
Measuring the Impact of Different Metrics on
Software Quality: a Case Study in the Open Source

Domain

Valentino Sartori, Birhanu Mekuria Eshete, Adolfo Villafiorita
Fondazione Bruno Kessler

via Sommarive, 18
38123 Trento, Italy

valentino.sartori@tin.it, eshete@fbk.eu, adolfo.villafiorita@fbk.eu

Abstract — Knowledge about the expected impact of different
project and technological choices is fundamental for project
planning, resource allocation, and quality of the final software
product. The latter property, in particular, is essential to gain
users' trust and confidence. In this paper we present some
preliminary results about a study we are conducting on open
source web applications available in SourceForge. The ultimate
goal is providing tools to support project managers and team
in making choices that, being all other factors the same,
increase the probability of delivering higher quality software
products.

Keywords - Software Robustness; Software Metrics; Software
Quality; Project Metrics.

I. INTRODUCTION

The last decade has seen a steady growth of web
applications and services. Their popularity is due to many
factors, among which we mention making content on the
web easier to update (e.g., Content Management Systems),
enabling forms of remote collaboration (e.g., with Wikis),
delivering in a more efficient ways e-Government services to
citizens (e.g., with web portals), and providing a new way to
deploy and make available complex applications (e.g.,
Google Docs).

The development of web applications, however, is rather
complex, since it nearly always requires the integration and
harmonization of code written in different programming
languages. A typical web application could, for instance, be
written in PHP, use a MySQL database for storage, and
deliver information to the user with pages written with
HTML, CSS, and JavaScript. On top of that, the
programming languages used to code the applications’ logic
(e.g., PHP, Ruby, Perl) do not have features, such as, for
instance, type and range checking, that help programmers
spot and correct errors before the application is deployed. As
a result, several applications have vulnerabilities that could
be exploited to, e.g., expose or steal sensitive data. Although
one could claim that these problems could be mitigated using
languages with more stringent syntax checks, such as Java,
practical issues often make the development of web
applications with these technologies unfeasible (e.g., lack of

trained resources) or less attractive (the vast majority of
service providers, for instance, do not offer deployment of
Java applications).

Growing popularity of web applications and the
flexibility granted by the different technological layers that
can be used to deliver web applications have resulted in a
rich array of different frameworks. We mention, as an
example, ASP, C#, Java, Ruby, PHP, Perl, Python, and
Javascript. When starting the development of a new web
application, thus, the project team might be faced with the
necessity of choosing one among the various frameworks
and programming languages available for development. In
such a scenario, knowledge about the impact of different
technological choices could become a strategic tool to guide
the selection of the technology to adopt.

This paper presents some preliminary results related to a
study we have conducted on web applications made
available by SourceForge. We are, in particular, interested in
understanding relationship between some technological
choices (e.g., the main programming language used for the
development of the web application) and the quality of the
corresponding product. To do so, we collected data and
historical data about several applications under the “web
application” category of SourceForge and tried to link the
data to the quality of the product. We need to remark and
emphasize that this paper is a first step toward a more
systematic and complete analysis of the data. More in depth
analyses, therefore, will be needed to further validate the
interpretation of (some) data and (some) results we present
here; the extension of the results to a wider class of
applications and to a wider set of variables will help
consolidate the assumptions made in this paper.

The paper is structured as follows. Section II presents the
data sources and the data collection tools we used. Section
III defines the goal of this work. The actual results are shown
in Section IV, where we characterize the applications we
have included in our study and Section V, where we show the
data we have obtained. Finally, Section VI presents some
related work and Section VII draws some conclusions.

172

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

mailto:valentino.sartori@tin.it
mailto:valentino.sartori@tin.it
mailto:eshete@fbk.eu
mailto:eshete@fbk.eu
mailto:adolfo.villafiorita@fbk.eu

II. SOURCEFORGE AND DATA COLLECTION

SourceForge [1] is a repository of open source software
that provides tools for managing a software development
project and distributing applications for free. Tools made
available by SourceForge to support project teams include
versioning and bug tracking systems, wikis, forums, and
repositories to distribute different releases of a system. In the
words of the owners, “SourceForge.net is the world's largest
open source software development web site. As of August
2010 more than 240,000 software projects have been
registered to use our services by more than 2.6 million
registered users, making SourceForge.net the largest
collection of open source tools and applications on the net.”

