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Abstract—Data mining has gained a lot of attention in recent 
years especially with the advent of big data. In line with this, 
relational database management systems (RDBMS) have also 
become the ultimate layer in preventing malicious data access. 
However, despite the presence of traditional database security 
mechanisms, it is apparent that database intrusions still occur. 
Thus, there is an imminent need in developing a robust and 
efficient intrusion detection system (IDS) especially tailored for 
databases. Among the few studies that have been published 
with regards to the problem at hand, most researchers have 
proposed the use of data mining techniques to detect database 
anomalous behavior. However, up to this date, there has been 
no work aimed to objectively compare these various data 
mining techniques as applied to the field of database IDS. In 
this paper, we evaluate the state-of-the-art feature selection 
and data mining algorithms in the context of database IDS and 
provide a clear performance comparison of these techniques 
under common grounds. Experiments show that principal 
components analysis produces a reasonably compact and 
meaningful subset of features while graphical models like 
decision trees, random forest, and Bayesian networks yield a 
consistently high performance in detecting anomalies in 
databases. 

Keywords-intrusion detection; anomaly detection; database 
security; data mining; analysis. 

I.  INTRODUCTION 
In today’s information revolution era, data has become 

more and more indispensable to individuals, companies and 
organizations. This paved the way to developing relational 
database management systems (RDBMS), which can 
organize, contain, and protect these data from malicious 
threats. However, despite access controls and firewalls that 
are widely incorporated in these systems, it has been found 
that they are inadequate in defending against anomalous 
attacks. Moreover, network-based and host-based intrusion 
detection systems (IDS), although having been extensively 
researched and implemented in recent years, are awfully 
insufficient and unsuitable in detecting attacks specifically 
targeted to databases [1]. In particular, insider threats are as 
much of a concern as outsider threats, i.e., privileged users, if 
corrupt, can potentially cause more damage than average 
users. While many works have focused on how data can be 
protected from external attacks, there have been very few 
researches regarding the problem of protecting data from 
insider threats [2]. Because of this, there has been a growing 

awareness that a strong and effective IDS especially tailored 
for databases needs to be developed. 

An efficient and robust intrusion detection mechanism is 
crucial in building a strong database security framework. In 
line with this, a number of data mining techniques have been 
proposed to perform this task [3]. Although previous works 
have integrated data mining algorithms in their IDS 
framework, to the best of our knowledge, none of these 
works have performed an in-depth evaluation and 
performance comparison of data mining algorithms in the 
context of database intrusion detection. To address this, this 
paper provides a clear comparison and parallel evaluation of 
state-of-the-art data mining methods in the application of 
database IDS. We mine SQL query logs and exploit the 
presence of role-based access control (RBAC) mechanism, 
which has already been adopted in various commercial 
RDBMS products [4], to detect anomalies. We model normal 
access behavior through these queries along with their 
corresponding role annotations, and detect anomalies by 
tagging queries that deviate from these normal access 
behaviors.  

The rest of the paper is organized as follows: Section II 
describes the related work, followed by the discussion of 
system architecture, feature extraction, state-of-the-art 
feature selection methods, and data mining techniques in 
Section III. Section IV presents our experiment results, and 
finally, we draw our conclusion in Section V. 

II. RELATED WORK 
IDS’s are generally divided into two main categories: 

signature-based and anomaly-based. Signature-based or 
misuse-based systems make use of explicitly defined attack 
signatures and detect intrusions by blacklisting. This kind of 
system is ineffective in the face of new types of attacks, 
which, in turn, makes it susceptible to evasion methods that 
take advantage of the expressiveness of the SQL language 
[5]. On the other hand, anomaly-based systems model 
normal behavior in the form of intrusion-free logs and marks 
deviations from this normal behavior as anomalies [6]. 
Unlike the former, these systems are clearly more robust to 
unknown attacks and to malicious users who may keep on 
evolving their attack strategy. 

