

An Infrastructure for Community Signatures and Micro-Agreements

Architecture, Android prototype implementation, and usage examples

Mitja Vardjan and Jan Porekar

Research Department

SETCCE

Ljubljana, Slovenia

{mitja.vardjan, jan.porekar}@setcce.si

Abstract—Digital signatures are widely used for non-

repudiation and other purposes. In various cases, there is a

group of two or more parties that have to agree on a common

set of data and digitally sign it in order to provide the other

party or parties a proof of non-repudiation. A simple and

scalable infrastructure for community signatures or groups of

individual party signatures is described. It allows third party

applications to simultaneously digitally sign arbitrary XML

documents by any number of entities, for any purpose, using

high level interfaces, not having to deal with digital signatures

themselves. A dedicated backend server dynamically merges

received documents and signatures from all parties. When a

sufficient number of entities have signed the document, a signal

is triggered to announce the document finalization. Despite the

simple overall design, handling security issues and user control

at appropriate spots are crucial for any business application.

Keywords-community; agreement; digital signature; mobile

environment

I. INTRODUCTION

One of the most used aspects of digital signatures is non-
repudiation. When electronic documents are digitally signed
by one or more parties, the signatures can be used to verify
the document integrity and, more importantly for this work,
to prove that the parties have agreed on the document and
stand behind it.

In many cases, only one valid digital signature is
provided with the document at any time. The goal in such
cases is usually to ensure document integrity, or to provide
non-repudiation of a single entity. In case of signing
contracts, agreements, and similar documents, two or more
entities are to provide non-repudiation to each other. Some of
these entities can be owners of internet connected pervasive
services or internet connected objects. The signing process
and distribution of digital signatures can easily get overly
complex or even infeasible for the entities, especially if their
number is large or arbitrary. This can be remedied in a
business process where the document format and the order,
in which it is signed by the entities, are determined by the
application or protocol, such as the negotiation presented in
[1].

The infrastructural service described here allows for
groups and communities to reach legally binding agreements
in an ad-hoc manner. Third party services can offload any

documents that need to be agreed over group of participants
or even whole communities. These documents range from
service level agreements, meeting minutes to non-disclosure
agreements or even business contracts that may have rich
content embedded. The work in this paper is a continuation
and complement of [1].

The functionality reuses the concepts of digital identities,
certificates and digital signatures. Documents are structured
with Extensible Markup Language (XML) and agreements
are signed using XMLDSig [5]. Both architecture and
implementation target mobile and pervasive environments by
providing an asynchronous and scalable solution that limits
bandwidth usage, avoids unnecessary communication, and
enables all user devices to be used from arbitrary local
networks that are connected to the Internet intermittently and
through firewalls.

Existing group signature and concurrent signature [13]
solutions, especially the improved and multi-party versions
[14][15][16] fit various purposes, but may not be most
suitable for use by third party application developers who
prefer well known solutions and expect fast and easy
integration. Some existing designs for group signature use
their own custom signatures and require additional solution-
specific steps to sign the data and to verify a signature
[7][8][9], or allow only community members to sign [8],
which is not suitable for ad-hoc communities. Such
requirements can put additional burden to both
implementation of third party applications that use the
signature infrastructure, and to community administration. In
terms of efficiency and optimization, additional network
interactions are required, e.g., when the keystone is released
in case of concurrent signatures. Moreover, both group
signatures and concurrent signatures diverge even further
from the traditional way of signing paper documents, still
widely used. While the concept of fair exchange of
signatures and decreased verification time are highly
beneficial in some cases, the additional differences may
present an obstacle for adoption of the solution. For example,
if the identity of the first signers is not known to all,
subsequent signers may be less likely to sign the document.
This may be because in case of known identities, they trust
the party or parties who already signed the document, or
simply because they have a proof that the party with known
identity has already signed the document, e.g., when
negotiating a service-level agreement [1]. On the other hand,

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

for communities where all members are equal and do not
know or trust each other, the concurrent signatures are better
in terms of fairness and non-exposure, but they are not used
in the presented work.

The next chapter describes the initial document creation
and its distribution to other users. The chapter is followed by
descriptions of document signing and finalization procedure.
Afterwards, various privacy and security aspects of the
whole process are explained. The paper ends with usage
examples to illustrate a few implemented and suggested
services that are using the presented community signature
infrastructure.