Given availability of data and number of projects,
SourceForge is a great opportunity for researchers to analyze
trends in (open source) software development. Matter of fact
SourceForge has been used in the past for analyses and
studies by several authors: we mention [2], [3], [4], [5], [6],
and [7].

For various metrics, such as the number of downloads
and team size, however, the data made available by
SourceForge is the most recent value. Moreover extraction of
the data requires to parse the HTML web pages of the
SourceForge website. To simplify the analysis work,
repositories containing dumps of the SourceForge database
are available to researchers (see, e.g., [8] and [9]).

We used the SourceForge Research Data Archive
(SRDA) [10]. The SRDA repository, available to registered
users, provides a web form that allows to query a database
containing monthly dumps of the SourceForge database.
From SRDA one can get a vast amount of descriptive and
statistical data about SourceForge projects and users [11].
Not all information is however made available by SRDA. In
particular, no data about source code metrics, necessary for
our work, was available when we performed the analyses.

To support our data collection needs, that requires
downloading big amounts of data and integrating
information from different sources, we developed a small
system, whose architecture is depicted in Fig. 1. The left
hand side of the picture shows the data sources we use,
namely SourceForge (through the web pages made available
on the Internet) and SRDA (through the web form made
available to registered users). The right hand side of the
picture shows the tools we developed:

• a Parser, written in Java and based on Jtidy [12]
and on a DOM inspector, that we use to extract
information from SourceForge’s web pages.

• A Repo Client that we use to automate calls to cvs
and svn, to download the source code of the projects
we analyze. The source code is analyzed using cloc
[13], a tool to compute basic metrics about source
code (size, expressed in lines of code and
comments).

• A database (Local DB, in Fig. 1), which we use to
locally integrate and store all the information we
need. The database is then queried by users to
perform analyses.

III. GOAL OF THE ANALYSIS AND DOMAIN

We performed analyses on the SourceForge database to
achieve the following goals:

• Goal 1. Provide a characterization of Source Forge
systems available in the “web application” category.
The goals in this area include: understanding what
categories of applications are most represented, what
programming languages are used, and their growth
over time; understanding whether there is a
relationship between technology adopted and system
size, measured both in terms of lines of code and in
terms of Function Points [11].

• Goal 2. Provide a characterization of the quality of
systems available in the “web application” category
of SourceForge. Software quality is a difficult
property to measure. Various approaches have been
proposed emphasizing various dimensions, that
include internal properties (e.g., software
maintainability) and external properties (e.g.,
usability, reliability, availability, security). However,
an assessment involving all these aspects can hardly
be automated. We decided, therefore, to limit our
attention to the number of bugs, their evolution over
time, and the time taken by the project team to fix
bugs. Since security bugs are of particular interests
for web applications, we also distinguished and
computed specific data for them.

• Goal 3. Highlight patterns between some of system
characteristics (e.g., system size, programming
language used) and software “quality” (in the sense
of the previous goal).

The data we analyzed include all projects under the category
“web based” which had released at least one version from
January 2006 to May 2010 and for which there is at least one
bug filed in the project’s bug tracking system. This screening
is necessary to select projects which have had some active
development. Various projects in SourceForge, in fact, are
just “placeholders” for ideas that never get developed or that
will be developed in the future.

IV. A CHARACTERIZATION OF SOURCEFORGE’S WEBAPPS

Fig. 2 and Fig. 3 provide a simple characterization of
web applications in SourceForge. The data, collected from
SRDA, spans from January 2006 (the first snapshot

 Figure 1. The system architecture

SourceForge
Website

SRDA DB SRDA
Webform

SF DB

Parser

AnalyzerRepo
Client

Bot

Metrics
Comp.

Local DB

Data Sources Data Collection Tools

173

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

available) to May 2010 (the last snapshot available when we
performed the analyses).

