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Abstract— PageRank is a well-known algorithm that has been 

used to understand the structure of the Web. In its classical 

formulation the algorithm considers only forward looking 

paths in its analysis- a typical web scenario. We propose a 

generalization of the PageRank algorithm based on both out-

links and in-links. This generalization enables the elimination 

network anomalies- and increases the applicability of the 

algorithm to an array of new applications in networked data. 

Through experimental results we illustrate that the proposed 

generalized PageRank minimizes the effect of network 

anomalies, and results in more realistic representation of the 

network.  

Keywords- Search Engine; PageRank; Web Structure; Web 

Mining; Spider-Trap; dead-end; Taxation;Web spamming. 

  INTRODUCTION  I.

With the rapid growth of the Web, users can get easily 
lost in the massive, dynamic and mostly unstructured 
network topology. Finding users’ needs and providing useful 
information are the primary goals of website owners. Web 
structure mining [1],[2],[3] is an approach used to categorize 
users and pages. It does so by analyzing the users’ patterns of 
behavior, the content of the pages, and the order of the 
Uniform Resource Locator (URL) that tend to be accessed. 
In particular, Web structure mining plays an important role 
in guiding the users through the maze. The pages and 
hyperlinks of the World-Wide Web may be viewed as nodes 
and arcs in a directed graph. The problem is that this graph is 
massive, with more than a trillion nodes, several billion 
links, and growing exponentially with time. A classical 
approach used to characterize the structure of the Web graph 
through PageRank algorithm, which is the method of finding 
page importance.  

The original PageRank algorithm [3],[4],[5] one of the 
most widely used structuring algorithms, states that a page 
has a high rank if the sum of the ranks of its backlinks is 
high. Google effectively applied the PageRank algorithm, to 
the Google search engine [4]. Xing and Ghorbani [6] 
enhanced the basic algorithm through a Weighted PageRank 
(WPR) algorithm, which assigns a larger rank values to the 
more important pages rather than dividing the rank value of a 
page evenly among its outgoing linked pages. Each outgoing 
link page gets a value proportional to its popularity (its 
number of in-links and out-links). Kleinberg [7] identifies 
two different forms of Web pages called hubs and 
authorities, which lead to the definition of an iterative  

 

algorithm called Hyperlink Induced Topic Search (HITS) 
[8]. 

Bidoki and Yazdani [9] proposed a novel recursive 
method based on reinforcement learning [10] that considers 
distance between pages as punishment, called 
“DistanceRank” to compute ranks of web pages in which the 
algorithm is less sensitive to the “rich-get-richer” problem 
[9],[11] and finds important pages faster than others. The 
DirichletRank algorithm has been proposed by X. Wang et al 
[12] to eliminate the zero-one gap problem found in the 
PageRank algorithm proposed by Brin and Page [4]. The 
zero-one gap problem occurs due to the ad hoc way of 
computing transition probabilities. They have also proved 
that this algorithm is more robust against several common 
link spams and is more stable under link perturbations. Singh 
and Kumar [13] provide a review and comparison of 
important PageRank based algorithms.  

As search engines are used to find the way around the 
Web, there is an opportunity to fool search engines into 
leading people to particular page. This is the problem of web 
spamming [14], which is a method to maliciously induce 
bias to search engines so that certain target pages will be 
ranked much higher than they deserve. This leads to poor 
quality of search results and in turn reduces the trust in the 
search engine. Consequently, anti-spamming is a big 
challenge for all the search engines. Earlier Web spamming 
was done by adding a variety of query keywords on page 
contents regardless of their relevance. In link spamming [15], 
the spammers intentionally set up link structures, involving a 
lot of interconnected pages to boost the PageRank scores of a 
small number of target pages. This link spamming does not 
only increasing the rank gains, but also makes it harder to 
detect by the search engines. It is important to point out that 
link spamming is a special case of the spider-traps [16]. At 
the present time, the Taxation method [16] is the most 
significant way to diminish the influence of the spider-traps 
and dead-ends by teleporting the random surfer to a random 
page in each iteration. 