One of the most common way of implementing an 
anomaly-based IDS is by exploiting data mining algorithms 
as the detection mechanism. In the past decade, a number of 
data mining techniques have been proposed for the purpose 
of detecting intrusions in databases. Among these are the use 
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of data dependency and association rules [7][8][9]. Such 
methods, however, require the manual assignment of 
attribute weights; they also cannot be scaled easily to typical 
database sizes [3]. Another technique was proposed by 
Barbara et al. [10], who made use of hidden Markov models 
(HMM) to capture the change in database normal behavior 
over time. This too, however, is impractical to implement in 
large databases with many tables and attributes. 
Consequently, Ramasubramanian et al. integrated artificial 
neural networks (ANN) into their proposed IDS framework 
[11], while Pinzon et al. made use of support vector 
machines (SVM) and multilayer perceptrons (MLP) to detect 
outsider attacks [12]. These papers have focused mainly on 
the structure development of the database IDS framework, 
and did not sufficiently evaluate the underlying core 
mechanism, which is the data mining technique. 
Furthermore, Kamra et al. proposed an IDS which exploits a 
naïve Bayes (NB) classifier to detect abnormal behavior [4]. 
The latter had based their approach on the RBAC model, a 
standardized access control mechanism, building a profile for 
each role, and checking the behavior of each role with 
respect to the profile [14]. The main idea is to assign one or 
more roles to each user, and assign privileges to roles. This 
effectively minimizes the number of profiles to maintain, 
which makes it scalable to a large database user population, 
and is a much more efficient method compared to managing 
a profile for each individual user. We adopt the same 
rationale and build normal profiles through roles and SQL 
query access. 

We stress, however, that all mentioned works lack the 
necessary evaluation step of analyzing the features they have 
extracted and comparing their proposed data mining 
approach to other state-of-the-art techniques. We believe that 
merely applying an algorithm to the problem and showing its 
satisfactory results are not enough to prove the effectiveness 
and efficiency of the system—a clear comparison and 
parallel evaluation must be made to know how these 
algorithms perform in detecting intrusions under common 
grounds, most especially, in the data mining perspective. 

III. DATA MINING FOR DATABASE INTRUSION 
DETECTION 

We exploit the existence of the RBAC mechanism and 
model normal access behavior profiles through roles. Normal 
access behavior is represented by intrusion-free SQL queries, 
and they are used to train a data mining algorithm to produce 
normal profile models. We define an anomaly as an access 
behavior that deviates from these normal profiles. Given 
these profiles, clearly, we have a standard classification 
problem. 

A. Intrusion Detection System 
Figure 1 shows the intrusion detection process. Every 

time a query is issued, the profile logs are updated. During 
the training phase, normal access behavior, in the form of 
SQL queries grouped into profiles, are fed to the feature 
extractor, feature selector, and finally, the data mining 
algorithm or classifier; the classifier then produces a trained 
model out of normal access behavior. During the detection 

phase, each new query goes through the feature extractor and 
selector, and is evaluated by the trained classifier. An alarm 
is raised if the query deviates from normal profiles. We 
emphasize that role profiles should be regularly updated and 
classifier training periodically done, so as to be able to 
update the normal profile models and minimize false alarms. 

Given this setup, there are three main problems: (1) how 
to extract and represent features, (2) which of these features 
to use, and (3) which data mining technique to employ. We 
discuss the solutions to these three problems in the following 
section. 

B. SQL Query Parsing and Feature Extraction 
One SQL query corresponds to an entry in the database 

log file, which follows the SQL language syntax. For 
simplicity, we illustrate the SQL grammar with the SELECT 
command: 

 
SELECT <Projection attribute clause> 
FROM  <Projection relation clause> 
WHERE <Selection attribute clause> 
ORDER BY <ORDER BY clause> 
GROUP BY <GROUP BY clause> 
 

We parse queries in this manner, line-by-line, and extract 
features accordingly in order to transform SQL log entries 
into feature vectors that can be understood and processed by 
data mining classifiers.  

