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Abstract—Generative Adversarial Networks (GANs) are part of
the deep generative model family and able to generate synthetic
samples based on the underlying distribution of real-world data.
With expanding interest new discoveries and recent advances are
hard to follow. Recent advancements to stabilize training, will
help GANs to open up new domains using adjusted architectures
and loss functions. Various findings show, that GANS can be
used to generate not only images, but is also useful for text and
audio creation. This paper, presents an overview of different GAN
architectures, giving summaries of the underlying fundamentals
of each presented GAN. Furthermore, this paper presents look
into four application domains and lists additional domains.
Additionally, this paper summaries datasets and metrics used
to evaluate GANs and present recent scientific advancements.

Keywords–generative adversarial networks; machine learning;
deep learning.

I. INTRODUCTION
Generative Adversarial Networks (GANs) have revolution-

ized deep generative models used to learn data distributions
with unsupervised learning, to generate synthesized samples
for various domains coming from a number of sources re-
sembling the true data distribution. Introduced by Goodfellow
et al. [1] in 2014 it has been the focus of many researchers
to apply the concept to new domains, introduce new loss
functions and architectures, and new approaches to stabilize
the training process. Applicability of GANs is growing rapidly
and reaches new domains while achieving better results by
applying adapted architectures and joining domain typical
methods. The shared goal of all GANs is to reach a Nash
Equilibrium [2], meaning that neither the discriminator nor
the generator can be further improved. The idea of GANs
originates from the game theory, a classical two-player zero-
sum game [3], with only one winner. Nowadays, GANs are not
only used to create synthesized images [4]-[5], but they can
also create text [6], perform image and video translations [7]-
[8], video summaries [9], copy objects into another image [10],
help to reconstruct archaeological findings [11] or create
images from text descriptions [12]. Each of these GANs is
based on a different architecture with varying loss functions.
All these variations and specialized architectures combined
with missing unified evaluation methods and datasets [13]
make it difficult to compare and evaluate the performance
of GANs. Therefore, it is important to find available and
commonly used metrics and datasets used in the scientific
community to be able to compare the different approaches
and underlying architectures regarding their performance. This
survey gives an overview for researchers and summarizes
the current state-of-the-art of GANs based on six research
questions about architectures, domains, evaluation (metrics and

datasets), prevailing problems and advances in research.
The paper is organized as follows: Section II introduces the
methodology used for this survey and gives a short overview
about publications. In Section III, common and novel GAN
architectures are listed and summarized. Afterwards, Sec-
tion IV gives a short overview and describes research done in
four domains, where different styles of GANs are deployed.
Section V summarizes datasets used for evaluation by the pre-
vious described GAN architectures and lists GAN evaluation
methods. Furthermore, a database search was conducted to find
the most prominent evaluation methods. Section VI takes a
look at occurring problems while training GANs and shows
advances in research. SectionVII concludes this paper.

II. METHODOLOGY AND OVERVIEW
The following section will detail the methodology used to

create the survey and shows the process how contributions
were searched and selected. Furthermore, this section gives an
overview about publications distribution in recent years.

A. Research Questions
The Research Questions (RQ) regarding GANs are as

follows:
RQ1: What GAN architectures exist?
RQ2: In what domains are GANs utilized?
RQ3: What datasets are used to evaluate GAN perfor-

mance?
RQ4: What metrics are deployed to validate GANs?
RQ5: What challenges exist when working with GANs?
RQ6: Advances in research?

All subsequent Sections are structured to answer the above
mentioned RQs.

B. Database Search
The search was conducted using the following four

databases:
• IEEE Xplore
• ACM Digital Library
• NIPS Proceedings
• arXiv (used to find additional publications in the first

three mentioned databases)
Search terms were focused on clear easy structures. A general
search without using any specialized search string yields a
result of more than 430,000 results for IEEE Xplore and
ACM alone. By searching titles, full text and abstracts about
the full term and synonym achieved the best results. Search-
ing was done with the following search term: ”Publication
Title”: ”generative adversarial network*” OR ”gan” AND
”Abstract”: ”generative adversarial network*”. With gaining
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popularity of GAN, more publications starting to appear as
shown in Figure 1.

Figure 1. Annualised Number of publications

A big chunk of publications were published in conference
proceedings (89%) while only 11% were journals. There is
a continuous rise in publications following 2014 with 2015
being an outlier for the searched databases (arXiv excluded,
due to limited filtering options and inclusion of only peer-
reviewed publications). At the time of this survey 2020 had 62
publications, excluding early access titles. It can be assumed
that publications will continue to increase in the coming years.

III. GENERATIVE ADVERSARIAL NETWORK
ARCHITECTURES

With the introduction of GANs by Goodfellow et al. [1] in
2014, various new adapted architectures addressing a variety of
problem domains, were introduced in the following years. This
section will list and describe some of the most prominent and
concept wise interesting GAN architectures and is related to
RQ1. The different architectural patterns are sorted by their
date of publication to indicate the growth and progress in
recent years. Figure 2 shows a generic GAN architecture with
all components, as well as the input for Generator(G) and
Discriminator(D). G takes a random noise vector as input and
generates a fake sample forwarded to D as input. D know the
real data distribution, and classifies the input either as being
real or fake and backpropagates the error.

