ICDS 2014 : The Eighth International Conference on Digital Society

Analysis of Power Consumption of H.264/AVC-based Video Sensor
Networks through Modeling the Encoding Complexity and Bitrate

Bambang A.B. Sarif, Panos Nasiopoulos and Victor

C.M. Leung

Department of Electrical and Computer Engineering,
University of British Columbia
Vancouver, Canada
{bambangs, panosn, vleung}@ece.ubc.ca

Abstract—The H.264/AVC video encoding standard has many
advanced features that can be tailored to suit a we range of
applications. In order to obtain optimal coding peformance in
video sensor networks (VSNSs), it is essential tonfi the right
setting parameters for the encoder. There is a traghoff
between required energy for encoding and transmissn of
video content in VSNs that can be exploited to mimize total
power consumption. In this study, we model the comiexity
and bitrate in H.264/AVC codec. By using the modelthe
trade-off between encoding and transmission energy
consumption is further exploited. Our experiments bow that
the complexity modeling error is less than or equato 3.45%.
However, the bitrate modeling error that we obtainis less than
or equal to 11.6%.

Keywords-H.264/AVC; complexity and bitrate modeling;
energy consumption model; and video sensor network

l. INTRODUCTION

With the increasing concern about security in homes
public spaces, the demands for monitoring and dllawee
systems is growing. In this regard, video sensdwaoiks
(VSNs) offer an alternative to several existing itamng
technologies [1], [2]. However, unlike the tradited sensor
networks which require negligible power to procesgtured
data in the sensor nodes, VSNs need significardegsing
power to encode and transmit the captured videadth he
limitations of energy resources in VSNs, maximizithge
power efficiency of coding and transmission operati
becomes very important. In general, there is aetd
between encoding complexity and compression pedooa
in the sense that to obtain higher compressioropagnce
(i.e., lower bit rate), more complex and computaity
expensive encoding scheme is required. On the biued,
transmission of lower bitrate content requires Es®unt of
energy. Fig. 1 illustrates the relationship betwesnling
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Figure 1. Relation between encoding and transnmigstover consumption

consumption of the coding process [3], [5]. J.Jmal et al.

[6] studied the required energy for encoding and
transmission of video content in the case of using
H.264/AVC codec. Unfortunately, the number of
configuration settings considered for the encoderthat
study is limited. To address this issue, we extdride study

in [6] by including more encoder configuration B&t in
our previous work [7]. We proposed a guideline eafur
encoder configuration setting which include diffare
combinations of coding complexity and coding e#fitty in
terms of bitrate that produces compressed videthssimilar
quality in terms of peak signal to noise ratio (RGN Our
study shows that the energy consumption of a VSiNbma
reduced by carefully selecting the encoder settatgsach
VSN node based on the proposed table.

This paper is an extension to our previous worknfigre
the relationship between coding complexity and iegdi
efficiency (in terms of bitrate) of H.264/AVC codes
modeled. By using this model, the trade-off between
encoder complexity and bitrate can be further eizieal,
unrestrained with the encoder setting parametédrs.r@st of
the paper is organized as follows. Section Il dbssrthe
H.264/AVC encoding complexity and bitrate modelifige

complexity, compression performance and the reduireencoding and transmission power consumption moslel i

power for encoding and transmission of the contécan be
observed that, to minimize the overall
consumption,

VSN powe
encoding process needs to be handle
carefully. Among the existing video coding standard

then discussed in Section lll. Conclusions are draw
Sdection V.

H.264/AVC is the most widely used standard in the

consumer market [3], [4]. Some of the existing Esdn the
performance of H.264/AVC codec look into maximiziting
coding performance without considering the totalweo

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

102



ICDS 2014 : The Eighth International Conference on Digital Society

1. H.264/AVCCOMPLEXITY AND BITRATE MODELING TABLE I

. . . . ME COMPLEXITY LEVEL (M,)
H.264/AVC is a block-based hybrid video coding M Block Size Candidates
standard utilizing intra-frame and inter-frame peédn.