II. DOCUMENT CREATION AND DISTRIBUTION

Initially, an XML document with arbitrary schema and
contents is created either by one party or in a collaborative
manner by multiple members of a community. The
document may hold a service level agreement, meeting
minutes, non-disclosure agreement, or even business
contracts that may have rich content embedded such as
images, video or voice recording.

Regardless of what the document represents, the
community members are expected to review it once it is
finalized and confirm they agree with it. Their consent is
formally expressed with their digital signature, appended to
the document as a detached XMLDSig [5]. Depending on the
application, a member may choose to sign the whole
document, only some of its parts, or nothing and leave the
document intact.

The initial document is distributed to the intended signers
or members by uploading it to a dedicated Representational
State Transfer (REST) server in a single HTTP PUT request.
The REST server stores the document under the name,
supplied by the client as resource name within the URL. The
name is generated as a random string of a fixed length. The
concept of resource name is similar to universally unique
identifier (UUID) [2] but the name is shorter because it is
checked for uniqueness at the server level when the resource
is initially uploaded. Unless a resource with same name
already exists on the server and the HTTP PUT request has
to be repeated with a new name, the upload is a single step
operation. The request includes the owner’s serialized X.509
certificate [4] as part of the URL. This certificate is stored by
the server for later authorization to access the document by
others. It is never used to sign the document, unless the user
chooses to do so. Therefore, it could be anonymous or
generated ad-hoc by the initial document uploader. Its
corresponding private key is used to sign the resource name.
This signature is not supplied with the initial upload, but
with another URL, generated by the community signature
infrastructure.

Whenever a document is downloaded or a new version of
existing document is uploaded, digital signature of resource
name is passed as a URL parameter. The same URL is used
for downloading and updating documents. The URL of the
uploaded document is distributed to the members as an
invitation for them to agree with and digitally sign the
document.

Figure 1. Document creation and distribution.

The members list is usually application specific and the

URL distribution is handled in the background by an app that
is using the community signature infrastructure. If this is not
the case, the URL and the document can still be accessed
manually within the signature infrastructure itself (Figure 4).
This lightweight and easy to implement process is suitable
for the uploader device and signer devices, which are usually
smart phones or tablet PCs. When a user chooses to reject or
ignore the invitation to sign the document before he even
reads it, bandwidth usage is negligible.

III. MICRO-AGREEMENTS AND DOCUMENT FINALIZATION

In the process of agreeing, the canonical form [6] of
agreement document is digitally signed with a private key
that is stored in participant’s smart phone’s secure storage.
The meeting participants do not need to sign the document
immediately but can postpone the signing of the agreement.

After the agreement is signed by a participant it is
uploaded back to the community sign service using the same
URL that has been used to download it. The reasoning is that
for community signatures, anyone who is authorized to
download the document should be able to upload the signed
version as well. If this is not the case, the concept of
authorization signature in the URL can be easily expanded to
include option to allow download only or both upload and
download. An example solution is to sign document resource
name, suffixed with an appropriate parameter, known to the
service. The community sign service at the REST server
verifies whether the digital signature is valid and whether the
content of the agreement has not been modified in any way.

The community signature functionality allows third party
services that are using it to specify the minimal number of
community members that need to agree in either relative
terms such as percentage of community or fixed threshold
numbers. Every time the document with a new signature is

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

uploaded to the community signature service backend node,
this micro-agreement is merged into the main document
stored on the server. Due to the nature of detached
XMLDSig, the merges originating from various signers can
be performed in any given order and the signers will
experience a convenient and seemingly parallel signing
procedure.

The resulting document at any moment contains
signatures from all parties that have signed the document and
sent it back to the server so far. When number of parties that
signed the document exceeds the given threshold, the
community signature service backend server signals
completion and participants can now download the final
agreement, which now contains at least the required number
of signatures (Figure 3) and represents a common and a
legally valid agreement. Depending on the implementation,
the document finalization can be signaled to the original
document creator, e.g., meeting organizer, who can first
inspect the document and the signers and then choose to
signal document finalization to the other selected parties. At
any point, the parties can see the current status of any
document they have signed, or were invited to sign. Figure 4
shows the status of a document in the process of being
signed (left) and the status of that same document at a later
time, when one more party has signed it and the number of
signers reached the required threshold (right). If concurrent
signatures were used, full status with signers’ identities could
be displayed only after the keystone is released.

