
Active Mechanisms for Cloud Environments

Irina Astrova Stella Gatziu Grivas, Marc Schaaf
Institute of Cybernetics Institute for Information Systems

Tallinn University of Technology University of Applied Sciences Northwestern Switzerland

Tallinn, Estonia Olten, Switzerland

irina@cs.ioc.ee {stella.gatziugrivas, marc.schaaf}@fhnw.ch

Arne Koschel Ilja Hellwich, Sven Kasten, Nedim Vaizovic,

Christoph Wiens

Faculty IV, Department for Computer Science Faculty IV, Department for Computer Science

University of Applied Sciences and Arts Hannover University of Applied Sciences and Arts Hannover

Hannover, Germany Hannover, Germany

 arne.koschel@fh-hannover.de arne.koschel@fh-hannover.de

Abstract—Active mechanisms are used for the coordination

(e.g., scalability) of IT resources in clouds. In this paper, we

give an overview of existing technologies and products – viz.,

OM4SPACE Activity Service, RESERVOIR, Amazon SNS,

IBM Tivoli Live Monitoring Service, Zimory and PESA – that

can be used for providing active mechanisms in cloud

environments. Our overview showed that these technologies

and products mainly differ in the architectures they support

and the cloud layers they provide.

Keywords—Cloud computing; events; active mechanisms.

I. INTRODUCTION

Cloud computing has become more and more popular.
Many companies (viz., cloud providers) are outsourcing their
IT resources into clouds so that users can hire those
resources only if they really need the resources and give the
resources back when they do not need the resources any
longer. This creates a new challenge for cloud providers –
they need to provide users with systems, which can
automatically assign IT resources on the fly. These systems
should give the possibility to evaluate events from different
event sources at one or more external coordination points.
These points can coordinate the usage of the IT resources in
clouds. Thus, the systems should use active mechanisms for
the coordination (e.g., scalability) of IT resources in cloud
environments.

The purpose of this paper is to give an overview of
existing technologies and products that can be used for
providing active mechanisms in cloud environments.
Technologies like OM4SPACE Activity Service,
RESERVOIR and PESA are mostly theoretical concepts and
not end products. There are also (commercial) end products
like Amazon SNS, IBM Tivoli Live Monitoring Service and
Zimory.

II. OM4SPACE ACTIVITY SERVICE

OM4SPACE [2] provides software-as-a-service (SaaS),
platform-as-a-service (PaaS) and infrastructure-as-a-service

(IaaS). The crucial part of OM4SPACE is the Activity
Service.

In cloud environments, often a large number of services
occur on different layers. The Activity Service offers an
approach for managing a large number of events from
different event sources, processing these events and
triggering appropriate actions on the events, e.g., starting
new virtual machine instances when a specified threshold for
the CPU load has been exceeded.

Figure 1 shows the architecture of the Activity Service,
which consists of the following components:

 Event Source: This component can be an arbitrary
part of a cloud environment; it generates different
types of events (both simple and complex). Every
event is sent to the Event Service for further
processing. The Event Source can be on any layer of
a cloud environment: SaaS, PaaS and IaaS.

 Event Service: This component receives events
from an arbitrary number of Event Sources and
performs the first step of processing, which is
divided into two phases. The first phase dispatches
the received events to Event Consumers that are
registered for this type of events. The second phase
consists of performing complex event detection
(CED) on the incoming event stream. This CED can
cause new complex and enriched events to be
created by the Event Service and dispatched to the
registered Event Consumers. Thus, the Event
Service controls a granularity shift of the incoming
event stream and helps to scale down the number of
events, which enables complex event and rule
processing by the Rule Execution Service.

 Event Consumer: This component receives a
particular event type from the Event Service. Events
can be of two types: simple events that the Event
Service receives and complex events that the Event
Service detects and generates. To receive events
from the Event Service, an Event Consumer has to
implement an appropriate event handler service,
which needs to be published to the service registry.

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

The Event Service discovers event handler services
by looking for the service registry. To inform the
Event Service about the events an event handler
service is interested in, filtering criteria have to be
added to the WSDL description, which will be
extracted by the Event Service.