L o : . SKIP, 16x16
While inter-frame prediction is more involved tharra- SKIP, 16X16, 16X8

b | =

frame prediction, it results in lower bitrate. Bycreasing 3 SKIP, 16x16, 16x8, 8x16
the number of inter-frames coded picture within a 4 SKIP, 16X16, L6x8, 8X16, 8x3
. . . . 5 SKIP, 16X16, 16X8, 8X16, 8X8, 8x4

successive video stream, i.e., group of picture R€ize, 6 SKIP. 1616, 16X8. 816, 8x8. 8x4. 4%8
the bitrate of the coded video is reduced at tis¢ abhigher 7 SKIP, 16X 16, 16X8, 8X16, 8x8, 8x4, 4X8, 4x4
encoding complexity. In the case of inter-framedjoton,
the complexity and bitrate can be controlled byating the L8 o cope
search range (SR) in motion estimation process. JRe 17 m—copea
determines the size of searching area in the refer&rame 16 ] —w—GoOP=s
to find the best match to be used for inter préalict G 15 =se-GOP-1s
Increasing the SR size may result in better consises g e GoPea2
performance at the cost of increased complexityweéi@r s M e copeea
this observation is quite content dependant andetlaee § 13
cases where increasing the value of SR does neidegro 1.2 4
significant benefit in terms of compression perfance [7]. 11

The other factor that controls the complexity aihe t 14 ‘ ‘ ‘ ‘ ‘ ‘
performance of the H.264/AVC codec is the number of 1 2 3 4 5 6 7

M,

block sizes used in the inter prediction processrdasing Fig. 2. NormalizecCs for different M for “BOMall’ video
By P

the number of used block sizes results in bettediption
and consequently higher compression performanctheat Race Horse, PeopleOnStreet and Vidyol). To mimic a
expense of increased complexity. The complexitynotion  common VSN data, these sequences are downsampies! to
estimation (ME) can be classified into differentde of ~ common intermediate format (CIF) resolution (35228
complexity, depending on the number of block sizepixels) and also their frame rate was reduced tdrames
candidates used. In general, there are seven Wm&s per second (fps). The BQMall and Traffic video sences

defined for inter-prediction in H.264/AVC. are used as the training set for the model andrébe of
In this paper, we analyze the effect of differentioag  videos as the test set.

parameters on the coding complexity using a sétairfing ) )

videos and propose a model for the relationshipveen B- Complexity Modelling

coding configuration and coding complexity, ancetathis The coding process complexity of a video seque@gg (
model is tested on a set of unseen test video Tet. is formulated as follows:

following subsections provide more details on our

experiment settings and the proposed model. C.=C,n +C, M, (1

A. Experiment Settings

In VSN applications, due to the limitations in epeand
processing resources, less complex encoder coafigns
are used. To this end, we used baseline profile
H.264/AVC that is suitable for low complexity apgations
and uses only | and P frames (no B-frames) in tudys The
other encoding parameters in our experiments ircluging
context-adaptive variable-length coding (CAVLC) repy
coding and one reference frame, setting SR equ@l tmd
disabling the rate distortion optimization (RDO)ate
control, deblocking filter and Intra coding for Parfes
options. Furthermore, to have an objective meafur¢he
encoding complexity, we use the instruction levesfiter
iprof [8], which provides us with the total number of
instruction counts. The H.264/AVC reference sofeyaliM
version 18.2 is used in our experiments. Five isgrtative
videos from [9] are used in our study (BQMall, ffig

whereC, is the complexity to encode an I-fran@®, is the
complexity to encode a P-frame, is the number of I-
frames in the sequence anglis the number of P-frames in
he sequence. For a video sequence with no scargeh
the value ofC, can be considered almost constant. On the
other handCr depends on the complexity level of the ME
process. In our study, the complexity level of Mgess
(called M,) is classified based on the used block-size
candidates in the encoding process as shown ireTabl

As illustrated in Fig. 2, the GOP size does nogetfthe
normalized coding complexity of P frames at elth Note
that the complexity of coding P-fram€&4) is normalized
with respect taC, whenM_ is equal to one. Furthermore, as
it can be seen from Fig. 3, the plot of normalizadfor
different training videos has the same slope batescby a
constant. It can be seen from this figure thatribenalized
Cr for the Traffic video ranges from 1 to 1.485, whialso
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TABLE Il
ME COMPLEXITY LEVEL (ML) AND &p

M

~N|ola|h|lw|N|-
o
al
4>

1.7

—a—bgmall
1.6 -

——traffic
15 -
1.4 -

1.3 -

normalized Cp

230 330 380
Fig. 3. NormalizedC» for GOP=2 of the training videos
1.2 -

——BQMall
1 4

= Traffic

0.8 -

0.6 -

0.4 -

0.2 -

fractional increase of normalized C,

1 2 3 4 5 6 7
M,
Fig. 4. Fractional increase of normaliz@glfor the training videos

means that the normaliz&z} range for this video is 0.485.
On the other hand, the normaliz€d range for the BQMall
video is equal to 0.66. Scaling the range of thenadized
Cr to one, we can plot the fractional increase ohmaized
Cr as shown in Fig. 4. It is interesting to see ttad
increase of normalize®@, with respect toM_ is almost
similar for both videos. We defing- as the amount of
increase normalize@; at differentM_. & is calculated by
averaging the values obtained in Fig. 4, as shownaible
Il.