Figure 2. Generic GAN Architecture

A. Generative Adversarial Nets
The first GAN introduced by Goodfellow et al. in 2014 [1],

introduced the concept of GAN’s as a two-player minimax
game where two neural networks G and D compete against
each other. The generator takes random noise as input and
tries to generate an output consistent with the original data.
The discriminator tries to classify if the input came from
the original data or from the generator. This can be images
for example. The goal of D is to maximize the probability
to distinguish samples that came from the original data and
sample generated by G. At the same time G is trained to
minimize the probability of getting caught by D, meaning that
generated samples forwarded to D are classified as part of the
original data. The equation of the minimax game is given with

the following function V(G,D) also known as a vanilla GAN:

(1)
min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

Where x are the data real instances, Ex∼pdata(x) is the ex-
pected value over all x D(x) is D’s probability estimation that
an instance from x is real, z is the noise input vector, G(z) is
the G’s generated output using z, Ez∼pz(z) is the expected
value over all generated fake samples and D(G(z)) is the
probability that a fake instance is classified as real.

B. Conditional Generative Adversarial Nets
The cGAN by Mirza and Osindero [4] is a extension

of the vanilla GAN, where both D and G are conditioned
using additional information, for example class labels. This
can be achieved by adding another input layer for D and
G that contains the conditioned information. The input noise
from the vanilla GAN is combined with additional information
and combined to form a joint hidden representation (e.g., a
multilayer perceptron (MLP) hidden layer). The discriminator
takes the original data as well as the conditioned information
as input for a discriminative function. This minimax game can
be represented as the following equation given by the authors:

(2)
min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1−D(G(z|y)))]

The equation of the minimax game is the same as (1) with the
additional of the condition y to the discriminative function.
Figure 3 illustrates the structure of a cGAN with the condi-
tioned input. where the blue circles are the random noise z
and green is the conditioned information y fed into the layers
of the network. Both z and y are G’s input, where y acts an
restriction for instance creation. D utilizes y to determine if
a sample is real or fake and knows the real data instances as
well as the condition y.

Figure 3. cGAN Architecture [4]

C. InfoGAN
InfoGAN proposed by Chen and Deng [14] in 2016 splits

the input random noise vector into two vectors. This is done
to make the GAN learn meaningful representations. The first
vector contains incompressible noise(z), while the second
vector (latent code) targets the data’s semantic features(c).
G takes both vectors as input and is represented as G(z,c).
To prevent trivial codes, where the generator ignores c to
satisfy:PG(x|c) = PG(x), meaning G is able to ignore the
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latent vector to generate samples. Therefore, an information-
theoretic regularization is introduced stating that between c and
G(z,c) the amount of mutual information must be high. Based
on information theory, mutual information is the measurement
of learned knowledge between two random variables Y and X.
This can be expressed as the difference between two entropies
(X and Y ) with their mutual information (I):

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3)

This ensures that the information in c is not lost in G. This
leads to an information-regularized minimax game with the
following equation:

min
G

max
D

VI(D,G,Q) = V (D,G)− λI(c;G(z, c)) (4)

The equation is a modified version of (1) with λ added as a
mere factor, to ensure the use of latent code in the network.
A mutual information term can be hard to maximize but is
achievable by utilizing a lower bound auxiliary distribution
Q(c|x) known as Variational Information Maximization [15].
The auxiliary distribution Q is implemented as a neural net-
work. D and Q share every convolutional layer with one fully
connected one, which is responsible for the parameters of the
conditional distribution Q(c|x). If c is of categorical nature,
softmax is used to represent Q, while continuous c is dependent
on the true posterior.

D. Wasserstein GAN
The Wasserstein GAN (WGAN) by Arjovsky, Chintala and

Bottou [16] is an extension of the vanilla GAN with benefits
of improved stability and a loss function correlating with G’s
convergence. WGAN updates D more often for each training
iteration than it updates G. WGAN utilizes an approximation
of the Earth-Mover (EM) distance or Wasserstein metric [17]
to establish above mentioned benefits when compared with
vanilla GANs. The EM distance as shown in (5) is the optimal
cost of transporting an amount of mass from x to y to transform
Pr into Pg . Meaning the infimum or cheapest cost for any
transport with γ being all calculated plans and W (Pr,Pg)
being the probability distribution of x and y.

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖] (5)

Therefore, a function f solving the maximization problem of
(6) must be found.

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (6)

Sup is the least upper bound and symbolized by f is 1-
Lipschitz function [18]. To do this, a parameterized neural
network with compact space (W ) and weights w is trained
with backpropagation. This means all functions of w will be
K-Lipschitz. This is achieved by fitting the weights into a
fixed value range after each gradient update. The Wasserstein
distance can be calculated with the found and learned 1-
Lipschitz function.