This article has two main contributions: First, we present 
a generalized formulation of the PageRank algorithm based 
on transition probabilities, which takes both in-link and out-
links of node and their influence rates into account in order 
to calculate PageRanks. This would permit the application of 
this approach to a wide variety of network problems that 
require consideration of the current state values (and 
PageRank) as a function of past state transitions. Second, we 
describe a novel approach of adding virtual edges to a graph 
that permits more realistic computations of PageRank, 
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negating the effect of network anomalies such as spider-traps 
and dead-ends. 

The paper is organized as follows. In Section 2, a brief 
background review of the basic concepts for computing 
PageRanks based on transition probabilities is presented and 
the problems related to network anomalies such as spider-
traps and dead-ends together with their solution method 
based on Taxation is stated. In Section 3, we introduce the 
proposed general approach for determining PageRank. In 
Section 4, we apply our PageRank method to a typical graph 
with all types of possible structures and inter/ intra-
correlations and compare our results with the baseline 
technique. In Section 5, we conclude by describing the 
contribution of our method and discuss its results. 

 OVERVIEW ON THE PAGERANK APPROACH BASED ON II.

TRANSITION PROBABILITIES  

PageRank is a function that assigns a real number to each 
page in the Web. We begin by defining the basic, idealized 
PageRank, and follow it by modifications that are necessary 
for dealing with some real-world problems concerning the 
structure of the Web. Imagine surfing the Web, going from 
page to page by randomly (random surfer) choosing an 
outgoing link from one page to get to the next. This can lead 
to dead-ends at pages with no outgoing links, or cycles 
around cliques of interconnected pages. This theoretical 
random walk is known as a Markov chain or Markov process 
[16],[17].  

In general, we can define the transition matrix of the Web 
to describe what happens to random surfers after one step. 
This matrix M has n rows and columns, if there are n pages. 

The element 
ijm in row i and column j has value 1/k if page j 

has k arcs out, and one of them is to page i. Otherwise, 

0ijm = . The probability distribution for the location of a 

random surfer can be described by a column vector whose 
jth component is the probability that the surfer is at page j. 
This probability is the (idealized) PageRank function. 

Suppose we start a random surfer at any of the n pages of 

the Web with equal probability. Then the initial vector 
0

v  

will have 1/n for each component. If M is the transition 
matrix of the Web, then after one step, the probability 

distribution of the surfer place will be 
0

Mv , after two steps 

it will become ( ) 2

0 0M Mv M v= , and so on. In general, 

multiplying the initial vector 0v  by M a total of i times will 

give us the distribution of the surfer after i steps. 
This sort of behavior is an example of a Markov 

processes. It is known that the distribution of the surfer 
approaches a limiting distribution v that satisfies v Mv= , 

provided two conditions are met: 

1) The graph is strongly connected; that is, it is possible 

to get from any node to any other node. 

2) There are no dead-ends: nodes that have no arcs out. 
In fact, because M is stochastic, meaning that each of its 

columns adds up to 1, v is the principal eigenvector. Note 
also that, because M is stochastic, the eigenvalue associated 
with the principal eigenvector is 1.The principal eigenvector 

of M tells us where the surfer is most likely to be after 
infinite steps i. The intuition behind PageRank is that the 
more likely a surfer is to be at a page, the more important the 
page is. We can compute the principal eigenvector of M by 

starting with the initial vector 0v  and multiplying by M some 

number of times, until the vector we get shows little change 
at each round. In practice, for the Web itself, 50–75 
iterations are sufficient to converge to within the error limits 
of double-precision arithmetic. 

A. Structure of the Web 

It would be nice if Web pages were strongly connected. 
However, it is not the case in practice. An early study of the 
Web found it to have the structure shown in Figure 1. There 
is a large strongly connected component (SCC), but there 
were several other portions that were almost as large [18]. 

• The in-component, consisting of pages that could 
reach the SCC by following links, but were not 
reachable from the SCC. 