Another interesting observation is that, the valfieange
of normalizedCp shown in Fig. 2 is proportional to the
value ofCp,, , - Therefore, using the values obtainednfro

the training videos, the range of normaliz&dvalues for a
specific video sequence is calculated as:
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1.2 1.3

w;=0.0135(¢p,, ,—2.13 2
Using a, the complexity to encode a P-frame is formulated
as:

CpMin :CpML=l[(1+ 5cp(i)[5°1) ©)
Considering thain=N/GOP, whereN is total number of
frames andhs=N-N/GOP, then the average complexity per
frame is computed as follows:

C, =(C, +Cpyy o, [(1+ 0 [,) [((GOP -1))/GOP  (4)

C. Bitrate Modelling

The bitrate of the encoded video is modeledraB; [F;,
whereR; is the average bitrate of a frame dnds the frame
rate. The total size of the encoded sequence {jrisbthen
modeled as:

R, =R [ +R, (5)
where R, is the average size of an I-frame aRelis the
average size of a P-frame. The valueRefdepends on the
M, andGOP used by the encoder.

Fig. 5 shows that, the value d¥ decreases a#,
increases. Therefore, for a certaBOP value, theRs is
modeled as:

(6)

R, =aglf(M)

Foop=i
where axy is the bitrate of a P-frame wheBOP=i and
M =1, andf(M,) is a decay function with respect h,
which is modeled using the generalized logisticcfion.
The logistic function is a widely used sigmoid ftino for
growth/decay modeling where the growth/decay
exponential at first, but eventually slower andntHevels
off. This matches the ways is reduced with the increase of

is
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1.02 TABLE Il
COMPLEXITY MODELING ERROR
1 @ normalized Rp Video Error (%)
0.08 . —e—logistic function - —
2 RaceHorses 2.79
% 0.96 PeopleOnStreet 2.05
b Vidyol 345
2 0.94
E TABLE IV
g 092 BITRATE MODELING ERROR
0.9 - Video Ervor (%)
0.88 ‘ ‘ ‘ . ‘ ‘ RaceHorses 11.60
0 0.2 0.4 0.6 0.8 1 1.2 PeopleOnStreet 8.57
Vidyel 9.55

8CP
Fig. 6. The normalized bitrate (“BQMall’GOP=2) and the logist

function sequence, the bitrate of each I-frame will be atnsamilar.

Therefore,R is assumed to be equal to the bitrate of the
M, (see Fig. 5). The logistic functid(M,) used in our study encoded first frame whilew, is equal to the bitrate of the
is as follows: second frame. For the complexity modeling, theof tool

will provide us with the complexity of encoding thiest
b—-a ) two frames of the video sequence, i.€qdmesCit CpM,_Zl'

1+t Since we already have the value qffRm encoding the
o o . first two frames of each test sequence, we camatti the
where a and b indicate the minimum and maximum yajue of G of these sequences. The valuegpf, ,  can then

asymptote of the plot respectively,is the growth rate, .
while d signify the time for maximum growth (see Fig. 6). € calculated usingames— G. Consequently, the value of
a is calculated using (2).

