6e [1]
nop

jne

Blk 1521 @ 0x804da2b [7]
mov $0x2,%eax
jmp 0x804da9f

default

jmp

jmp

jmp

jmpjmp

jmp

default

default

jne

Blk 1530 @ 0x804da52 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1531 @ 0x804da5d [4]
test %eax,%eax
jne 0x804da6f

default

Blk 1532 @ 0x804da61 [7]
mov $0x0,%eax
jmp 0x804da9f

defaultjne

jmp

jmp

jmp

default

Blk 1537 @ 0x804da8e [12]
movl $0x8050088,(%esp)
call 0x8048b80

default

Blk 1538 @ 0x804da9a [5]
mov $0x2,%eax

default

default

Blk 1097 @ 0x804c517 [16]
push %ebp
mov %esp,%ebp
sub $0x28,%esp
mov 0x8052280,%eax
cmp $0xffffffff,%eax
je 0x804c53e

Blk 1098 @ 0x804c527 [23]
mov 0x8052280,%eax
mov %eax,-0xc(%ebp)
movl $0xffffffff,0x8052280
mov -0xc(%ebp),%eax
jmp 0x804c54b

default

Blk 1099 @ 0x804c53e [13]
mov 0x8052278,%eax
mov %eax,(%esp)
call 0x8048b70

je

Blk 1100 @ 0x804c54b [2]
leave
ret

jmpcall defaultgetc()

Figure 3. Small portion of a control flow graph (CFG) automatically created during Chronomorph’s offline analysis. Shaded regions are functions, instruction
listings are basic blocks, and edges are control flow edges.

F. Injecting morph triggers
We have described how Chronomorph injects SMC ca-

pabilities into third-party executables and its diversification
capabilities, but Chronomorph must also automatically connect
the Chronomorph runtime into the program’s control flow to
induce diversification of executable memory during runtime.

The injection of these morph triggers presents a trade-off:
morphing too frequently will unnecessarily degrade program
performance; morphing too seldom will allow wide windows
of attack. Ideally, morphing will happen at the speed of input,
e.g., once per server request or transaction or user input (or
some modulo thereof). The location of the morph trigger(s)
in the program’s control flow ultimately determines morph
frequency.

Figure 3 shows a portion of the CFG for the program used
in our experiment, calling out the getc() input function.
Chronomorph can inject calls to the SMC runtime at these
points, or at calling functions with stack-based buffers.

Chronomorph also includes an interface for the application
developer to add a specialized MORPH comment in the source
code, which is replaced by a morph trigger during the rewriting
phase.

G. Runtime diversification
A chronomorphic binary executes in the same manner as

its former non-chronomorphic variant, except when the morph
triggers are invoked.

When the first morph trigger is invoked, the Chronomorph
runtime loads the morph binary and seeds its random number
generator. All morph triggers induce a complete SMC diver-
sification of the in-process executable memory according to
IPCR and relocation data in the morph table:

1) The block relocation space is made writable with
mprotect.

2) The block relocation space is entirely overwritten with
nop instructions.

3) Each relocatable block is inserted to a random block
relocation space address, and its jmp instruction is
rewritten accordingly.

4) The block relocation space is made executable.
5) Each MorphPoint is traversed, and a corresponding

MorphOption is chosen at random and written. Each
operation is surrounded by mprotect calls to make
the corresponding page writable and then executable.
Future work will group MorphPoints by their ad-
dress to reduce mprotect invocations, but our results
demonstrate that the existing performance is acceptable.

We conducted an experiment with our Chronomorph proto-
type on a third-party Linux binary to characterize the diversity,
ROP attack likelihood, and performance overhead of our
Chronomorph approach. We discuss this experiment and its
results in the next section.

IV. EVALUATION

We tested our prototype tool on small target binaries of
Linux desktop applications, into which we deliberately in-
jected vulnerabilities and gadgets. Here, we discuss results for
the dc (desktop calculator) program.

The original target binary, with injected flaws, is easily com-
promised by our ROP compiler. After running the prototype
Chronomorph system, the new binary operates as described
in Figure 2, and cannot be defeated by the ROP compiler.
The dynamically-linked version of the target binary is small
(47KB), and after our tool has made it chronomorphic (with
a block relocation space of 4KB) it is 62KB.

The rewritten binary is currently able to perform approxi-
mately 1000 changes to its own code in less than one millisec-
ond. When the chronomorphic binary is not rewriting itself,
it incurs no additional performance overhead, so the overhead
is strictly the product of the time for a complete morph (e.g.,
one millisecond) and the frequency of morphs, as determined
by the injected morph triggers. For our experiments of dc that

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

Figure 4. Example memory visualizations illustrating how the executable memory space of the binary changes at runtime.

performed a short regression test, the chronomorphic version
of dc incurred an additional 2% overhead, but overhead will
depend on morph trigger placement for other binaries. Note,
however, that a more compute-intensive application might
suffer a mild degradation due to cache-misses and branch
prediction failures that might not occur in the non-morphing
version.

Figure 4 shows two bitmaps illustrating how the binary
instructions change in memory, as the program runs. Each
pixel of each image represents a single byte of the program’s
executable code segment in memory. At the top of both
images, the gray area is the nop-filled block relocation space,
with colored segments representing the blocks moved there.
Note that the colored segments are in different locations in
the two images. Below the gray area, the original binary bits
that are never changed remain black, while instructions that
are rewritten are shown in different colors, where the RGB is
computed from the byte values and nop instructions are gray.
Again, comparison of the images will show that many of the
colored areas are different between the images.