All projects in SourceForge are assigned by the project
leader to one or more categories. The graph in Fig. 2 shows
the growth, over time, of the categories under the “web
based” umbrella. (Notice that the total sum in the graph is
bigger than the actual number of projects, given the fact that
one application can be assigned different categories.) Maybe
not surprisingly the categories collecting the highest number
of applications are CMS (Content Management Systems),
Project Management, and Enterprise applications.

Fig. 2 weights all projects equally, independent from size
and complexity. Applications in SourceForge, however,
range from simple scripts no bigger than a few hundred lines
of code to complex applications in the range of hundred of
thousands of lines of code. A more accurate measure of
growth, therefore should take into account also the size. This
is shown in Fig. 3 where we measure, for each project, the
size (in SLOC) as of May 2010 of the different technologies
used in the projects. It has to be remarked that some of these
technologies (e.g., CSS, XML) are not programming
languages, although they can still be the “targets” of bugs
and bug reports. The data of each project is shown on the
date the project was started. Values accumulate over time.
Thus, for instance, the data on the year 2000 (the first value
on the x axis) shows the size (in SLOC) reached in May
2010 by all the projects that were started in that year. The
data in 2001, as a second example, shows the size reached in
May 2010 by all the projects started in 2001 together with
those started in 2000. This explains the asymptotic nature of

the graph, since projects started later will have had less time
to evolve (and, hence grow).

The graph clearly shows that a wide variety of languages
are used for developing web applications. Among them PHP
is, by far, the programming language of choice, followed by
Java, and Javascript. The graph omits some environments,
such as Ruby and Python, which are scarcely represented in
SourceForge. Notice also that the data refers to SourceForge
only and that it might not be representative of the overall
popularity of programming environments. Ruby on rails
applications, for instance, have in RubyForge (a provider
alternative to SourceForge) their repository of choice. Thus
Ruby will tend to be underrepresented in SourceForge.
Notice also that some of the programming languages
represented in the figure, such as C and C++, come both
from CGI-based web applications and from projects related
to the development of desktop applications that, on the side,
provide also some kind of web interface or service. Finally,
we remark that the total number of lines of code we
measured is about 16 million.

The technologies chosen to develop an application
depend upon many factors, among which training and skills,
legacy, and availability of libraries, to name a few. Fig. 3
shows the “popularity” of different technologies in
SourceForge, but it does not tell us anything about whether
there is a consistent usage of certain programming languages
given some specific project characteristics, such as, for
instance, system’s size. This is shown in Fig. 4, where, we
measure the size of projects for each different programming
language. Data is presented with a box plot, that allows us to
show the median value (the bold vertical line in the box), the

CMS Project
Management

Time
Tracking

Enterprise Scheduling Finance eCommerce

1 Jan 2006
1 Feb 2006
1 Mar 2006
1 Apr 2006
1 May 2006
1 Jun 2006
1 Jul 2006

1 Aug 2006
1 Sep 2006
1 Oct 2006
1 Nov 2006
1 Dec 2006
1 Jan 2007
1 Feb 2007
1 Mar 2007
1 Apr 2007
1 May 2007
1 Jun 2007
1 Jul 2007

1 Aug 2007
1 Sep 2007
1 Oct 2007
1 Nov 2007
1 Dec 2007
1 Jan 2008
1 Feb 2008
1 Mar 2008
1 Apr 2008
1 May 2008
1 Jun 2008
1 Jul 2008

1 Aug 2008
1 Sep 2008
1 Oct 2008
1 Nov 2008
1 Dec 2008
1 Jan 2009
1 Feb 2009
1 Mar 2009
1 Apr 2009
1 May 2009
1 Jun 2009
1 Jul 2009