 Rule Execution Service: This component receives
events from the Event Service to match them against
rules. Thus, it acts as an Event Consumer of the
Event Service by registering an event handler
service. Matching of the rules results in the
execution of action handlers. An action handler
needs to be implemented by each of the components
that are to be called from within the rules. The rules
are stored in the Rule Base, which is managed by the
Rule Management Service.

 Event Monitor (EM): Not all components are built
for active notification by the Event Service. For
those components, a monitor capsule mechanism is
used. As a result, a small application that acts as a
monitor capsule around the Event Source can be
implemented in such a way that it obtains events
from the Event Source and transfers them to the
Event Service. Furthermore, the monitor capsule can
provide conversion between different types of
events.

OM4SPACE adapts an activity service embedded in
active database management systems (ADBMSs) to cloud
environments. Active mechanisms are divided into different
components that are put into the cloud. Each of these
components has one or more well-defined interfaces. So the
implementation of the components is interchangeable. The
communication between the components is implemented
using a service-oriented architecture (SOA). In addition to
processing a large number of events, the Activity Service can
be used for monitoring and scaling applications in the cloud.

Figure 1. Architecture of OM4SPACE Activity Service [2].

III. RESERVOIR

RESERVOIR [3][4] provides IaaS. It requires the usage
of manifests. A manifest serves as a contract between service
and infrastructure providers.

Figure 2 shows the architecture of RESERVOIR, which
consists of the following components:

 Hypervisor: This is a layer of abstraction, which
runs on top of physical hardware. It allocates
(physical) resources to virtual machines and
manages and controls the execution of them by

booting, suspending and shutting down resources as
required. It can even provide the replication and
migration of virtual machines. Examples of a
Hypervisor include Xen [5] and VMWare [6].

 Virtual Execution Environment Host (VEE
Host): This is the lowest layer in the architecture
and provides plug-ins for different hypervisors. It
enables upper layers to interact with heterogeneous
virtualized products.

 Virtual Execution Environment Manager (VEE
Manager): This layer implements the key
abstractions needed for cloud computing and
provides the functionality to control multiple VEE
Hosts. Because of cross-site interactions between
multiple different VEE Managers, the architecture
offers the possibility to deal with and federate
different sites, which implement heterogeneous
virtualized products. Examples of a VEE Manager
include OpenNebula [7].

 Service Manager: This layer is an interface to build
the connection to the Service Providers. It ensures
that the requirements of them are correctly enforced.

 Service Provider: This is the highest layer in the
architecture and offers services to provide operations
of specified businesses and uses the Service
Managers to connect to the cloud.

RESERVOIR brings active mechanisms and the usage of
events into cloud environments. The scalability of a service
is enabled through an application description language
(which introduces a monitoring framework along with
Monitoring Agents) and key performance indicators (which
describe the state of the service). The Monitoring Agents
send Monitoring Events to the service management
infrastructure, where these events are processed and rules are
executed. The execution of these rules is additionally
monitored by OCL operations to insure the correctness.

Figure 2. Architecture of RESERVOIR [3].

IV. AMAZON SNS

Amazon SNS (Simple Notification Service) [9] is a
middleware product that offers a service for managing and
sending notifications over cloud environments. The crucial
part of Amazon SNS is topics.

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

Before sending notifications a topic has to be created.
This is done by providing the topic name, which is used by
Amazon SNS to generate a unique identifier called Amazon
Resource Name. After the topic has been created,
notifications can be sent to it. A notification consists of a
message, the Amazon Resource Name and optionally a
subject. Amazon SNS also adds meta-data like a signature
and a timestamp to the notification.

To receive notifications, a subscriber needs to be
registered for a topic. Every notification that arrives at a
topic is delivered to all subscribers of this topic. Subscription
contains endpoint information, which defines how the
notification is delivered to the subscriber. Amazon provides
the following types of endpoints:

 Email: The notification is sent via an email by using
the SMTP protocol. The notification subject is
mapped to the email subject and the notification
message is mapped to the email message. Amazon
SNS adds additional information to every outgoing
notification, which contains an HTTP link for
unsubscribing.