We gather proposed features from database IDS literature 
and combine them to form a more complete feature set 
[4][12][15]. We represent a query as a feature vector Q with 
seven fields: Q(SQL-CMD[], PROJ-REL-DEC[], PROJ-
ATTR-DEC[], SEL-ATTR-DEC[], ORDBY-ATTR-DEC[], 
GRPBY-ATTR-DEC[], VALUE-CTR[]), as seen in Table I. 
Query mode, c, represents the query commands SIUD: if the 
query command is SELECT, it is represented by integer 1; if 
INSERT, integer 2; if UPDATE, integer 3; and if DELETE, 
integer 4. Query length, QL, is denoted by the number of 
characters in the whole query, including spaces. The number 
of string values, SV, and numeric values, NV, indicate how 
many times these values appear in the selection clause. The 
same logic is applied with the number of JOINs, J, and 
ANDs/ORs, AO. 

 

 
Figure 1.  Flow of the IDS process. 
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TABLE I.  LIST OF EXTRACTED FEATURES 

Vector field Description Feature elements 

SQL-CMD[] 
Command 

features 
query mode, c 

query length, QL 

PROJ-REL-
DEC[] 

Projection 
relation 
features 

Number of projected relations, PR 
Position of projected relations, 

PRID 

PROJ-ATTR-
DEC[] 

Projection 
attribute 
features 

(PA, PA[], PAID[])a 

SEL-ATTR-
DEC[] 

Selection 
attribute 
features 

(SA, SA[], SAID[])a 

ORDBY-
ATTR-DEC[] 

ORDER BY 
clause features (OA, OA[], OAID[])a 

GRPBY-
ATTR-DEC[] 

GROUP BY 
clause features (GA, GA[], GAID[])a 

VALUE-
CTR[] 

Value counter 
features 

Number of string values, SV 
Length of string values, SL 

Number of numeric values, NV 
Number of JOINs, J 

Number of ANDs and ORs, AO 
a. Convention (NA, NA[], NAID[]): 

NA – number of attributes in a particular clause 
NA[] – number of attributes in a particular clause counted per table 

NAID[] – position of the attributes present in a particular clause, represented in decimal 

In addition, the number of relations, PR, indicates how 
many tables are present in a specific clause. The position of 
relations, PRID, is represented by a binary string, wherein 
each bit stands for a table in the database schema. If a table is 
present in the query, its bit representation is 1; if it is absent, 
it is represented by bit 0. Wu et al. stated that different input 
encoding schemes (binary or decimal) result to different 
algorithm performance results [16]. Decimal encoding was 
found to be more robust to noise and decreases 
computational complexity; thus, to get the final value of the 
ID feature, we convert the binary string into its decimal 
form. The same logic is applied to the mapping of the 
positions of attributes given a specific clause. Thus, all ID 
features are represented by a single decimal value.  

Extending the parsing and feature extraction method to 
other commands such as INSERT, UPDATE, and DELETE is 
clearly straightforward. A total of 21 main features are 
extracted for every query in the SQL log, with some features 
(e.g., ID features) branching out to sub-features that depend 
on the number of tables and attributes in the database 
schema. For example, for a schema consisting of 2 relations 
with 4 attributes each, the resulting number of features will 
be 45. 

C. Feature Selection Methods 
Selecting good feature sets improves performance, 

eliminates noise, and enables faster and more accurate 
detection [17]. We use five feature selection methods to 
evaluate the extracted features, and they are categorized into 
two groups: ranking methods and filter methods. 

Ranking methods output the complete feature set sorted 
from highest to lowest according to a certain evaluation 
measure. Since the top variables are considered to be the 
most discriminant features, a certain threshold should be 
determined to cut off features that are considered to have 
little or no contribution to the classification process. One of 

the most common evaluation measure when ranking features 
is information gain (IG). It is the expected reduction in 
entropy caused by partitioning a query data set according to a 
certain feature. Given a query data set S with K different 
roles/classes, entropy is given by: 
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where s is the total number of queries in the data set and sk is 
the number of queries in class k. We get the IG of feature Y 
which can partition S into M subsets by, 
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where the second term is the conditional entropy, I(S|Y), and 
sm is the number of queries in subset m.  