• The out-component, consisting of pages reachable 
from the SCC but unable to reach the SCC. 

• Tendrils, which are of two types. Some tendrils 
consist of pages reachable from the in-component 
but not able to reach the in-component. The other 
tendrils can reach the out-component, but are not 
reachable from the out-component. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  The “bowtie” representation of the Web [22] 

 
In addition, there were small numbers of pages found 

either in 

• Tubes, which are pages reachable from the in-
component and able to reach the out-component, but 
unable to reach the SCC or be reached from the 
SCC. 

• Isolated components that are unreachable from the 
large components (the SCC, in- and out-
components) and unable to reach those components. 
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As a result, PageRank is usually modified to prevent such 
anomalies. There are, in principle, two problems we need to 
avoid. First, is the dead-end - a page that has no links out- 
which will bring a zero column in the forward transition 
matrix, and consequently it will cause all PageRanks to 
become zero. The second problem is groups of pages that all 
have out-links but they never link to any other pages. These 
structures are called spider-traps. Both these problems are 
solved by a method called “taxation,” where we assume a 
random surfer has a finite probability of leaving the Web at 
any step, and new surfers are started at each page. 

B. Taxation 

To avoid the problem of spider-trap or dead-end, we 
modify the calculation of PageRank by allowing each 
random surfer a small probability of teleporting to a random 
page, rather than following an out-link from their current 
page. The iterative step, where we compute a new vector 

estimate of PageRanks 
'

v from the current PageRank 

estimate v and the transition matrix M is 

 
'

(1 ) /v Mv e nβ β= + −  (1) 

Where β is a chosen constant, usually in the range 0.8 to 
0.9, e is a vector of all 1’s with the appropriate number of 
components, and n is the number of nodes in the Web graph. 
The term βMv represents the case where, with probability β, 
the random surfer decides to follow an out-link from their 
present page. The term (1 − β)e/n is a vector each of whose 
components has value (1−β)/n and represents the 
introduction, with probability 1 − β, of a new random surfer 
at a random page. 

Although by employing this formulation, the effect of 
spider-trap and dead-end is controlled and the PageRank is 
distributed to each of other nodes, components of spider-trap 
still are managed to get most of the PageRank for 
themselves. Therefore, the PageRanks of nodes are still 
unreasonable. For instance, in Figure 2. , C is a simple spider 
trap of one node and the transition matrix is as follows: 

 

(2) 

 

Figure 2.  A graph with a one-node spider trap 

If we perform the usual iteration to compute the 
PageRank of the nodes, we get 

 

(3) 

As predicted, all the PageRank is at C, since once there a 
random surfer can never leave. To avoid the problem 
illustrated, we modify the calculation of PageRank by the 
Taxation method. Thus, the equation for the iteration 
becomes 

 

(4) 

Notice that we have incorporated the factor β into M by 
multiplying each of its elements by 4/5. The components of 
the vector (1 − β)e/n are each 1/20, since 1 − β = 1/5 and n= 
4. The first iteration: 

 

(5) 

By being a spider trap, C has still managed to get more 
than half of the PageRank for itself. However, the effect has 
been limited, and each of the nodes gets some of the 
PageRank. 

 A GENERALIZED METHOD  III.

In web arena, a link by important pages will impact on 
significance of a page. However, there are other networks in 
which not just in-link but out-links are also weighty. For 
instance, in social networks, connecting to eminent people 
(out-link) is as crucial as being connected by key persons (in-
link) in evaluating the degree of prominence of a member. 
Therefore, sometimes sorting and grading nodes of a graph 
only based on in-links will result in an incorrect evaluation. 
So, we take out-links and the rate of their impacts with 
respect to in-links into our computations.  

A. Algorithm 

Suppose we start as a random surfer at any of the n pages 
of the Web with equal probability. Then the initial vector 

will have 1/n for each component. If 
f

M  is the forward 

transition matrix of the Web, then after one forward step, the 
probability distribution of the next surfer place will be 

0f
M v  and if b

M  is the backward transition matrix of the 

Web, then after one backward step, the probability 

distribution of the previous surfer place will became 
0b

M v . 