 Email JSON: The notification is also sent via an
email but by using the human and machine-readable
format called JSON [10]. All notification properties
(e.g., the timestamp, the message and the subject) are
stored in a list of key-value pairs.

 HTTPS: The notification is delivered by using the
HTTPS protocol. In case of the incoming
notification, Amazon SNS performs an HTTP-Post
on a specified URL. The body of the HTTP-Post
contains all notification information in the JSON
format. All notification properties are encrypted and
stored in a list of key-value pairs [11].

 HTTP: Like HTTPS but without using encryption.

 Amazon SQS: The notification is delivered to a
queue of the Amazon SQS (Simple Queue Service).
This is another Amazon service, which provides the
functionality of sending text messages to the cloud.
These messages are cached for a limited period of
time while clients can request and receive them.

Every subscription needs to be confirmed by the receiver.
For this purpose, Amazon SNS sends a confirmation request,
which contains a specific token, to another endpoint. By
transmitting this token back to Amazon SNS, the subscriber
guarantees that it gets access to the endpoint and can receive
notifications. Otherwise, it would be possible to enter
arbitrary endpoints and flood them with notifications, which
they do not want to receive. Amazon SNS supports an event-
driven architecture (EDA) to decouple the notification sender
from the receiver (i.e., the subscriber). Thereby it propagates
this decoupling into the cloud.

Amazon allows for a detailed access control on Amazon
SNS and its topics, e.g., by defining who is allowed to access
a topic, who is allowed to add subscriptions to this topic and
what types of subscriptions are permitted. For this purpose,
Amazon introduces syntax for defining policies. These
policies contain all information, which is important for
security and access-control configuration.

Amazon SNS provides easy-to-use active mechanisms.
But these mechanisms do not enable performing CED or
condition-based rule execution. Another big problem with
Amazon SNS is the small size of a message (8 kilobytes per
notification).

V. ZIMORY

Zimory [13] provides IaaS. It is a product, where highly
distributed components cooperate with each other using
active mechanisms.

Monitoring and management are used to assure the
scalability of virtual machine instances. The monitoring and
management are done via a web interface through which
users can specify rules that trigger one or more of the
following actions when an event occurs [8]:

 Storeback: During this action, the virtual machine
will be restored from a specified backup or set to a
specified state.

 Snapshot: During this action, a snapshot of the
current running state of the virtual machine will be
created.

 Clone: During this action, the current running virtual
machine will be duplicated (i.e., cloned). A clone
can then be started immediately.

Zimory uses active mechanisms to distribute the CPU
load to more than one virtual machine instance. In such a
scenario, the cloud component (not named in the Zimory
documentation), which monitors the instances, is acting like
an event producing service that evaluates on what state the
event should be produced. After this, the event is published
to a component inside the cloud, which is able to receive
events regarding the instances, a kind of event receiving
service. This service then processes events and performs one
or more of the actions listed above.

VI. IBM TIVOLI LIVE MONITORING SERVICE

IBM Tivoli Live provides SaaS. The crucial part of IBM
Tivoli Live is the Monitoring Service [12].

The Monitoring Service is used to monitor network
components and manage them in an online web portal. For
this, a monitoring server is installed in the cloud. This server
can monitor the cloud components (both active and passive)
and send the collected data to the cloud. Here the data are
stored and can be accessed via an online web portal. This
portal gives users the possibility to set thresholds for the
different monitored parameters of a component. When a
threshold exceeds, an event is generated and an action for the
event is performed. Unfortunately, the IBM documentation
does not further specify how such an event or action can be
used. But in theory it should be possible to send alarms via
email to the users to notify them. Also, it should be possible
to automatically perform an action on components, which
use the Monitoring Service with an active agent. Such an
action could be the execution of a script to automatically
repair the state of a failed cloud component.

Figure 3 shows the architecture of the Monitoring
Service. The following types of monitoring occur in the
Monitoring Services:

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

 Touchless monitoring: A component, which is
monitored, needs no further software installed,
except a simple standard SNMP service. The
Monitoring Service uses SNMP to retrieve current
information about the component. This is only
passive monitoring without any chance of interaction
or controlling of the component. Also, the monitored
data can be different across several components
because SNMP does not standardize the monitored
data but the messaging protocol.