Furthermore, Fig. 5 also shows that the slope efRh , ,
plot for different GOP sizes is the same. TherefoR is To estimate the modeling error, the average peagentf
modeled equal to: complexity and bitrate error for GOP={1, 2, 4, &, B2,
64} and M ={1, 2, 3, 4, 5, 6, 7} is calculated. As Table llI

R. =t [ F(M,) + &, [ f (GOP) (8) shows, the average error for complexity modelindetss
than or equal to 3.45% for the test video sequengkie
the average error of bitrate modeling is less thaaqual to

11.6% as reported in Table IV.

f(M))=a+

wherewy, is the bitrate of P-frame wh&BOP=2 andM =1,
and w is the weight forf(GOP). To obtain the parameters
for thef(M,), we applied least mean square approach using lll.  ENCODING AND TRANSMISSIONPOWER

the normalizedR- of training video sequences when CONSUMPTIONMODEL

GOP=2. Also to estimat&(GOP), we applied curve fitting The total power dissipation at a sensor node ctnsis
approach on th&p values of training video sequences aty o power consumption for encodirfL), transmissionR)
different GOP size settings, and found thain(GOP) 5 receptionR,). P. can be calculated as follows:
provides a good estimate f6(GOP). The value ofa is

estimated using least square regression from tiairig P =C. [F [CPI [(E (10)
sequences. Assuming that the average bitrate ¢fframe € P ¢

is equal toR, the average bitrate of a fran)(is estimated
as:

where CPI is the number of CPU cycles to perform one
basic instruction andg; is the energy depletion per cycle.
The transmission power consumption is calculated as

_ R [ﬁ 008 {GOP-1)
R = + g (1 092+ 356(610cp - 089 : €)
GOP (L+e%0% ’)J GoP
R=>(o+pm")R (11)
+a, (N(GOP) Ggg; E) t

where ¢ is a constant coefficient related to coding and
D. Implementation of the Proposed Model modulation, 3 is the amplifier energy coefficiend, is the
To implement the proposed model, we need to obtaifransmission distancej is path loss exponent amlis the
several variables from each video sequence. Tcetids we  bitrate. The reception power consumption is catedas:
encode the first two frames of each video sequence.
Assuming that there is no scene change in the video P :Z/][R (12)
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TABLE V. PARAMETERSUSED.

Parameters Description value
Energy cost for transmitting 1 0.5 JMb

a bit
] -~ - 1.310-8
B Transmit amplifier coefficient I/Mb/ma

A Energy cost for receiving 1 bitt 0.5 J/Mb
n Path loss exponent 4
Energy depleted per cycle fg
imote?2 [6]
where A is a constant coefficient representing energy cos
for receiving 1 bit. Table V shows the parameteysdufor
our experiments.

In this paper, we analyze a simple topology coimgjsbf
one video node and the sink. The total power copsiom
of a video node for different transmission distander
PeopleOnStreet video sequence is shown in Fign This
figure, we analyze two scenarios: a) tBOP size is fixed
while theM, varies, and b) th#/_ is fixed while theGOP
size changes. In Fig. 7a, tlOP size is set equal to eight
andM_ changes. It is observed that for transmissioradist
less than 200m, the use of bigder results in higher total
power consumption. This result shows that varyivig

power consumption (Watt)

E. r1.215nJ

power consumption (Watt)

values do not significantly affect the trade-offtveeen Fig. 7.

computation and communication. This trend is aksensin
other test video sequences.

Fig. 7b shows the plot of total power consumptidmew
M, is equal to four and théOP size changes. The figure
shows that when the transmission distance is srtfadi,
configuration that leads to low power consumptienthie
one using smalleGOP. It means that the low encoding
power consumption (due to the use of smalB®P) is
compensating the higher transmission power consompt
(due to higher bitrate). However, when the transiois
distance is large, the energy cost to transmit daéa
increased significantly. Therefore, we need to tise
configuration with better compression performance,,
larger GOP size, to reduce the transmission energy
consumption.

The trade-off between computation and communicatior
can be clearly seen when the transmission distantess
than 100m as shown in Fig. 8. However, it can len gbat
the transmission distance at which the use of bigfeP
minimizes power consumption is content dependeont. F
example, in the case of PeopleOnStreet video sequen
using GOP equal to one will minimize the total power
consumption when the transmission distance is teas
63m (see Fig. 8a). However, for the RaceHorsesovide
sequence, the use GOP equal to one will minimize total
power consumption when the transmission distandesis
than 88m (see Fig. 8b).

power consumption (Watt)

power consumption (Watt)
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IV. CONCLUSION [3]

In this paper, we propose the encoding complexity a [4]
bitrate model of H.264-based video sensor networke
experimental results show that the proposed coriplex
model provides a very small prediction error (I#san or
equal to 3.45%), while the bitrate modeling errarfiom  [5]
8.57% to 11.6% for the video sequences tested. The
proposed model is used to show the trade-off betwee
encoding and communication that can be exploited té]
minimize the total power consumption of VSNs.
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