Also, we consider the importance weight factor of both in-
links ( β ) and out-links (1 β− ). 

Note that equation ( )( )1f bM Mβ β+ − is the linear 

combination of both next and previous surfer place, and it is 
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also stochastic because it is a linear combination of two 
stochastic matrices. So its eigenvalue associated with the 
principal eigenvector will be 1. The principal eigenvector of 

( )( )1
f b

M Mβ β+ −  tells us where the surfer is most likely 

to be after a long time. Recall that the intuition behind 
PageRank is that the more likely a surfer is to be at a page, 
the more important the page is. We can compute the 

principal eigenvector of ( )( )1
f b

M Mβ β+ −  by starting 

with the initial vector 0v  and multiplying by 

( )( )1
f b

M Mβ β+ −  some number of times, until the 

vector we get shows little change at each round. Considering 

this matrix instead of 
f

M has two advantages: First, in 

computing PageRank of a node, the importance of its 
neighbors with both types of relationship (out-link and in-

link) and their arbitrary impact rates (parameter β ) have 

taken into account. Second, by using this method, we do not 
have the problems about dead-ends and spider-traps because 
we take the linear combination of entering probability from 
and exiting probability to other nodes in our computation. 
Therefore, in case 0β ≠  and 1β ≠ , the columns related to 

dead-ends are not completely zero. Likewise, for the spider-
trap columns, probabilities related to other nodes are not zero 
and they cannot absorb more unreasonable rank to 
themselves. About cases 1β = or 0β = , in the following, we 

proposed another idea (adding virtual edges) by which the 
random surfer can exit from dead-ends and spider-traps. 

The proposed algorithm is as follows: 
 
Step 1: finding Forward and Backward transition 

matrices. 
Step 2: considering appropriate formula and keep 

iterating until it gets converged. 
 
In this step, three possible conditions can exist which are 

characterized as following: 
Case 1: 0β ≠  and 1β ≠ . It means that both forward 

and backward trends are important to calculate 
PageRanks. Thus, we only need to calculate the 

eigenvector of matrix ( )( )1
f b

M Mβ β+ − . 

Case 2:  So, we need only the forward matrix to 
calculate PageRanks. If there are not a dead-end or a 
spider-trap in the graph, the vector of PageRanks is 
the eigenvector of 

f
M . If there are dead-ends or 

spider-traps, the eigenvector of 
f

M assigns most of 

PageRank to spider-traps and dead-ends that is not 
real. Thus we add enough virtual out-links to remove 
these spider and dead-end situations. For each dead-
end and spider-trap, we will consider a virtual edge 
in which source of them are dead-ends and one 
member of each spider-traps, respectively. Also, 
their destinations can be any arbitrary nodes, 
excepting those of dead-end and spider-traps (see 
Figure 3.  Green color edges).  Hence, If assumed v 

is eigenvector of matrix '

fM (forward transition 

matrix after adding virtual links), in order to find 
final PageRanks of vertices, we have to remove 
effect of these virtual links on PageRanks by 
calculating the following equation 

'( )f fv M M v− − .  

Case 3: 0β = . Here only backward trend (out-links) is 

important to consider for calculation of PageRanks. 
So we only need backward matrix to determine 
PageRanks. If there are not in-component or in-
tendril vertices in the graph, vector of PageRanks is 

eigenvector of 
b

M . If there are in-component or in-

tendril vertices, eigenvector of 
b

M assigns most of 

PageRank to in-component and in-tendril vertices, 
which is not real. Thus we add enough virtual in-
links to remove these in-component and in-tendril 
situations then after computing eigenvector of new 

backward matrix '

bM , we have to remove effect of 

these virtual links on PageRanks (see Figure 3. Red 
color edges). If suppose v is eigenvector of matrix 

'

bM (backward transition matrix after adding virtual 

links). The final PageRanks of  vertices would be 
'( )b bv M M v− − .