 Distributed monitoring: This type of monitoring is
based on an extra agent, which is deployed to the
component being monitored. The monitoring server
connects to this agent to retrieve information on the
component. With the agent solution, it is also
possible to control and manage the component.

 Performance services: These services are used to
monitor data for long-time performance analysis and
bottleneck indication. It should be noted that the
performance services are used for manual analysis
only.

The Monitoring Service uses multi-agent systems for
active mechanisms. So it is more aligned to the “old-
fashioned” IT systems. But the Monitoring Service can also
be used in cloud environments because such environments
are nothing else than virtualized IT systems.

Figure 3. Architecture of the IBM Tivoli Live Monitoring Service [12].

VII. PESA

PESA [11] is a technology that adds policies to an event-
driven service-oriented architecture (ESA). A policy is a set
of rules that control behaviors of services.

A large number of services that are deployed into
different cloud environments can generate a large number of
events. Because of that, it is not practical to set up a
centralized management service that collects, stores,
correlates and processes events. A better approach would be
to build management services responsible for a small number
of services, thereby reducing bottlenecks and speeding up the

reaction of the whole system. PESA offers this approach.
The management services are used for:

 Matching a pattern that consists of different single
events, which can indicate some failure.

 Creating high-level business events out of simple
events, which can indicate that some reaction of the
business layer is needed to assure the execution of
the business workflow.

 Adding data to events to give more information
about the reason for the occurrence of an event.

 Triggering conditions for policies or rules to react
on occurrence of events without human interaction.

 Invoking services or business workflows when their
conditions are satisfied to assure that a business
workflow can be executed.

As the services they are managing, the management
services should be loosely coupled and highly distributed so
that they can be set up in different cloud environments near
the managed services. This will improve the performance
while managing the services, reduces the complexity and
eliminates drawbacks of a centralized management service
(e.g., single points of failure). In such a scenario, the
managed services can automatically incorporate service
components for monitoring and management from their
“local” management services. Furthermore, it becomes
possible to compose the “small” management services into a
“bigger” management service that provides coherent
management for all services used in the business workflow.

Figure 4 shows the architecture of the management
service. The components of the architecture can be assigned
to one of the following layers:

 Monitors and sensors, extraction and
transformation tools: Events are generated through
monitoring services and sensors. Then every
occurring event is transformed to a standard data
format by a tool and the resulting events are
published to an enterprise service bus (ESB). Both
layers correspond to the event generation layer of an
EDA.

 Classification and categorization: This is the layer
where events are classified and assigned to a class of
events in order to provide a coherent scope on the
events for the layer above.

 Analysis engines: This layer correlates, associates
and links events together to generate more complex
events that have relevance to business. It
corresponds to the event processing layer of an
EDA.

 Operational actions, policy actions and conflict
resolution actions: These are the layers where
policies trigger actions based on events as their
conditions. So the layers are responsible for
performing the actions that assure the execution of a
business workflow. The layers correspond to the
event handling layer of an EDA.

All the layers communicate with each other through the
ESB. Layers are built so that higher layers have broader
scope that enables more complex analysis and management.

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

But it does not mean that the high and low-level
management services are built with more or less complex
components. Rather every management service is able to
handle events and perform actions based on policies. Such a
system is highly extensible, by adding more management
services responsible for managing more services.

The intelligence that PESA adds to active mechanisms is
the possibility to build business workflows that are very agile
and can be easily adapted to changes, without human
interaction during the execution of a business workflow. This
becomes possible only by adding the events to signal
changes and by adding the policies to react on those changes.

Figure 4. Architecture of the PESA management service [11].

VIII. CONCLUSION

This paper gave an overview of existing technologies and
products – viz., OM4SPACE Activity Service,
RESERVOIR, Amazon SNS, IBM Tivoli Live Monitoring
Service, Zimory and PESA – that can be used for providing
active mechanisms in cloud environments. Table I
summarizes this overview.