E. Deep Convolutional Generative Adversarial Network
In 2015 Radford, Metz and Chintala [19] introduced DC-

GANs. One way to use DCGANs is by learning representations
of unlabeled images to use them in supervised learning. Such
a feat can be achieved by using parts of D and G for feature
extraction in supervised tasks. DCGANs combine the idea of

connecting GANs and Convolutional Neural Networks (CNN)
by incorporating architectural changes of CNNs. The first
change made was the use of all convolutional networks without
deterministic spatial functions and allowing the learning of
spatial downsampling by using strided convolutions. G profits
from spatial downsampling and additionally learns its own
discriminator. The second is the elimination of fully connected
layers. Instead, DCGANs utilize global average pooling as an
trade-off between training stability and model convergence.
G has one connected layer which is the input of the noise
vector shaped into a 4-dimensional tensor used to build the
convolution stack. D’s last layer is flattened and fed through a
single sigmoid output. The next change pertains batch normal-
ization, helping to prevent some occurring training problems
in deeper models due to poor initialization. Furthermore, the
addition of batch normalization helped deep generators to learn
and prevented collapse on a single point. Every layer is fitted
with batch normalization expect the generator’s output and the
discriminator’s input layer. All layers of G use ReLU (Rectified
linear unit - a linear function for values greater than zero and
non-linear for negative values) as activation function except
the output layer which uses Tanh (hyperbolic tangent - is a
nonlinear function between −1, 1, averaging around zero). For
D leaky rectified is used for activation. Figure 4 shows the
generator’s architecture which takes a 100x1 noise vector (z)
and runs it through the generator to map it into a 64x64x3
output G(Z). The input noise is reshaped and expanded into
a 4-dimensional tensor to form a vector of size 1024x4x4.

Figure 4. DCGAN Architecture [19]

An extension to DCGAN is called Regularized DCGAN
(RDCGAN) by Mehralian and Karasfi [20]. Representation
learning is as good as DCGANs ability but prevents mode
collapse (see VI-A) with the help of an encoder (E) with the
benefit of i) stabilize training and ii) provide more features.
Based on DCGAN, RDCGAN is an unsupervised method
that can learn good representations of images and by training
through adversarial learning the discriminator and encoder can
be reused for image classification tasks. DCGAN’s structure
persists with an added encoder to learn image encodings and
feed them to the generator for input reproduction. To show the
efficiency of RDCGAN’s classification abilities, a classifier is
situated at the top of the network. As with vanilla GAN D is
trained to maximize D(x) to identify images from the original
data, while G is minimizing D(G(z)) for getting caught with
fake images. While training G, D is frozen and the the encoder
is only frozen while G is training to create fake images. The
goal of this approach is to generate fake images with noise
to fool D and reconstruct encoded images from the input.
Therefore, G has two loss functions to enable G not only to
generate images but to have the ability to reconstruct images.
With lcona reconstruction loss function the distance between
real and generated image from E can be minimized and is
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depicted in the following equation:

lcon = Ex∼Pdata(x)‖x−G(E(x))‖2 (7)

To enforce G to reconstruct images which will pass through
Ds tests the encoder is defined as follows:

lencoder = Ex∼Pdata(x) (log(D(G(x))) + ε) + Icon) (8)

By minimizing E, it can extract more useful features for G to
reconstruct the image and D will classify them as real images
with a higher chance. For G to fool D, G has the following
object function trying to minimize log(D(G(z))):

lgenerator = Ez∼Pz(z) (log(D(G(z))) + ε) + Iencoder) (9)

F. Image-to-Image Translation
In [7], Zhu, Park, Isola and Efros, present an unpaired

Image-to-Image translation architecture called CycleGAN.
Paired Image-to-Image translation ({xi, yi}Ni=1) means for
each xi there is an corresponding yi and vice versa. Unpaired
translations differ, because there is no information given which
xi matches yi. Therefore, unpaired approaches have a source
{xi}Ni=1 ∈ X and specify a target set for the translation
{yi}Mi=1 ∈ Y . The idea of cycle consistency is that G : X → Y
and F : Y → X are consistent meaning that the translation
of an image from the source X to the target Y and back will
yield the starting image from source X again. Forward cycle
consistency (x → G(x) → F (G(x)) ≈ x) is the ability to
translate each image from X back to its original state. The
same is true for each image from Y, called backward cycle
consistency (y → F (y) → G(F (y)) ≈ y). This results in the
following equation:

(10)Lcyc(G,F ) = Ex∼pdata(x) [‖F (G(x))− x‖1]

+ Ey∼pdata(y) [‖G(F (y))− y‖1]

Two discriminators(DX and DY ) are used to differentiate
images {x} and translated images {F (y)} for DX and {y},
{G(x)} for DY . The adversarial loss function for DY is:

LGAN (G,DY , X, Y ) = Ey∼pdata(y) [logDY (y)]

+ Ex∼pdata(x) [log (1−DY (G(x))]

(11)

The complete equation for the specified problem is as follows:

G∗, F ∗ = arg min
G,F

max
Dx,DY

L (G,F,DX , DY ) (12)

CycleGAN architecture is based on the neural style transfer
in [21]. The network structure contains two stride-2 and two
1
2 -strides convolutions, as well as residual blocks. D is using
PatchGANs with a patch size 70x70 to classify if these patches
are real or were generated by G. To stabilize the training the
negative log likelihood in (12) is replaced by least square loss
and results in the following equation:

(13)LLSGAN (G,DY , X, Y ) = Ey∼pdata(y)

[
(DY (y)− 1)

2
]

+ Ex∼pdata(x)

[
DY (G(x))2

]
For the occurring problem of model oscillation both discrimi-
nators are updated with a history of previous generated images
instead of using the newest generated images.