1 Aug 2009
1 Sep 2009
1 Oct 2009
1 Nov 2009
1 Dec 2009
1 Jan 2010
1 Feb 2010
1 Mar 2010
1 Apr 2010

0 113 51 152 484 196 0
0 118 51 161 488 198 0
0 131 56 185 492 204 0
0 143 60 202 425 177 0
0 151 66 214 505 222 0
0 160 69 230 507 227 0
0 164 71 249 509 229 0
0 180 81 278 520 237 0
0 200 89 304 529 246 0
0 201 93 322 428 204 0
0 231 105 352 545 261 0
0 241 106 364 545 261 0
0 252 109 379 551 268 0
0 264 113 396 554 273 0
0 275 120 410 558 280 0
0 293 129 425 564 287 0
0 313 130 441 568 292 0
0 317 130 449 439 225 0
0 329 135 469 443 232 0
0 344 141 485 449 239 0
0 357 144 501 455 250 0
0 372 156 520 461 254 0
2 392 161 544 468 260 2
56 402 168 557 472 263 14
139 423 177 561 474 262 37
179 436 182 566 475 264 52
241 458 187 570 477 265 71
284 474 192 575 477 264 92
331 494 197 584 476 265 108
378 508 206 583 479 265 128
453 543 216 588 482 267 152
486 551 223 587 483 268 163
522 567 231 589 487 269 173
572 582 234 594 487 270 186
614 599 244 599 488 272 207
648 613 249 602 488 274 221
690 628 256 604 492 276 230
726 639 261 601 494 275 241
755 640 263 604 496 275 246
762 651 266 605 501 273 253
776 657 269 607 502 275 255
788 660 268 611 502 274 257
819 660 269 614 505 275 261
842 661 267 620 507 276 264
865 668 271 625 506 280 268
878 671 275 627 505 280 271
897 668 274 629 505 280 272
925 671 275 630 507 280 274
943 674 277 632 507 280 274
964 679 280 641 509 282 278
990 683 283 648 508 284 288
1018 685 285 654 509 283 295

0

1000

2000

3000

4000

1 Jan 2006 1 Oct 2006 1 Jul 2007 1 Apr 2008 1 Jan 2009 1 Oct 2009

Growth by Category

CMS
Project Management
Time Tracking
Enterprise
Scheduling
Finance
eCommerce

Figure 2. Growth of web applications by category

! !

!"#$%&"'"()*+,*-+)./*%(+,"+012+#*%+
-")3.$33"(+#*%+$))(

4$5*--$

6777 6778 6776 6779 677: 677; 677< 677= 677> 677? 6787

7

6777777

:777777

<777777

>777777

87777777

86777777

8:777777

8<777777

8>777777

!"#$%&'()*&'+,-)./0()1%")!"#$%&')232'2,'2#3)4,'%

!"#

$%#

&'&

&()*

&+,-+*

.+/+,-)012

.+/+

'3"#

4$$

45*678,059

4::

4;

4

<58)9(=$>(**

?6+

?-2059$-)012

@))(Figure 3. Source Lines of Code by Technology and Project
Figure 4. Source Lines of Code by Technology and Project

!

!

! !

! ! !

! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!

AS
Ada

ASP
BS

C
C

#
C

++
C

F
C

SS
H

TM
L

Java
JS

JSP
Pascal

Perl
PH

P
Python

R
uby

0 50000 100000 150000 200000 250000 300000

B
ox plot relativo le linee di codice per linguaggio

Linguaggi di program
m

azione

Numero linee di codice

174

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

are where the majority of the population lies (the box), the
minimum and the maximum values (the “T”s at the extremes
of the box plot). By looking at the diagram, C seems to be
the most “flexible” language, since it appears in a wide
variety of projects, ranging from small applications to
systems in the range of 300K SLOC. Java and PHP are
closely related, with similar patterns with respect to the size
of projects in which these programming languages are used.
In both cases the vast majority of applications written in
PHP or Java is below 100K SLOCs, with PHP being the
language with the most exceptions.