TABLE I. SUMMARY OF OVERVIEW OF TECHNOLOGIES AND

PRODUCTS FOR PROVIDING ACTIVE MECHANISMS IN CLOUD ENVIRONMENTS

Technology / Product Architecture Cloud layer

OM4SPACE Activity Service SOA SaaS, PaaS, IaaS

RESERVOIR SOA IaaS

Amazon SNS EDA PaaS

IBM Tivoli Live Monitoring Service SOA SaaS

Zimory EDA IaaS

PESA ESA PaaS

The overviewed technologies and products mainly differ

in the architectures they support: EDA, SOA or ESA.
An EDA [1] enables event producers to publish their

events and event consumers to subscribe to and consume
those events. In an EDA, events know nothing about their
consumers. Events can also remain unconsumed because
none of the consumers is interested in them. There are no
direct relationships between the event producers and
consumers. So the services built on top of an EDA are
loosely coupled. This helps an EDA fit into a scenario where
the services deployed into the cloud are managed by

management services. Support of an EDA can be found in
Amazon SNS and Zimory.

A SOA enables the composition of loosely coupled
highly distributed services. These services can be deployed
into different cloud environments where the clouds
themselves take care of the services. Support of a SOA can
be found in OM4SPACE Activity Service, RESERVOIR and
IBM Tivoli Live Monitoring Service. The Activity Service in
its initial version follows a cloud-native approach, by using
an ESB to build a SOA and Web services to provide
communication between loosely coupled highly distributed
components. RESERVOIR also supports a SOA but it does
not actually specify such communication. The Monitoring
Service follows a more old-fashioned approach, by using
multi-agent systems for active mechanisms. One possible
reason for this is the growing structure of the whole IBM
Tivoli Live.

An ESA [11] is the result of combining an EDA with a
SOA. Such a combination is needed because a SOA typically
composes services to business workflows. It does not
account for events that occur across or outside of business
workflows or complex events. Being combined with an
EDA, a SOA can react on events. For example, a high-level
business event can cause the execution of a single service or
a set of services that can handle the problem occurred in a
business workflow. Such a SOA enriched by events through
an EDA can be used to build agile business workflows that
adapt to changes, which occur during the execution of the
business workflow. In such a scenario, the changes will be
signaled by events. An EDA can also take advantage of the
combination with a SOA because of the flexibility that a
SOA provides through composing of services on different
layers. As a result, it becomes possible to integrate an EDA
on every layer. So an EDA can become responsible for
publishing, subscribing and consuming events on both
simple low service layer and high complex business layer.
Because of these advantages, an ESA fits well into a scenario
where events should be monitored, enriched and connected
with each other on different levels. The connection between
events is important because it can be used to connect
multiple low-level system events to create a high-level
business event. In such a scenario, events can occur
everywhere, e.g., they can be created from applications,
databases or services that are involved in a business
workflow. Support of an ESA can be found in PESA. One
possible reason for this is that cloud environments are
typically environments for loosely coupled highly distributed
services that can be orchestrated to a business workflow.

The overviewed technologies and products also differ in
the cloud layers on which they provide their services: SaaS,
PaaS or IaaS.

SaaS is a model of software deployment whereby a cloud
provider licenses an application (i.e., software) to users for
the usage as a service on demand. OM4SPACE Activity
Service and IBM Tivoli Live Monitoring Service provide
SaaS. One possible reason for this is the popularity of SaaS.
(Currently, SaaS is the most popular type of cloud
computing because of its simplicity, flexibility and
scalability.)

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

PaaS is a model of application development and delivery.
In particular, PaaS offers a development platform for users.
OM4SPACE Activity Service, Amazon SNS and PESA
provide PaaS.

Whereas SaaS allows for the usage of applications in
cloud environments and PaaS offers the ability to develop
and deliver these applications, IaaS provides users with the
infrastructure for developing, running and storing the
applications. RESERVOIR and Zimory provide IaaS.
OM4SPACE Activity Service could also be used as an event
processing component within IaaS.