In contrast, the Image-to-Image translation architecture
presented by Isola et al. in [22], is a paired approach. In this

case, G must not only fool D but must also achieve near ground
truth output. Therefore, L1 distance is chosen:

LL1(G) = Ex,y,z [‖y −G(x, z)‖1] (14)

This leads to the objective’s equation of:

G∗ = arg min
G

max
D
LcGAN (G,D) + λLL1(G) (15)

The architecture is based on [19] (see Section III-E)). To
prevent some bottlenecks G is U-Net [23] shaped with connec-
tions between each layer i and n− i with n being the overall
quantity of layers. All channels of i are connected with the
channels of n− i. Their used D is called PatchGAN also used
in the above CycleGAN and tries to classify a patch of size
NxN in an image of being real of fake. D runs this patch
across the whole image averaging the results of all patches to
generate the output of D.

G. StyleGAN
StyleGAN by Karras, Laine and Aila [5] is an enhance-

ment from their previous published ProGAN [24]. StyleGAN
proposes a new generator by including style transfer ideas. G
starts learn from a continuous input and at each convolution
layer, adjusts the style based on latent code (see Section III-C).
In combination with noise the network can distinguish and
separate attributes and random variations. Instead of starting
from the input layer, StyleGAN’s architecture starts from a
learned constant. The latent code (z) is embedded into a
latent space Z. Instead of putting z directly into G’s input
layer, a non-linear mapping is used to map the input into an
intermediate latent space W (f : Z → W)G is controlled
by the latent space through adaptive instance normalization
at each layer. StyleGANs architecture is shown in Figure 5

Figure 5. StyleGAN Generator Architecture [5]

and shows a progressively growing G. The network starts
with 4x4 images and are trained until stable and then the
size is doubled. The network consists of 8 layers while the
synthesis network g consists of 18 layers, each resolution has
two layers till 10242 is reached. The last layer’s output is
converted into RGB by using a 1x1 convolution. The depicted
mapping network takes a random point from latent space and
creates a style vector which is transformed and utilized after
each convolution. Adaptive instance normalization (AdaIN)
standardizes the the output of feature maps to a standard
Gaussian and adds the style vector as bias. Additional noise is
added for style variations of the generated images. StyleGAN
enables image synthesis control with the help of scale-specific
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modifications for each style. A style is drawn from each
learned distribution and based on the collected styles the
synthesis network can generate new images. Style mixing is
used to use more than one latent space to generate a defined
percentage of images during training. While such an image is
generated at some random point one latent space is switched
for another.

H. StackGAN
StackGAN [25] and their enhancement StackGAN+++ by

Zhang et al. [12] is a stacked GAN approach where GANs are
stacked in a tree-like shape. StackGAN-v1 is used for text-
to-image synthesis. Therefore, a text description is encoded
resulting in a text embedding ϕt. This first GAN is generating
low resolution images based on ϕt focusing on rough outlines
and object colors. Gaussian conditioning variables ĉ0 are sam-
pled from a conditioning augmentation to create more training
pairs from a Gaussian distribution (N (µ0 (ϕt) ,Σ0 (ϕt))). A
random variable z is used to train the generator (G0) and
discriminator (D0) shown in the following equations:

(16)LD0 = E(I0,t)∼pdata [logD0 (I0, ϕt)]

+ Ez∼pz,t∼pdata [log (1−D0 (G0 (z, ĉ0) , ϕt))]

(17)LG0
= Ez∼pz,t∼p [− logD0 (G0 (z, ĉ0) , ϕt)]

+ λDKL (N (µ0 (ϕt) ,Σ0 (ϕt)) ‖N (0, I))

The goal is to maximize LD0
and minimize LG0

. I0 is the
real image and t the original description form pdata, z is the
noise vector and λ is used a regulation parameter to balance
the terms in (17), set to 1 for the tests conducted in the
paper. A pre-trained character level CNN-RNN text encoder
is used to map text descriptions to the feature space of images
learning a correspondence between images and descriptions.
First ϕt is fed into a fully connected layer to generate the
necessary parts for the shown Gaussian distribution to sample
ĉ0. The discriminator compresses the text embedding into Nd
dimensions with a fully connected layer and then used to form
a Md ×Md ×Nd tensor. The image gets downsampled until
it reaches Md ×Md dimensions and is linked with the text
tensor. The result is forwarded to a 1× 1 convolutional layer
to learn features of the text and image. The decision score is
made by single node fully connected layer.