Figure 2. A community member receives invitation to sign a document.

Unlike a group signature [7] where multiple individual

signatures are replaced with a single group signature,
individual signatures are preserved and any party can verify
individual signatures using a standard verification procedure.
Due to the nature of XMLDSig, any party can also get the
list of all signers solely from the document.

Figure 3. Community signature and document finalization.

Figure 4. Viewing current status of the document signing process.

The downside of not using the concept of group signature

[7] is that processing power and time to verify all signatures
increase with number of signatures in the final document. As
the increase is only linear, this is usually not problematic in
terms of scalability. If all parties can be forced to use a
specific key-pair type, then verification of multiple
signatures could be sped up [10][11], although care must be
taken because some such solutions have issues [12].

IV. PRIVACY AND SECURITY ASPECTS

The two main groups of information that could be treated
as sensitive are the document contents and the list of entities

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

who have signed the document. The document itself has to
be made fully available to all entities that are given the
option to sign it. Same applies to the list of signers because
they all receive the final document in the end, leaving no
alternative to ultimately trusting the entities not to disclose
any sensitive information they receive.

Various notifications about document finalization do not
carry any personal or document data and usually do not need
to be secured. A few other points where it makes sense to
take security into account are described below.

A. Document Distribution

There are established protocols to encrypt the network
traffic from eavesdropping. However, a custom solution
described in Chapter II is used as a secure and convenient
method to authorize the clients to download and upload the
document. With the proposed solution, the clients (entities)
are given only one URL that already contains all necessary
tokens (Figure 5). As the digital signature of requested
resource is part of the URL, the certificate owner can easily
disable access by removing the public part of his certificate
at the service backend (Figure 1 and Figure 5).

3. Download document

 Smart phone
Document owner

REST Server
Document storage

and merging

 Smart phone
Community member

1. Initial upload,
using the first URL

2. Pass document URL
(the second URL, used to

download and
update the document)

Signature in URL
(for authorization)

Signature in the document

4. Sign and
upload document

Signature in URL
(for authorization)

Figure 5. The two roles of signatures.

Alternatively, when the certificate is revoked, access is

automatically disabled, provided that the service backend
implementation does check certificate revocation lists.

In any case, the number of network operations from
mobile devices is limited and the authorization is integrated
into the simple and widely used HTTP methods, so third
party developers are not required to implement any
authorization procedures.

B. Storage of Certificates on Android

With any digital signature based system, it is vital to
protect the private keys from unauthorized use. The
prototype has been implemented for Android where a secure
storage is provided by the operating system. This storage is
used for storing user’s certificates and private keys. It is
accessed in two significantly different ways, depending on
Android version. For Android versions up to 4.2.2, the API
is not public and the operating system grants requests to the
storage based on the requestor process ID. The concept is

described in [1]. For Android versions 4.3 and newer, the
access to the secure storage is possible only through the new
and official API for storing and accessing certificates and
keys. To support all versions, the app implements both
strategies and chooses the appropriate one dynamically.

C. Using the Securely Stored Private Keys on Android

To sign an arbitrary XML document, our prototype app
can be used directly. However, in most cases it is to be used
by other apps that parse the document and show the user a
human readable and application specific document
representation before the user authorizes signing. The
problem is to access the user’s private keys, which are not
available to third party apps and not even to the operating
system. As a solution, the third party app can simply invoke
in the background our prototype app with access to private
keys to sign the given document.

Figure 6. Third party app requests to sign a document have to be explicitly

confirmed by the user.

It is vital for the prototype app to show the user which

app is trying to sign the document in the background, to
prompt the user to authorize signing (Figure 6) and choose
the identity to use (if multiple certificates are stored). The
key itself is never exposed to third party apps, so only the
data explicitly approved by the user are signed.

V. USAGE EXAMPLES

Examples of usage are described below. The community
micro-agreements are suited to also be used by applications
and services that enable governance tools to communities.

A. Capturing Meeting Minutes

Community micro-agreements allow business
communities to capture meeting minutes and other meeting
agreements in a legally valid and binding manner. The
meeting organizer can choose whether the consensus is
reached among only participants that are physically present
during the meeting or the whole community.