V. WHERE ARE THE BUGS?
Projects in SourceForge can use the SourceForge’s bug

tracking system to maintain track of the bugs discovered
during development or usage of the system. Like many other
similar systems, the bug tracker in SourceForge allows one
to assign a description, a priority, a status, a category, a
person responsible for the resolution, among other things. In
the second part of our work we tried to correlate information
about bugs and, more specifically, security bugs, with the
technologies used to develop an application. We had,
however, to face the following two issues related to data
quality and availability:
1. Not all fields in SourceForge’s bug tracker are

compulsory and many projects do not file information
about the category of the bug. To distinguish between
security-related and non-security related bugs, when the
category is not available we used a simple classification
algorithm that measures the presence of specific words
in the bug description. In particular, if the bug
description contains some (key)words typically
associated to security problems, we classify the bug as a
security bug. The (key)words include, for instance:
login, logout, session, phishing, penetration. The set of
keywords is synthesized based on Sans Security Terms

Glossary [14]. The approach is similar to [18]. See
Section VI for more details.

2. The information about the file in which a bug is located
is not available in the bug tracking system. Moreover,
commit messages in several cases do not mention the
bug they fix. As a result it is often impossible to assign a
bug to a specific file and, hence, to a specific
programming language. All projects, however, have a
main programming language. To allocate bugs to a
specific technology, therefore, we made the (strong)
hypothesis that all bugs reported in a project refer to the
main programming language used. Thus, for each
project, we identified the main programming language
(that is the programming language with the greatest
number of SLOCs) and assumed all bugs referred to it.

The results of the analyses are shown in Table 1, where we
report the number of bugs per thousand lines of code. Some
software engineers estimate the defect density of well-
written code to be between 3 and 6 per thousand lines of
code [15]. Our data shows quite a few values outside the
predicted range. Although one explanation could be that we
refine the work in [15], a more likely explanation is due to
the “noise” in our data (not all bugs refer to the main
programming language) and to the great variety of
applications hosted by SourceForge (which include both high
and low quality software). That said, the table seems to show
that Java, a language with a rather strict syntax, shows a
lower density of bugs than languages with a relaxed
constructs, such as PHP and Bourne Shell. There are some
exceptions: Javascript seems to perform better than Java; C+
+, in spite of being object oriented, worse than C.

Table 2, finally, reports the average time required to close
both non-security and security related bugs. The table shows
the elapsed time and not the actual effort spent on fixing the
bug. Thus the values in the table should be interpreted more
as the combination of priority and complexity, rather than a
simple measure of complexity.

TABLE I. DENSITY OF BUGS AND SECURITY BUGS PER (MAIN)
PROGRAMMING LANGUAGE

Project’s Main
Programming

Language
Bugs

per KSLOC
Security Bugs
per KSLOC

Javascript 0.2 0

SQL 0.5 0.1

JSP 0.7 0

Java 0.9 0

C# 1.4 0.1

Perl 2.2 0

C 3.4 0.4

C++ 4.9 0

Bourne Shell 6.6 3

Action Script 8.1 0

PHP 16.6 7

TABLE II. TIME REQUIRED TO CLOSE A BUG

Project’s Main
Programming

Language
Average Time to close a

Bug
Average Time to close a

Security Bug

Javascript 74 46

SQL 54 8

JSP 9 7

Java 61 76

C# 31 3

Perl 156 201

C 322 25

C++ 149 2

Bourne Shell 15 16

Action Script 48 90

PHP 76 124

175

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Also in this case results are not definitive. The table
shows that security bugs tend to be fixed in a shorter time for
some technologies, but not for all of them. The interpretation
is not clear: the most likely reasons could include complexity
in fixing certain security bugs and some differences in the
data available (e.g., the huge difference between the time
take to fix bugs and security bugs in C++ could be due to the
fact that there are few projects written in C++). Further
analysis is needed.

VI. RELATED WORK

In [16] the authors analyze the correlation among
different object-oriented metrics. The goal is identifying
dependent metrics to reduce the burden of metrics
computation and to define statistically significant quality
threshold for Java software. The analysis, conducted on 146
open source Java projects downloadable from SourceForge,
for a total amount of over 70,000 classes and over 11 million
lines of code. The author show a strong correlation among
metrics in five different cases and, in the process, identify
actual ranges of values for several metrics. Our work, by
contrast, focuses on correlation between project choices
(such as the programming language) and the corresponding
quality of the end system.