Stage-II GAN is built on top of Stage-I GAN and tries to
generate high-resolution images. It is conditioned on images
with low resolutions and as well as text embedding to correct
previous mistakes made by Stage-I GAN. The low-resolution
images of G0, resulting in s0 = G0 (z, ĉ0), and the Gaussian
latent variables ĉ are used to train D and G of the Stage-II
GAN by maximizing D and minimizing G as shown in the
following equations:

(18)LD = E(I,t)∼pdata [logD (I, ϕt)]

+ Es0∼pG0
,t∼pdata [log (1−D (G (s0, ĉ) , ϕt))]

(19)LG = Es0∼pG0
,t∼pdata [− logD (G (s0, ĉ) , ϕt)]

+ λDKL (N (µ (ϕt) ,Σ (ϕt)) ‖N (0, I))

During this stage the Stage-II GAN is not fed with additional
random noise, as the occurrence of randomness should have
already happened and been stored in s0. Gaussian variables

from both stages have the same pre-trained encoder and
generate the same ϕt. The main difference are different fully
connected layers for condition augmentation to generate differ-
ing deviations and means. Stage-II GAN is able to learn new
information which were previously omitted by Stage-I GAN.
G of the Stage-II GAN is constructed as an encoder-decoder
network using residual blocks. As with Stage-I generator ϕt
is used to generate ĉ. The results s0 of the first GAN are
is downsampled until it reaches a size of Mg × Mg . All
encoded features are fed into residual blocks, able to learn
multi-modal representations. In the last step a decoder is used
to generate a high-resolution image. The discriminator receives
an extra downsampling block to handle the larger image size.
For training, D works with positive samples of real images and
their textual descriptions and negative samples consisting of
real images and mismatched textual descriptions and generated
images with their textual description.

Upsampling is done by nearest-neighbor block followed by
a stride-1 convolution with 3× 3. Each layer except the final
layer apply batch normalization and ReLU activation function.
Each residual block consists of stride-1 convolution with 3×3,
batch normalization and ReLU activation. Two of these blocks
are used in Stack-I GAN with a 128 × 128 resolution and is
doubled for 256 × 256 models. Downsampling layers, with
the exception of the first block, have Batch normalization, a
LeakyReLU activation and stride-2 convolution with 4× 4.

I. Copy-Pasting GAN
Arandjelovic and Zisserman introduced a Copy-Pasting

GAN in [10]. The approach is about unsupervised object
discovery, where G learns how to discover objects and pasting
it into another so that D will be fooled. The main difference
with other GAN and object discovery methods is G, which
does not generate objects and its solely responsibility is to
detect and segment existing objects. Instead of creating a whole
new image G combines two images by selecting and copying a
section of the source image to the destination image. Therefore,
the generator is restricted. A convolutional network takes the
source image (Is) to generate a segmentation mask. A new
image is generated by copying and blending (Is) into the new
image (Id) using the copy mask (mθ(Is)) with values of m
are in [0, 1], θ symbolizing trainable parameters and � being
the element-wise product, resulting in the following equation:

(20)Ic = C (Is, Id,mθ (Is))

= mθ (Is)� Is + (1−mθ (Is))� Id
The same masked is used across all channels. This applies a
limit to the copying and pasting operation of G by forcing it
to paste the object at the same location without any transfor-
mation. G is implemented as a U-Net with a 1-channel output,
resulting in (m0(Is)). D is also a U-Net with an average-pooled
encoding in the middle and passed on to fully connected layer
for classification.

IV. GAN APPLICATION DOMAINS
The field of application for GANs is constantly growing

and finds its way into various domains. The following section,
will list additional GAN architectures extending the concept of
the architectures presented in Section III and list them based on
their domain together with a short summary and if applicable
the architectural type from Section III. This section extends
the findings of RQ1 from the previous section and introduces
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exemplary domains to show the variety of GANs. Furthermore,
the domains in this section answers RQ2.

A. Autonomous Driving
Autonomous driving is complex domain with various tasks

and complex image structures depicting various objects of
different types and distances. There are several different use
cases for autonomous driving where GANs can help to depict
situations that are highly unlikely and difficult to capture
(e.g., pedestrian crossing the street relatively close to the
vehicle or even getting by it). In [26] Choi, Jeong, Park and
Ha, propose an image generation GAN based on DCGAN
(see Section III-E) to create new situational images with
the help of feature maps. This approach extracts a feature
map (e.g., of pedestrians) and places them in another scene.
A more specialized approach is presented in [27] placing
pedestrians with different poses into preexisting scenes by
using an encoder to extract a person from a scene and given
to mask estimation network deciding which pixel should be
taken and insert into the original image to place pedestrians.
In [28], GANs are used for augmentation in the domain of
autonomous driving vehicle. First a basic introduction about
GANs is given. Afterwards, the paper introduces a CycleGAN
(see III-F) experiment is conducted where the condition of
front mounted camera is changed from soiled to clean and
vice versa. In [29] the authors present DeepRoad a validation
framework for autonomous driving systems. The framework
can generate new images with various weather conditions
based on real-world weather scenes. Using synthetic images
the consistency of the system can be tested, and validates
images for DNNs with their VGGNet features by measuring
the distance between input and training images and is closely
related to CycleGAN (see III-F).