Existing community signature prototype implementation
has been used by an example app to capture meeting
minutes. After users register to the meeting through this app,
they can actively participate in the meeting. Their input is
recorded by their Android devices and sent to a central
Android device, which has the role of the document owner.
When the meeting is finalized on that central device, the
minutes are uploaded to the document storage server (Figure
7) and its URL is distributed to meeting participants. The
REST servers which handle distribution of document URLs
and receive notifications about document finalization (Figure

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

7) are application specific, i.e., implemented as part of the
meeting minutes software, not the general community
signature software. Google Cloud Messaging (GCM) is used
to relay the messages to Android phones of users who are to
sign the minutes. At an earlier point, the meeting software
automatically registers Android devices of community
members with GCM to receive these messages. GCM is used
by the meeting software as a convenient way to push small
messages to Android devices, connected to the Internet
through firewalls, with variable network addresses, etc. The
community signature infrastructure does not require using
neither GCM, nor the additional REST server to distribute
document URL, but only to distribute the URL to
community members. Therefore, any alternative distribution
of the URL is valid. For example, the app on the central
device embeds the URL into a Quick Response Code (QR
code) and the physically present members can scan it. Again,
this is only an alternative way of URL distribution and the
primary way is application specific automatic distribution in
the background, in this case through GCM. Arrows in Figure
7 indicate information flow for the implementation with
GCM, starting with document upload by the document
owner to the first REST server shown at the top center.

Figure 7. Process and information flow between devices in a chosen

implementation for capturing meeting minutes.

Regardless of the implementation, the signatures are

always in standard XMLDSig form, as in Figure 8. In the
figure, XML nodes with signature and certificate values are

collapsed but the highlighted text shows the signatures refer
to the whole document, i.e., the whole meeting minutes. In
case a participant agreed only with part of the document, his
signature would refer to the relevant part only, provided that
the application specific implementation allowed signing only
a part of the document.

Figure 8. An example of meeting minutes signed by two parties.

In this example, the omnipresent issue of identity

mapping is evident. Mapping between various identity types
is essential for any legally binging document. Typical
identity types relevant for community signatures are:

 Possible identities in the signed document. Figure 8
shows a case where identities are explicitly listed in
the signed document. This is not always the case.
The document could include only impersonal
statements.

 Identities in encoded X.509 certificates, contained in
the collapsed “ds:KeyInfo” nodes in Figure 8.

 Identities of the community members who signed the
document.

Clearly, any implementation should check:

 mapping between the certificate filed values, e.g.,
common name, and the document identities, if any,

 certificate validity and whether it is issued by a
trusted authority,

 mapping between certificate and real entity, e.g., by
checking the entity listed in the certificate is actually
a member of the community that is supposed to sign
the document.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

For large communities, this can be far from trivial, as the
certificate identities can be ambiguous and also because a
single entity can be listed under different names in the
certificate and community members list.

B. Crowd Tasking

A service called Crowd Tasking has been developed to
enable community members to create tasks (an example is
shown in Figure 9), propose solutions, post comments and
solve tasks. These tasks usually involve some physical
presence of people or physical work, which makes it
inconvenient or impossible to post either the solution, or
proof of the task solution to the service or to the Internet.

Figure 9. Crowd Tasking Service.

The service will integrate with the community signature

infrastructure to enable task members to sign the agreements
about the work to be done by each of them and to enable task
creators to confirm the task completion by additional
signature. As with any other usage of community signature,
the interactions of third party service with community
signature infrastructure and the document signing happen in
the background, except prompting the user to confirm
signing.

C. Service Sharing Within a Community

The policy negotiation described in [1] could be extended
by integrating with community signatures and micro
agreements presented here. A service provider would
negotiate a service level agreement (SLA) with a community

instead of only a single service consumer. The community
members would decide if a particular SLA is compatible
with community’s internal rules and sign the SLA so the
service could be shared within the community.