IX. FUTURE WORK

There are advantages and disadvantages with all the
overviewed technologies and products. An advantage of one
is often a disadvantage of another. Therefore, the most
promising approach would be to combine them all. This
approach could be based on OM4SPACE Activity Service
because it could possibly operate or be utilized on all
different layers of a cloud environment and performs the
complete event roundtrip by: generating events at an Event
Source, sending events to the Event Service, performing
CED at the Event Service and generating new complex
events, sending events to an Event Consumer and the Rule
Execution Service, performing rule processing and rule
execution, and performing action invocations on action
handlers in case of matching rules.

The Activity Service could benefit from using
RESERVOIR. RESERVOIR defines a standard way to
monitor a cloud component in order to read the parameters
out of that component using a manifest, which assures that
the Service Providers can deploy their services into the
cloud. The Activity Service should also be able to monitor
cloud components (both active and passive), but without
concretely defining what parameters would be monitored.
This may first not be seen as a real problem. But when rules
for the events should be generated, it may become a big issue
because the rules use the attributes of the events, which are
set at a cloud component. Also, for the content enrichment of
events at the Event Service, a concrete set of attributes
should be defined. Thus, the usage of RESERVOIR could
solve the problem of defining rules and getting the parameter
dependencies for the rules.

Another improvement could be done in the action
performing part of the Activity Service, which is currently
implemented as a simple call to an action handler. This could
be improved if the action handler and the Rule Execution
Service used Amazon SNS as a transport mechanism. For
example, the action handler could subscribe to a topic filled
by the Rule Execution Service via Amazon SNS. But this
problem cannot be solved by using Amazon SNS solely

because this product is mostly not standardized and thus, can
cause a vendor lock-in. Another problem with the usage of
Amazon SNS is the small message size (8 kilobytes only).
Therefore, a better solution would be if the Activity Service
itself could implement a-la Amazon SNS transport
mechanism. Such independence from a transport mechanism
is currently implemented in the Activity Service to allow for
better integration with existing cloud communication
services.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] J. Dunkel and R. Bruns. Event-Driven Architecture. Springer, 2010.

[2] A. Koschel, M. Schaaf, S. Gatziu Grivas, and I. Astrova. An Active
DBMS Style Activity Service for Cloud Environments. 1st Intl. Conf.
Cloud Computing 2010, pages 80–85, IARIA, Portugal, November
2010.

[3] C. Chapman,W. Emmerich, F. G.M´arquez, S. Clayman, and A.
Galis. Software architecture definition for on-demand cloud
provisioning. 19th ACM International Symposium on High
Performance Distributed Computing, HPDC’10, pages 61–72, New
York, NY, USA, 2010. ACM.

[4] S. Eliot. Reservoir homepage. http://www.reservoir-fp7.eu/ Accessed:
November 2011.

[5] Citrix Systems Inc. Xen. http://www.xen.org/ Accessed: November
2011.

[6] VMware Inc. Vmware. http://www.vmware.com/ Accessed:
November 2011.

[7] OpenNebula. Opennebula. http://www.opennebula.org/ Accessed:
November 2011.

[8] F. Galan, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M.
Vaquero. Service specification in cloud environments based on
extensions to open standards. 4th Intl. ICST Conference on
Communication System software and middleware, COMSWARE’09,
pages 19:1–19:12, New York, NY, USA, 2009. ACM.

[9] Amazon Simple Notification Service (Amazon SNS).
http://aws.amazon.com/de/sns/ Accessed: November 2011.

[10] Json (javascript object notation). http://www.json.org/ Accessed:
November 2011.

[11] P. Goyal and R. Mikkilineni. Policy-based event-driven services-
oriented architecture for cloud services operation and management.
IEEE Intl. Conference on Cloud Computing, pages 135–138, 2009.
IEEE.

[12] IBM Tivoli foundations and IBM Tivoli Live Monitoring Services.
http://www-01.ibm.com/software/tivoli/products/monitor/ Accessed:
November 2011.

[13] Z. GmbH. Zimory Enterprise Cloud Anwendungsbeispiel.
http://www.zimory.de/index.php?id=75 Accessed: November 2011.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