In [17] the authors examine the code base of the
OpenBSD operating system to determine whether its security
is increasing over time. They do so by measuring the rate at
which new code has been introduced and the rate at which
vulnerabilities have been reported over the last 7.5 years and
fifteen versions. Some of the questions the authors try to
answer include aspects related to whether legacy code
influences security and whether software and software
development practices are leading to the development of
more secure software. The authors show that the majority of
security bugs are in foundational code (that is code released
with the first versions of a system).

In [18] the authors use text-mining techniques to classify
some bugs as security bugs. The results of the classification
is then validated with software engineers yielding a 77% of
correct classification. Our method for the classification of
security bugs is inspired by that of the authors, although
simpler in scope and lacking the manual validation phase.

Finally, in [19] the authors report on data collected during
corrective maintenance and refactoring of a complex system
to improve software quality. In the case of [19] the
association between bugs fixed and changes to the code was
possible due to the practices adopted by the development
team, that required to state in the commit messages that
issues being addressed.

VII. CONCLUSIONS

Knowledge about the expected impact of different project
and technological choices is fundamental for project
planning, resource allocation, and quality of the final
software product. Open Source Repositories, such as
SourceForge, not only deliver high-value services to support
teams and individuals interested in open source
development, but they also provide a wealth of information
about software projects and development practices.

In this paper we have presented a study we conducted to
understand whether some simple technological choices, such
as the programming language adopted to develop an
application, provide a clear advantage to control the
complexity of development and increase a system’s quality.
We chose to analyze web applications hosted by
SourceForge. The choice was made for various reasons,
among which complexity of web application development
and the wide choice of technologies to develop them. To
understand whether some technologies consistently
outperform others, we used some crude indicators, such as
the density of bugs and the time required to fix bugs. The
results we got, in our opinion, provide some preliminary
insights.

Further work is needed to consolidate the results
presented in this paper. The directions include: the input
domain, the interpretation of some metrics, and the
consolidation of the analyses. Concerning the first point, two
obvious areas of improvement are the enlargement to a wider
set of applications (e.g. by including other repositories, such
as RubyForge) and the reduction of “noise” from the data
(e.g., removal of projects that are not active). Concerning the
second point (the interpretation of some metrics), we could
extend analyses to other metrics usually related to software
quality (e.g., inner quality metrics). Concerning the third
point, more work is needed to systematically analyze the
correlation among the different variables characterizing
(SourceForge) projects.

These are some of the necessary steps to build a solid
ground upon which we could eventually come with a set of
rules of the thumb to guide technological choices to increase
the quality of software artifacts.

REFERENCES

[1] SourceForge website, Available at http://sourceforge.net. Last
accessed December 20, 2010.

[2] English, R. and Schweik, C. M. “Identifying success and tragedy of
floss commons: A preliminary classification of sourceforge.net
projects”. In FLOSS ’07: Proceedings of the First International Work-
shop on Emerging Trends in FLOSS Research and Development
(Washington, DC, USA, 2007), IEEE Computer Society, p. 11.

[3] Grechanik, M., McMillan, C., DeFerrari, L., Comi, M., Crespi, S.,
Poshyvanyk, D., Fu, C., Xie, Q., and Ghezzi, C. “An empirical
investigation into a large-scale java open source code repository”. In
ESEM ’10: Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement
(New York, NY, USA, 2010), ACM, pp. 1–10.

[4] Li, Y., Tan, C.-H., Teo, H.-H., and Mattar, A. T. “Motivating open
source software developers: influence of transformational and
transactional leaderships”. In SIGMIS CPR ’06: Proceedings of the
2006 ACM SIGMIS CPR Conference on Computer Personnel
Research (New York, NY, USA, 2006), ACM, pp. 34–43.

[5] Robles, G., and Gonzalez-Barahona, J. M. “Geographic location of
developers at sourceforge”. In MSR ’06: Proceedings of the 2006
International Workshop on Mining Software Repositories (New York,
NY, USA, 2006), ACM, pp. 144–150.