B. Archaeology
In [11] Hermoza nad Sipiran introduce ORGAN a 3D

reconstruction GAN to restore archaeological objects. ORGAN
is based on an encoder-decoder 3D DNN on top of a GAN
based on cGANS (Section III-B). With two loss functions
(completion loss and Wasserstein loss) the network is trained to
predict the missing parts of a damaged object. To compensate
differences between archaeological objects, the cGAN is con-
ditioned on variable containing information about the culture,
region or the object itself. ORGAN is able to reconstruct
objects with nearly 50% missing. Another approach is the 3D
reconstruction of objects from single photographs by Kniaz,
Remondino and Knyaz [30]. They use a Z-GAN (based on
pix2pix, Section III-F) for image-to-voxel translation. The
generator’s encoder is unchanged while the 2D kernels are
changed into 3D convolutional kernels. Like a U-Net, Z-GAN
has skip connections (in accordance with U-Net definition)
helping to transfer high-frequency components of the input to
the 3D shape. The generated reconstructions are reviewed and
compared with domain experts and shows the strength of the
approach.

C. Video Editing
In [9], Zhang, Zhao, Kampffmeyer and Tan, propose DTR-

GAN a dilated temporal relational GAN for video summariza-
tion. DTR-GAN allows a frame-level summarization without
loosing viable information within the video. Therefore, a DTR
module is constructed capturing relations between neighbour-
ing multi-range frames. One DTR layer consists of four DTR

units of different size to capture the relations between frames.
G tries to learn to identify key frames. A Temporal Encoding
Module integrates Bi-LSTM (Long Short Term Memory) layer
as well as a three layer DTR network. A confidence score is
predicted for key frame capturing confidence. D learns the
relations between original video and summary using a three-
player loss to ensure that D can recognize and learn the
difference between valid summaries and trivial ones. Mocycle-
GAN [8] proposed by Chen, Pan, Yao, Tian and Mei, is an
unpaired video-to-video translation process comparable with
image-to-image translations (Section III-F). Mocycle-GAN
transfers videos from a source domain to a target domain with
two generators GX and GY for cross domain frame synthesis,
two discriminators (DX and DY ) to distinguish between real
and synthetic frames and a motion translator (MX ) for cross
domain motion translation. Real frames are first translated into
synthetic frames with GX and further transformed via inverse
mapping of GY into reconstructed frames. Furthermore, a
FlowNet [31] is used to obtain optical flows for motion
representation before and after forward cycles. While training
Mocycle-GAN utilizes three temporal constraints for structural
appearance and temporal continuity exploration. Adversarial
learning using adversarial constraints ensures realistic synthetic
frames, frame and motion cycle consistent constraint is used
for inverse translations for frames and motions while the third
motion translation constraint validates cross domain motions
transfers. DCVGAN [32] propose an advanced video generat-
ing GAN using optical information as well as 3D geometrical
information with depth video. The generator is based on
MoCoGAN [33] and splits the latent space into content and
motion. A RNN models and generates video dynamics and mo-
tion latent vectors, while a CNN is responsible for depth image
generation from latent vectors. Colour to depth translation is
achieved by using a pix2pix(Section III-F) based architecture.
Using U-Net structures the colour image generator is based on
an encoder-decoder architecture. Two discriminators one for
images, using randomly selected colour and depth images to
test if it is an original sample or generated, and one for videos
taking the same input as video and evaluating its temporal
features. With the addition of depth images DCVGAN can
outperform MoCoGAN.

D. Medicine
In [34] the authors propose a GAN for treatment recom-

mendations based on patient-centric literature retrieval. The
goal of the approach is to measure the similarity of gene
mutations. Therefore, the input is encoded as two-hot vectors
with the number of genes used as vector dimensions. G outputs
one entire batch per training step while D receives one sample
and the batch average. Furthermore, D is parallel trained with
an online training scheme receiving only a single sample and
a batch average of zero with a training mode indication. A
metric is used to rank patient document pairs, by looking for
genes mentioned in both records (patient and documents). To
gain treatment adequacy the authors separate D and G and
condition both on the patient information vector. G is trained
as a feed-forward network to predict patient treatments and
D is used to distinguish between real and synthetic vectors.
Scores are calculated for D and G by taking the conditioned
output of D and G and comparing it with the treatment vector
by applying cosine similarity. Both scores are fused to obtain
the final document score. In [35], Xie, Xu and Li, propose
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a GAN for CT reconstruction of images taken from limited
angles with artefacts. The proposed GAN is based on cGAN
(Section III-B) and uses Wasserstein distance (Section III-D)
for training stability. The proposed GAN uses perceptual loss
as well as adversarial loss as loss functions. The proposed
approach shows that it can remove artefacts while retaining
the CT’s texture details.

E. Additional GAN Domains
The applicability of GANs is not limited to the four previ-

ous shown domains. In [36], Wen, Singh and Raj, proposes
a framework to reconstruct faces based on their voices by
matching identities between generated faces and speakers.
Engel, Agrawal, Chen, Gulrajani, Donahue and Roberts [37]
generated high quality audio samples using GANs with latent
and pitch vectors with global conditioning instead of WaveNet
and rapidly sped up the process. The importance of GANs
for augmentation are presented and discussed in [38]. In [6]
an actor-critic conditional GAN is presented. The GAN can
learn surrounding context from text to fill in blanks. Parts of
the text are deleted and the model tries to fill the missing
pieces to look like the original. ChinaStyle[39] introduces a
new dataset set with six categories and 1913 total images about
Chinese traditional figure painting. Furthermore, the authors
introduce MA-GAN a style transfer GAN for image translation
of portraits into Chinese paintings. A more exotic domain can
be found in [40]. RamenGAN is a cGAN using an additional
discriminator to create ramen with rounder dishes. The other
proposed RecipeGAN a WassersteinGAN is used to receive
ingredients of a dish via image search.