An improved variant of IG is gain ratio (GR), which 
overcomes the bias of the former towards features that can 
have a large number of possible values. GR applies a kind of 
normalization to IG by using the information value 
corresponding to M outcomes on feature Y, i.e., 
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Dividing (1) by (3) gives the GR of feature Y. 
Principal components analysis (PCA) is an unsupervised 

ranking feature selection technique which can transform 
query data set S into a new coordinate system and produce a 
set of components p ∈ P wherein the top components, called 
principal components (PCs), represent the greater part of the 
variance of S. With this, we can easily eliminate the tailing 
p’s (those that does not contain much of the variance of the 
S). Scaling and standardizing is often applied before PCA to 
simplify the latter’s calculation. 

In contrast, filter methods automatically output a set of 
chosen features based on a certain evaluation measure. One 
of these methods, best first search (BFS), is a combination of 
forward selection and backward elimination which can 
greedily search through the query feature space. In the case 
when performance starts to drop, it can backtrack previous 
feature subsets (those with good enough performance) and 
start again from there. However, for a high dimensional 
query data set S (which depends on how big the database 
schema is), BFS can be computationally expensive. 

Genetic algorithm (GA) is another filter method based on 
the principle of natural selection, which randomly creates a 
population N of possible feature subsets n (any combination 
of fields from Q) and evaluates each one by a certain 
measure (e.g. correlation). GA runs for several generations, 
each time creating a new N by performing crossover and 
mutation. This method has been proven to be very effective 
in practice [11]. 
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D. Data Mining Algorithms 
We consider the following state-of-the-art classifiers 

which have been successfully applied in the intrusion 
detection domain, namely: naïve Bayes, K-nearest neighbors, 
artificial neural networks and multilayer perceptrons, support 
vector machines, Bayesian networks, J48 decision trees, and 
random forest [4][11][12][13][19][20][21]. 

Naïve Bayes (NB) is a simple classifier with strong 
feature independence assumptions. Given a new query q ∈ Q 
with a set of features Y = {y1,…,yd}, and k roles/classes, we 
compute the posterior probability of class membership, i.e., 
the probability that Y belongs to role rk, by, 

  .)|()()|(
1

Õ
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µ
d

i
kikk ryprpYrp  (4) 

Using (4), we can classify q into a role rk that achieves the 
highest posterior probability. 

Another method based on Bayes theorem is Bayesian 
network (BN), a probabilistic graphical model represented 
by a directed acyclic graph, wherein nodes signify the query 
features and edges represent the dependencies among them. 
A BN is learned by obtaining the log-likelihood, which is the 
probability of the data given the network, i.e., 

  åå=
e d

iiyiqpQL ),,|(log)|(log qpQ  (5) 

where e is the number of queries in Q, qyi is a feature 
instance of qe, πi is the set of parent nodes of node yi, and θi ∈ Θ is p(yi| πi). 

Artificial neural network (ANN) is a computational 
model based on the concept of human biological neurons. 
Weights between the so-called neurons, or nodes, are learned 
based on the query feature inputs; learning is done with the 
use of gradient descent and backpropagation algorithm. 
Multilayer perceptron (MLP) is a feedforward variant of 
ANN. 

Support vector machines (SVM) are based on the concept 
of maximum margin hyperplanes that define a decision 
boundary between two classes/roles. They benefit from high 
dimensional feature spaces; high dimensionality means that 
there are more possible configurations that can be done in the 
feature space, which can produce more accurate results. 

J48 decision trees are one of the most common 
techniques in data mining that have been successfully used in 
various fields. It makes use of tree-like graph decisions, 
selecting query features for every node based on (2). 
Although prone to overfitting and feature bias, it can achieve 
high performance with very little effort.  

Accordingly, random forest (RF) is an ensemble model 
based on decision trees. It exploits bagging and random 
feature selection to create numerous simple trees to vote for 
the most popular class/role, and is considered to be better in 
performance and speed than plain decision trees. 

Lastly, K-nearest neighbors (KNN) is an unsupervised 
classifier that groups new queries based on a distance 

function. Given a new query q, KNN will find the K nearest 
query data points with respect to q, the most popular class of 
the nearest neighbors being the inferred role of q. 

IV. EXPERIMENTS 

A. Benchmark Database 
We have adopted the TPC-E benchmark database schema 

structure and its transactions for all our experiments. TPC-E 
is a database that simulates the online transaction processing 
(OLTP) workload of a brokerage firm [18]. Customers, 
brokers, and the market initiate read/write and read-only 
transactions against the database, which consists of 33 tables, 
an overall count of 191 attributes, and 11 standard 
transactions. 