VI. CONCLUSION AND FURTHER WORK

An infrastructure and prototype implementation of
community signatures and micro-agreements has been
presented, followed by usage examples. The design uses
digital signatures to sign XML documents, which can serve
as legally binding agreements. It is based on REST servers, a
database or other storage system, and Android devices. The
simple, scalable and generic main concepts allow for fast
integration of various third party services with it. Network
communication is optimized for mobile devices with limited
and intermittent bandwidth, but at least occasionally working
network connection is still required for all devices.
Compared to concurrent signatures, the presented approach
requires slightly less network interactions, is more similar to
traditional signing process of paper documents, and as such
does not exchange signatures between parties in a fair
manner, which has both advantages and disadvantages.
Ideally, the solution could offer both signature options to
cover additional possible scenarios. Other services are
planned to use the implemented community signature
infrastructure in an application specific manner.

ACKNOWLEDGMENT

Authors would like to thank the SOCIETIES project [3]
consortium and EC for sponsoring the project.

REFERENCES

[1] M. Vardjan, M. Pavleski, and J. Porekar, “Securing Policy
Negotiation for Socio-Pervasive Business Microinteractions”,
SECURWARE 2012: The Sixth International Conference on
Emerging Security Information, Systems and Technologies, ISBN:
978-1-61208-209-7, Aug. 2012, pp. 142-147.

[2] ITU Recommendation X.667 (09/04), http://www.itu.int/rec/T-REC-
X.667-200409-S/en [retrieved November, 2013].

[3] Self Orchestrating CommunIty ambiEnT IntelligEnce Spaces
(SOCIETIES), EU FP7 project, Information and Communication
Technologies, Grant Agreement Number 257493.

[4] X.509 standard recommendation, http://www.itu.int/rec/T-REC-
X.509/en [retrieved November, 2013].

[5] XML-DSig, XML Signature Syntax and Processing, 2nd Edition
http://www.w3.org/TR/xmldsig-core/, [retrieved April, 2012].

[6] Canonical XML 1.1, W3C recommendation,
http://www.w3.org/TR/xml-c14n11/, [retrieved April, 2012].

[7] L. Harn, “Group-oriented (t, n) threshold digital signature scheme and
digital multisignature”, IEE Proceedings - Computers and Digital
Techniques, Volume 141, Issue 5, Sep. 1994, p. 307-313, DOI:
10.1049/ip-cdt:19941293.

[8] C. M. Hsu, S. H. Twu, and H. M. Chao, “A Group Digital Signature
Technique for Authentication”, IEEE 37th Annual 2003 International
Carnahan Conference on Security Technology, ISBN: 0-7803-7882-2,
Oct. 2003, pp. 253 – 256.

[9] L. Harn, C. H. Lin, and C. W. Hu, “Contract Signatures in E-
Commerce Applications”, International Conference on Broadband,
Wireless Computing, Communication and Applications, Nov. 2010,
pp. 384-388, DOI: 10.1109/BWCCA.2010.101.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

[10] C. Li, M. Hwang, and S. Chen, “A batch verifying and detecting the
illegal signatures”, International Journal of Innovative Computing,
Information and Control, Dec. 2010, pp. 5311-5320.

[11] A. Atanasiu, “A New Batch Verifying Scheme for Identifying Illegal
Signatures”, Journal of Computer Science and Technology, Vol. 28,
Issue 1, Jan. 2013, pp. 144-151.

[12] M. S. Hwang and C. C. Lee, “Research Issues and Challenges for
Multiple Digital Signatures”, International Journal of Network
Security, Vol.1, No.1, Jul. 2005, pp.1-7.

[13] L. Chen, C. Kudla, and K. G. Paterson, “Concurrent Signatures”,
Advances in cryptology - EUROCRYPT 2004, Vol. 3027, May 2004,
pp. 287-305.

[14] X. Tan, Q. Huang, and D. S. Wong, “Concurrent Signature without
Random Oracles”, IACR Cryptology ePrint Archive, 2012.

[15] C. Shieh, H. Lin, and S. Yen, “Fair multi-party concurrent
signatures”, Proc. of 18th Cryptology and Information Security
Conference, 2008, pp. 108-118.

[16] J. Xushuai, Z. Zhou, W. Qin, Q. Jiang, and N. Zhou, “Multi-Party
Concurrent Signature Scheme Based on Designated Verifiers”,
Journal of Computers, Vol. 8, No. 11, Nov. 2013, pp. 2823-2830.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-324-7

ICDS 2014 : The Eighth International Conference on Digital Society