V. GAN EVALUATION METHODS
This section, will list and highlight common datasets used

to evaluate new approaches and will further categorize all
presented GANs from Section III. Furthermore, this section,
will show and introduce commonly used metrics to evaluate
the performance of GANs. All models are generative ones
but differ in their approaches and thus use different datasets
for evaluation. Categorizing by datasets is one possible way
to filter GANs. Furthermore, this section, will present GAN
evaluation measures.

A. Datasets
Table I summarizes datasets used by well known GAN

architectures for image generation. The next architectural style
are Style-Transfer GANs as summarised in table II which maps
the properties from one domain to another. For example, this
includes the transfer from day to night or hand drawing to real
image.

TABLE II. DATASET OVERVIEW STYLE-TRANSFER GANs

Architecture Cityscape CMP Facades ImageNet
CycleGAN X X X

Pix2Pix X X X

The final Table III summarizes specialized architectures for
text-to-image processing and image manipulation.
The variance of used datasets is quite vast and limits model
comparison immensely. As shown above based solely on
literature, a comparison between some models is possible,
but cannot be guaranteed. For this reason, Lucic, Kurach,
Michalski, Bousquet and Gelly [13] propose a simple dataset
for model evaluation. The above shown and currently used

datasets are either too simple or complex to achieve mean-
ingful evaluation results. Therefore, a data manifold is created
which allows efficient computation between sample distance
to manifold. The problem is transformed into a computational
problem, where the precision is higher the closer the samples
from model distribution are to the manifold. High recall in this
case means that G is able to generate samples relatively close
to the manifold. The proposed manifold is of convex polygons.
For single-channel grey images (x ∈ Rd

2

) the sample distance
to the manifold is the squared Euclidean distance from x̂ ∈ Rd

2

to C3, the manifold’s closest sample, as shown in the following
equation:

min
x∈C3

`(x, x̂) =

d2∑
i=1

‖xi − x̂i‖22 (21)

The approximate of a solution is found by gradient descent on
the convex polygon’s vertices, with each iteration being a valid
convex polygon. Using random initial solutions the algorithm
is executed 5 times to minimize false-negative samples. The
findings of RQ3 are summarized in the tables of this section
and give an overview of the different GAN architectures and
their datasets utilized for evaluation.

B. GAN Evaluation
This subsection, will highlight the most important met-

rics and measurements used to evaluate GANs. The results
are based on the conducted literature review performed to
answer RQ4. The variety of datasets also applies to metrics.
There are numerous evaluation metrics with a few stand out
measurements. There is a difference between evaluating the
generated images produced by a GAN and the model itself.
In [41] Borji presents and discusses the pros and cons of
evaluation measurements for GANs. The author creates a list
with important characteristics an evaluation method should
fulfil and tests evaluation methods against these characteristics.
Any method used to evaluate GANs should favour high fidelity
samples with high diversity which have disentangled latent
spaces, well-defined boundaries, are sensitive to transforma-
tions and distortions, can withstand human judgment and have
low complexity.

Figure 6. GAN evaluation metrics overview [41] and literature excerpt

24 quantitative measurements and 5 qualitative measurements
are listed. The following Figure shows the quantitative metrics
collected by [41] and shows a literature excerpt to give
an indication of the metrics acceptance within the scien-
tific community. Full text as well as abstract searches were
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TABLE I. DATASET OVERVIEW OF COMMON GAN ARCHITECTURES

Architecture MNIST CIFAR-10 TFD SVHN FFHQ ImageNet MIR Flickr 25,000 YFCC100M 2 CelebA LSUN
GAN X X X
cGAN X X X X

InfoGAN X X X
WassersteinGAN X

DCGAN X X X X X X
StyleGAN X X

TABLE III. DATASET OVERVIEW STACKGAN AND CP-GAN

Architecture CIFAR-10 CLEVR Flying Chairs CUB MS COCO Oxford-102 LSUN ImageNet
StackGAN X X X X
CP-GAN X X X X

conducted for IEEE Xplore and ACM Digital Library with
the concatenated search term:”Full Text Only”:”generative
adversarial networ*” or ”gan” and ”metric name” and ”Ab-
stract”:”generative adversarial networ*”. Figure 6 shows the
most used metrics for GAN evaluation namely Inception Score,
Fréchet Inception Distance, Classification Performance and the
Maximum Mean Discrepancy, summarized in the next sections.