B. Synthetic Data Set Generation 
We treat one TPC-E transaction as one role, and we set 

privileges of a role based on which tables and attributes the 
transactions are authorized to access, with the corresponding 
number of times they appear in the transaction. We 
emphasize, however, that depending on the context, one role 
may contain several transactions at once. 

We employed the transaction database footprint and 
pseudo-code found in [18]. Each role has a set of specific 
tables T (and its corresponding attributes A) that it is allowed 
to access, as well as a set of commands C that it is allowed to 
execute. We specify the following probabilities for each role: 
(1) the probability of using a command c  C given a role r, 
p(c|r), (2) the probability of projecting a table t  T given a 
command c and a role r, p(Pt|c,r), (3) the probability of 
selecting a table t given a set of projected tables PT, 
command c, and role r, p(St|PT,c,r), (4) the probability of 
projecting an attribute a  A given a projected table Pt, 
command c, and role r, p(Pa|Pt,c,r), (5) the probability of 
selecting an attribute a given a selected table St, command c, 
and role r, p(Sa|St,c,r), (6) the probability of including a 
random string or numeric value v  V in the selection clause 
given a command c and role r, p(vsn|c,r), (7) the probability 
of including a JOIN J given a command c and role r, p(J|c,r), 
and (8) the probability of including an AND or OR given a 
command c and role r, p(AO|c,r). 

Note that probabilities 2 to 6 are uniformly distributed 
among a role’s corresponding set of tables T, projected tables 
PT, projected table Pt, selected table St, and list of random 
strings and numeric V, respectively. Probability 1 is based on 
a set of commands C (may compose of any combinations of 
SIUD) that a role/transaction is allowed to issue. For a 
certain role, probability 7 means that a query can contain a 
JOIN or not, while probability 8 may contain a combination 
of AND and OR, AND only, OR only, or none at all [18]. 

We generate 1,000 queries for each role, labeling each 
query with its corresponding class, for a total of 11,000 
queries or training samples for our normal query log data set. 
Since we create the models with insider threats in mind, 
anomalous queries are generated using the same probability 
distribution as that with normal queries, only with role 
information negated. That is, if the role annotation for a 
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certain normal query is class 1, we change it to any other role 
other than class 1, effectively making it anomalous [4]. 

C. Results 
From this point on, we will refer to features describing 

the number of elements present in a query as counting 
features, and those that represent the position of elements as 
ID features.  

The number of features generated largely depends on the 
number of tables and attributes in the schema. In the case of 
TPC-E, a total of 277 features were extracted. 

Figure 2 shows the average merit based on IG and GR 
measures. The line indicates the threshold we adopted to get 
the feature subset for IG and GR. IG produced 12 features 
while GR produced 144 features. Observing the variables 
chosen by both measures, IG preferred counting features 
(those having more possible values), while GR produced a 
more spread-out merit graph, noticeably preferring pairs of 
counting by table and ID features while removing string 
features (SV and SL). 

We determine the threshold for PCA by plotting the 
eigenvalues, as shown in Figure 3. Optimal coordinates 
method produced a subset of 13 features (PCA3), while 
parallel analysis yielded 63 features (PCA2) [22]. We obtain 
an additional subset by getting 99% of the variance of the 
data (113 features, PCA1) for comparison purposes. 

For the filter methods, BFS yielded 19 features using 
correlation as the evaluation measure. Consequently, GA  

 
Figure 2.  IG and GR values in terms of average merit (y-axis); features 

(x-axis). 

was run for 20 generations with a population size of 20 
individuals, crossover rate of 0.6, mutation rate of 0.033 and 
correlation as evaluation measure. GA chose a total of 68 
features, which are noticeably more diverse than the ones 
chosen by IG, GR, and BFS. 

The performances of classifiers in terms of false positive 
(FP) and false negative (FN) error rates are shown in Table 
II. False positives are those queries that should have been 
classified as normal but tagged as abnormal, while false 
negatives are those that should have been identified as 
anomalous but were categorized as normal. The Weka toolkit 
was used in all our experiments and all parameters were left 
to their default settings [23].  