    
Step 3: normalize PageRank vector to find 

distribution probability of vertices. 
As shown below, if we consider a matrix include the 

importance of pairwise comparison of vertices (A), 
eigenvector of this matrix would be distribution probability 
of vertices. 

Note that, W is vector distribution probability of vertices 
that sum of its components is 1 and also 

i
w is amount of 

vertex i‘s importance. So, instead of 
i jw w in matrix A, we 

let 
i j

p p , which 
i

p , 
jp are PageRanks of nodes i, j. We 

calculate eigenvector of matrix A and to get the distribution 
probability of vertices.  

(6) 
 

B. Biased Random Walk  

In order to bias the rank of all nodes with respect to a 
special subset of nodes, we use the Biased Random Walk 
method in which the random surfer, in each iteration, will 
jump on one of the member of the subset with equal 
probability. Its most important application is topic-sensitive 
PageRank [19] in search engines.  The consequence of this 
approach is that random surfers are likely to be at an 
identified page, or a page reachable along a short path from 

1β =
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one of these known pages, because the pages they link to are 
also likely to be about the same topic. The mathematical 
formulation for the iteration that yields topic-sensitive 
PageRank is similar to the equation we used for general 
PageRank. The only difference is how we add the new 
surfers. Suppose S is a set of integers consisting of the 
row/column numbers for the pages we have identified as 

belonging to a certain topic (called the teleport set). Let 
s

e

be a vector that has 1 in the components in S and 0 in other 
components. Then the topic-sensitive PageRank for S is the 
limit of the iteration  

                       (7) 

Here, as usual, M is the transition matrix of the Web, and 
|S| is the size of set S. 

 THE EXPERIMENT IV.

Figure 3.  is a graph with 20 vertices that include all 
kinds of network artifacts mentioned in section 2. 

SCC:{1,2,4,5,7,8,9,10,15,17,18,20}     TUBE:{16-6} 

OUT-COMPONENT:{6,11,12} IN-COMPONENT:{3,13,16} 

OUT-TENDRIL:{14}                               IN-TENDRIL:{19} 

 
Figure 3.  Synthetic Graph Example 

In case 2 ( 1β = ), there are a dead-end situation on 

vertex 14 and a spider-trap situation on set of vertices {6, 11, 
12}, and in order to remove the dead-end and the spider-trap 
consider 2 virtual out-link (green edges) on these vertices. 
Also in

 
case 3 ( 0β = ), there are in-component situation on 

set of vertices {3, 13, 16}, and in order to remove negative 
PageRank consider 2 virtual in-link (red edges) on these 
vertices. For completeness, we also compute the biased 
random walk on case1. Comparing the results with case1,  
TABLE I. , it is clear that PageRanks are biased on set S={2, 
4, 7, 18}. As we expect, rank of nodes of set S and nodes that 
are pointed by set S get higher ranks. 

 
 

TABLE I.  PAGERANK VECTOR AT CASES 1, 3, AND BIASED RANDOM 

WALK. 

Results of case 1 (
0.7β = ) 

Results of the biased 

random walk on case1 

Results of case 3 (
0β = ) 

Nodes 

number 
PageRank 

Nodes 

number 
PageRank 

Nodes 

number 
PageRank 

11 0.945 5 0.9937 17 0.57916 

12 0.2177 11 0.9878 10 0.38611 

6 0.1767 18 0.9703 13 0.36037 

9 0.0703 1 0.9432 1 0.27028 

10 0.0632 7 0.9013 3 0.27028 

5 0.0601 15 0.8513 5 0.25741 

1 0.0543 2 0.7444 9 0.25741 

20 0.0527 4 0.6847 7 0.24454 

15 0.0495 6 0.65 4 0.19305 

17 0.045 8 0.6414 19 0.19305 

8 0.036 9 0.5045 16 0.18018 

7 0.029 20 0.4878 2 0.16731 

4 0.0272 12 0.3659 18 0.16731 

18 0.025 10 0.3204 8 0.1287 

3 0.0237 17 0.2976 15 0.1287 

13 0.023 3 0.1628 20 0.1287 

16 0.0223 13 0.1144 12 1.14E-17 

2 0.0216 16 0.0923 6 7.34E-18 

14 0.0081 19 0.0386 11 0 

19 0.0068 14 0.035 14 0 

 