C. Inception Score (IS)
The Incetion Score [42] applies the Inception Model (a

pretrained model) to every generated image to receive p(y|x)
(conditional label distribution), ideally having a low entropy,
meaning that the generated images have meaningful objects.
The marginal

∫
p(y|x = G(z))dz will have a high entropy if

the model generated images of high variety. This results in the
following metric:

(22)exp(ExKL(p(y|x)‖p(y)))

D. Fréchet Inception Distance (FID)
The Fréchet Inception Distance [43] is an improvement

of the above described Inception Distance. The coding layer
of the Inception Model is used to replace x by generalizing
polynomials x (mean and covariance) to obtain vision related
features. The coding units follow a multidimensional Gaussian.
The distance between the two Gaussian (real-world and syn-
thetic samples) the Fréchet distance (Wasserstein-2 distance) to
assess the quality of generated samples given by the following
equation:

d2((m,C, (mw, Cw))) = |‖m−mw‖22
+ Tr

(
C + Cw − 2 (CCw)

1/2
)

(23)

E. Classification Performance
Classification performance summarized in [41] is to apply

unsupervised representation learning algorithms as feature
extractors for labeled datasets and then evaluate their perfor-
mance.

F. Maximum Mean Discrepancy (MMD)
The Maximum Mean Discrepancy [44][45] is a test to

determine if the distribution of p and q are different based
on drawn samples from each of them. This is done by finding
a smooth function with the properties of being large if the
points were drawn from p and small for samples drawn from
q. The difference of values from a mean function between
two samples is called the MMD. The greater the distance the
more likely it is for the taken samples to come from different

distributions. The goal of MMD is to answer if p 6= q when
p and q are distributions from x and X := {x1, . . . , xm},
Y := {y1, . . . , yn} are distributed from p and q independently
and identically.

VI. GAN CHALLENGES

Application domains as well as specialized GAN archi-
tectures are flourishing and the potential and advances seem
promising to not only achieve results of higher quality with
better performance but also to stabilize the training process
and prevent non-convergence or mode collapse. This section,
will describe two occurring challenges in accordance with RQ5
for GANs as well as recent advances and new insights.

A. Mode Collapse and Non-Convergence
GAN networks are still prone to some problems like mode

collapse or non-convergence. Mode collapse [46][47] is lack
of diversity in generated samples. The problem lies in the
minimax game where G tries to fool D. If G finds a sweet-spot
(i.e., concentrate on a single mode), G is more likely to abuse
this sweet-spot to produce a more plausible output. D is able
to learn the pattern of this sweet-spot and can always classify
it to be fake. The next iteration of D can get stuck and G can
abuse this by creating the best output for the current D.

Non-convergence [46][48] is D’s problem to distinguish
between real and fake samples. With G improving, D’s per-
formance will get worse. With a near perfect G, D is forced
to randomize its output (coin flip) and the feedback becomes
negligible. The problem is if G is trained past this point and
adjust to given feedback, the quality of generated samples will
drop. Depending on the architecture and dataset some GANs
are more prone to non-convergence as others.

B. Advances in Research
Improved architectures enabling higher resolutions, stabi-

lizing training preventing mode collapse or non-convergences
will further strengthen the applicability of GANs. This sub-
section will introduce some advances in research compliant
with RQ6. In [49] Chavdarova, Gidel, Fleuret and Lacoste-
Julien, show that training a GAN with stochastic gradient noise
can prevent the convergence of standard game optimization
methods. Quality aware GANs are proposed in [50]. The
authors use a variation of structural similarity (SSIM) index
and a quality aware discriminator gradient penalty function as
regularizers for GANs. Learning disentangled representations
unsupervised is proposed in [51]. By introducing a similar-
ity constraint the authors show, that their approach is able
to distinguish different representations by using conditions.
In [52] a super resolution reconstruction method is introduced.
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The combination of GANs and wavelet transformation used to
train wavelet decomposition coefficients improves the quality
of reconstructed images. Adiga, Attia, Chang and Tandon [53]
propose two performance metrics mode-collapse divergence
(MCD) and Generative Quality Score (GQS) to measure the
quality of generated samples, created to capture the impact of
mode collapse. Yang, Li, Qi and Lyu [54] introduce a method
to predict images synthesized by GANs. The authors identified
a difference between the location of facial landmarks due to
lacking global constraints. Another approach by McCloskey
and Albright [55] show that normalization steps by G leads to
a detectable suppression of image characteristics.

VII. CONCLUSION

The presented survey summarizes the evolution of GANs
by providing an overview of conducted research of the last 5
years, showing different architectural designs and loss func-
tions. GANs will continue to evolve and further reshape
deep generative models to produce more realistic samples.
Image and video augmentation, restoration or 3D modelling
are only a few domains in which GANs are already helping
to produce new samples. The research contributing to GANs
will find approaches to further stabilize training, minimize
mode collapse and non-convergence. The varying architectural
patterns use different datasets and metrics for evaluation. There
is still a need to find a uniform accepted evaluation method
consisting of datasets and metric. As technology advances,
so will GANs and their possibilities. New generator and
discriminator architectures will help to achieve the ambitious
goal of generating realistic samples. This will be one of the
biggest challenges as shown in Section VI-B as synthesized
samples are still distinguishable from real samples. There
are various domains (e.g., autonomous driving vehicles) with
occurrences of rare high impact events, that are hard to capture
(e.g., pedestrian crossing the street in close proximity to the
vehicle). Combining the various fields of open challenges will
help generating indistinguishable fake samples of such rare
events, required for the evaluation of existing machine learning
models to ensure they are able to recognize these rare events.
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