[6] Van Antwerp, M., and Madey, G. “The importance of social network
structure in the open source software developer community”. In
HICSS ’10: Proceedings of the 2010 43rd Hawaii International
Conference on System Sciences (Washington, DC, USA, 2010), IEEE
Computer Society, pp. 1–10.

176

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

mailto:adolfo.villafiorita@fbk.eu
http://sourceforge.net

[7] Gao, Y. and Madey, G. R. “Towards understanding: a study of the
SourceForge.net community using modeling and simulation”. In
SpringSim (2) (2007), M. J. Ades, Ed., SCS/ACM, pp. 145–150.

[8] J. Howison, M. Conklin, and K. Crowston. “Flossmole: A
collaborative repository for FLOSS research data and analyses”. In
International Journal of Information Technology and Web
Engineering, 1(3), pp 17–26, 2006.

[9] C. Daffara and J. Gonzalez-Barahona. “Flossmetrics Project”, 2007.
Available at http://www.flossmetrics.org/. Last accessed December
20, 2010.

[10] Van Antwerp, M. and Madey, G., “Advances in the SourceForge
Research Data Archive (SRDA)”, The 4th International Conference
on Open Source Systems - (WoPDaSD 2008), Milan, Italy, September
2008. Also available at http://www.nd.edu/~oss/Papers/srda_final.pdf,
last accessed December 20, 2010.

[11] Albrecht, A. J., “Measuring Application Development Productivity,”
Proceedings of the Joint SHARE, GUIDE, and IBM Application
Development Symposium, Monterey, California, October 14–17, IBM
Corporation (1979), pp. 83–92.

[12] JTidy - An HTML Parser and Pretty Printer in Java. Available at
http://jtidy.sourceforge.net/howto.html. Last accessed December 20th,
2010.

[13] C L O C - C o u n t L i n e s o f C o d e . Av a i l a b l e a t h t t p : / /
cloc.sourceforge.net/. Last accessed December 20, 2010.

[14] Glossary of security terms. Available at: http://www.sans.org/security-
resources/glossary-of-terms/. Last accessed December 20, 2010.

[15] Hatton, L. “Re-examining the fault density - component size
connection”. IEEE Software 14, 2 (1997), pp. 89–97

[16] Barkmann, H., Lincke, R., and Lowe, W. “Quantitative evaluation of
software quality metrics in open-source projects”. In WAINA ’09:
Proceedings of the 2009 International Conference on Advanced
Information Networking and Applications Workshops (Washington,
DC, USA, 2009), IEEE Computer Society, pp. 1067–1072.

[17] Ozment, A. and Schechter, S., “Milk or Wine: Does Software
Security Improve with Age?" Proceedings of the 15th Usenix Security
Symposium, Usenix, 2006, pp. 93–104.

[18] Gegick, M., Rotella, P., and Xie, T. “Identifying security bug reports
via text mining: An industrial case study”. In Proceedings of the 7th
International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May
2-3, 2010, pp. 11–20.

[19] Longo, F., Tiella, R., Tonella, P., and Villafiorita, A. “Measuring the
impact of different categories of software evolution”. In Software
Process and Product Measurement, International Conferences: IWSM
2008, Metrikon 2008, and Mensura 2008, Munich, Germany,
November 18-19, 2008. Proceedings (2008), vol. 5338 of Lecture
Notes in Computer Science, Springer, pp. 344–351.

177

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

http://sourceforge.net
http://www.flossmetrics.org
http://www.flossmetrics.org
http://www.nd.edu/~oss/Papers/srda_final.pdf
http://www.nd.edu/~oss/Papers/srda_final.pdf
http://jtidy.sourceforge.net/howto.html
http://jtidy.sourceforge.net/howto.html
http://cloc.sourceforge.net
http://cloc.sourceforge.net
http://cloc.sourceforge.net
http://cloc.sourceforge.net
http://www.sans.org/security-resources/glossary-of-terms/
http://www.sans.org/security-resources/glossary-of-terms/
http://www.sans.org/security-resources/glossary-of-terms/