TABLE II.  COMPARING RESULTS OF THE  ALGORITHM AND TAXATION 

METHOD TO AVOID ANOMALIES IN CASE 2 ( 1β = ) 

Using virtual edges  Taxation 

nodes no PageRank nodes no PageRank 

9 0.508068237 11 0.83086 

10 0.508068237 9 0.25352 

20 0.381051178 10 0.22903 

2 0.265581124 20 0.19944 

17 0.254034118 15 0.15968 

15 0.254034118 6 0.1495 

5 0.173205081 5 0.14569 

18 0.161658075 17 0.14155 

8 0.15011107 8 0.11547 

1 0.138564065 1 0.11197 

6 0.138564065 7 0.08907 

7 0.127017059 12 0.08748 

11 0.103923048 18 0.07921 

12 0.069282032 2 0.06521 

4 0.046188022 4 0.05567 

3 7.50E-17 13 0.0528 

13 2.12E-17 3 0.04612 

16 1.16E-17 14 0.04612 

14 1.02E-17 16 0.0369 

19 0 19 0.02386 

 
Comparing the results of the Taxation method and our 

proposed method, TABLE II. , obviously we can realize that 
our approach produces more reasonable outcomes. Because, 
as it is shown in the TABLE II, node 9 is the junction of two 
cycles, all nodes of these cycles are from SCC part of the 
graph, so the random surfer is most likely on it. The nodes 10 
and 20 have higher rank after 9, because they have in-link 
from the node 9. The rank of node 5 cannot be higher than 
17 because the node 17 is a member of the cycle consist of 

'
( (1 ) ) (1 ) /f b sv M M v e sα β β α= + − + −
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node 9 and 10. In Taxation result, the nodes with spider-trap 
situation such as 6 and 11 got higher and vertices 2 and 18 
got lower PageRank than our proposed approach results. 
Also, for other vertices, their ranks are either the same or 
very close to each other’s. 

 CONCLUSION V.

In this paper, the fundamental idea of Web Structure 
mining and Web Graph is explained in detail to have a 
generic understanding of the data structure used in web. The 
main purpose of this paper is to present the new PageRank 
based algorithms and compare that with the previous 
algorithms. 

 The proposed method generalizes the approach of 
finding PageRank based on transition probabilities by 
considering the arbitrary impact rates of both out-links and 
in-links, in order to include all possible cases because there 
are some conditions in which out-links have also an 
influence on PageRank of nodes. Moreover, it prevents that 
spider-traps and dead-ends have a high unreasonable rank 
and assign higher PageRanks to themselves. The noticeable 
weak point of previous method is that it assigns more 
unreasonable PageRank to spider-traps and dead-ends, and 
also reduces PageRank of SCC vertices. But in our approach 
this problem has been solved, because by adding virtual 
edges, random surfers will not stop on spider-traps and dead-
ends. According to [13], DirichletRank has been so far the 
best method amongst previous methods, capable of 
diminishing the impact of link spamming (a special case of 
spider-traps) and dead-end problem that is, however, only 
applicable to backward analysis. Our approach in 
comparison with their method is general for more types of 
networks and simpler to understand and implement. Also, by 
using ideas suggested in this paper, in any possible cases, 
PageRanks is insulated from the influence of anomalies 
including in/out-tendrils and in/out-components.  

The generalization of the PageRank algorithm to include 
forward and backward links into a node makes this approach 
applicable to new domains beyond web mining and search 
engines. We are currently exploring the application of the 
new generalized algorithm to the analysis of network data for 
instance using PageRank as a measurement of node's activity 
score [20] to find communities. 
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