Based on the resulting feature subsets, it can be observed 
that counting features are vital to obtain a satisfactory 
classification performance (as seen in the performance of the 
IG subset). However, they are not enough on their own. PCA 
came out to be the best feature selection technique among the 
ones employed—from 277 features, it reduced the data set to 
113 features (threshold of 99% variance, PCA1), yielding the 
overall best average performance. Halving PCA1 to form 
PCA2 does not have any significant effect on the FP and FN 
rates, and even when only one-third of PCA2 is retained 
(PCA3), it still yielded above average performance. This 
proves that PCA effectively eliminates most of the noise in  

 
Figure 3.  Eigenvalues, parallel analysis, and optimal coordinates plot. 

TABLE II.  PERFORMANCE OF CLASSIFIERS AND CORRESPONDING NUMBER OF FEATURES IN DECREASING ORDER 

No. of 
features 

GR PCA1 GA PCA2 BFS PCA3 IG Avg. 
144 113 68 63 19 13 12  

Classifiers FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN 
NB 0.153 0.008 0.227 0.014 0.244 0.011 0.248 0.012 0.274 0.017 0.224 0.012 0.389 0.024 0.251 0.014 

KNN 0.119 0.006 0.141 0.008 0.128 0.006 0.126 0.007 0.140 0.009 0.107 0.004 0.242 0.012 0.143 0.007 
MLP 0.143 0.007 0.079 0.003 0.128 0.007 0.082 0.004 0.166 0.008 0.104 0.007 0.232 0.013 0.133 0.007 
SVM 0.574 0.051 0.095 0.004 0.449 0.034 0.103 0.005 0.455 0.034 0.103 0.004 0.485 0.039 0.323 0.024 
BN 0.064 0.002 0.131 0.007 0.083 0.004 0.168 0.010 0.089 0.005 0.160 0.009 0.097 0.004 0.113 0.006 
J48 0.067 0.003 0.113 0.005 0.086 0.003 0.118 0.006 0.092 0.004 0.117 0.006 0.091 0.004 0.098 0.0044 
RF 0.055 0.003 0.075 0.004 0.079 0.003 0.078 0.005 0.086 0.003 0.079 0.004 0.126 0.006 0.083 0.0039 

Avg. 0.168 0.012 0.123 0.006 0.171 0.010 0.132 0.007 0.186 0.011 0.128 0.007 0.237 0.015  
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the data, at the same time reducing its dimensions 
significantly. GA is second in line to PCA (in terms of 
performance and number of features used), followed closely 
by BFS. 

Among the classifiers that we have evaluated, graphical 
models like J48, RF, and BN noticeably performed better 
than the other algorithms. This may be due to the fact that 
SQL language syntax has an inherent tree-like structure—a 
simple attribute that these classifiers are most likely to 
exploit. Conversely, SVM yielded the worst performance, 
producing a satisfactory result only with the PCA feature 
subsets. It is clear that the application of special kernel 
methods is necessary to obtain acceptable results with SVM. 
Moreover, NB is the second worst performer, having yielded 
the highest FP and FN rates for all PCA subsets. In terms of 
algorithm speed, SVM and MLP are significantly and 
impractically slower in build time compared to other 
classifiers, while J48 and RF yielded the fastest detect times. 

V. CONCLUSION AND FUTURE WORK 
We have shown a clear, side-by-side comparison of data 

mining feature selection methods and classifiers as applied to 
the context of database IDS. PCA demonstrated exceptional 
performance in reducing noise and dimension in the data set, 
while graphical models, especially RF, came out to be the 
best suited classifiers for the intrusion detection task, 
exhibiting very reasonable FP and FN trade-offs and fast 
detection speed. We hope that these results will provide 
researchers with a more concrete direction towards designing 
a more efficient database IDS. 

Although we have covered many algorithms in this work, 
there are still a lot of subjects to explore. Future works will 
include considering the sensitivity of the tables and attributes 
in the database. We are also considering on building an 
ensemble model to be able to develop a stronger classifier 
out of simple ones. 
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