We assessed this example’s morph table and estimate that
it is capable of randomly assuming any one of approxi-
mately 10500 variants at any given time during execution. The
chronomorphic version of the statically-linked target binary (>
500KB) can assume any one of approximately 108000 variants,
using about 8ms to perform all of its rewrites. However,
those variant counts do not really accurately characterize the
probability that a ROP or BROP attack will succeed.

To do that, we must consider how many gadgets the attacker
would need to locate, and how they are morphing. The
dynamically linked target contains 250 indirect control flow
instructions, and two thirds of those potentially risky elements
are moved by the block-relocation phase. With the ROPgadget
compiler we used for this evaluation, the original application
yielded an exploit needing eight gadgets, of which six were
subjected to morphing:

• inc eax ; ret – relocated.
• int 0x80 – relocated.
• pop edx ; ret – relocated.

• pop edx ; pop ecx ; pop ebx ; ret – re-
ordered (6 permutations).

• pop ebx ; ret – relocated.
• xor eax,eax ; ret – intact.
• pop eax ; ret – relocated.
• move [edx],eax ; ret – intact.

Five of the gadgets are relocated dynamically within the block
relocation space of size |b|, and a sixth gadget is rewritten to
one of six permutations. As a result, to accurately locate all
eight of those gadgets in the chronomorphed binary, a potential
ROP attacker would have to pick correctly from approximately
6∗|b|5 alternatives. For our |b| = 4KB example, the probability
of a correct guess is approximately 1/1018, which is extremely
unlikely. Needless to say, the ROPgadget exploit was unable to
compromise the chronomorphic binary, in thousands of tests.
Furthermore, a BROP attack will have no ability to accumulate
information about gadget locations, because they change every
time a new input is received.

V. CONCLUSION AND FUTURE WORK

We have implemented an initial version of an auto-
matic Chronomorph tool and demonstrated that the resulting
chronomorphic binaries are resistant to ROP and BROP at-
tacks and retain their initial functionality. Our automatically-
generated chronomorphic binary incurred no runtime overhead
during normal operation, and only incurred one millisecond
overhead to perform over 1000 sequential rewrites to exe-
cutable memory during a morph operation. However, many
research challenges remain for safety and scalability, includ-
ing:
• Handling threading — The morphing behavior must not
affect code blocks that are in the middle of execution. For
multi-threaded applications, this will require a mechanism to
lock the threads out of morphing sections or, more simply,
to synchronize the threads in preparation for a morph. If
source code is available, adding these sorts of mechanisms
is relatively straightforward. To work on pure binaries, more
powerful data flow analysis and code injection methods will
be required.

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

• Protecting the mprotect — The system call that allows
the chronomorphing code to rewrite executable code is, of
course, a dangerous call; if an attacker could locate it and
exploit it, he could rewrite the code to do whatever he wants.
Therefore, we would ideally like the rewriting/SMC code itself
to relocate or transform at runtime; however, the code cannot
rewrite itself. We can work around this limitation with a fairly
simple trick: we can use two copies of the critical code to
alternately rewrite or relocate each other throughout runtime.
• Protecting the morph table — While chronomorphic bi-
naries do not rely on obscurity for security, an attacker’s
chances of success would be higher if he has access to the
morph table describing how the binary can change itself. Fairly
straightforward encryption techniques should allow us hide
and denature the morph table.

These challenges represent areas of future research and
development for chronomorphic programs. Our prototype tool
and preliminary analyses demonstrate that chronomorphic bi-
naries reduce the predictability of code reuse attacks for single-
threaded programs, and we believe that these avenues of future
work will improve the safety and robustness of chronomorphic
binaries in complex multi-threaded applications.

ACKNOWLEDGMENTS

This work was supported by The Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) under contract FA8650-10-C-7087. The
views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the
U.S. Government.

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[2] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[3] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.” in USENIX Security Symposium, 2011, pp. 25–41.

[4] J. Salwan and A. Wirth, “Ropgadget,” URL http://shell-
storm.org/project/ROPgadget, 2011.

[5] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 2012, pp. 571–585.

[6] S. E. Friedman, D. J. Musliner, and J. M. Rye, “Improving automated
cybersecurity by generalizing faults and quantifying patch performance,”
International Journal on Advances in Security, vol. 7, no. 3–4, in press.

[7] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection
tool to defend against return-oriented programming attacks,” in Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. ACM, 2011, pp. 40–51.

[8] H. Shacham et al., “On the effectiveness of address-space randomiza-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004, pp. 298–307.

[9] M. Franz, “E unibus pluram: massive-scale software diversity as a
defense mechanism,” in Proceedings of the 2010 workshop on New
security paradigms. ACM, 2010, pp. 7–16.

[10] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 601–615.

[11] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[12] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A
fine grained randomization approach to defend against rop attacks,” in
Network and System Security. Springer, 2013, pp. 293–306.

[13] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, 2014, pp. 227–242.

[14] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization.” in USENIX Security Symposium, 2012, pp. 475–490.

[15] M. Backes and S. Nürnberger, “Oxymoron: making fine-grained memory
randomization practical by allowing code sharing,” in Proceedings of
the 23rd USENIX conference on Security Symposium. USENIX
Association, 2014, pp. 433–447.

[16] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in pro-
gram binaries,” in Information and Communications Security. Springer,
2004, pp. 187–199.

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

