
Survey on Smart Web Crawler Algorithm Based on Semantic Search Engine 

 

Muneer Bani Yassein, Ismail Hmeidi, Yaser 

Khamayseh, Wail Mardini, Heba Al-Jarrah 

Jordan University of Science and Technology,  

Irbid, Jordan 

{Masadeh, hmeidi, yaser, mardini}@just.edu.jo, 

hebaatta96@gmail.com  

Dragana Krstic 

Faculty of Electronic Engineering, University of Niš,  

Niš, Serbia 

email:dragana.krstic@elfak.ni.ac.rs 

 

 
Abstract—With the increasing amount of information and 

inflation of pages in the World Wide Web, it becomes difficult 

for the user to retrieve relevant information it needs. In other 

words, it leads to a big challenge for a search engine, on how to 

extract the exact results that match with the user query. Hence, 

we need smart programs such as Web Crawlers to overcome 

this problem. Web crawlers use different kinds of algorithms, 

some of these algorithms using the heuristic function to achieve 

the goal in an efficient manner such as A*, Adaptive A*, Best-

search algorithm, and some other algorithms are not using a 

heuristic function such as Depth-first search and Breadth-first 

search. This survey covers these two types of algorithms and 
focuses on the mechanisms and the difference between them. 

Keywords-Web Crawling Algorithms; Uniform Resource 

Locator (URL); Best-first search; Heuristic function; Web 

Crawler. 

I.  INTRODUCTION 

Web crawlers, also known as web spiders and web 

robots, are programs that visit websites and read and 

download their pages and other information to create entries 

for a search engine index. The crawler crawls with a list of 

Uniform Resource Locators (URLs) to visit, called the 

seeds. As the crawler visits these URLs, it identifies all the 

URL hyperlinks in the page and adds them to the list of the 

visited URLs (queue), called the crawl frontier. In its 

simplest form, the crawler starts from the seed page and 

then uses external links inside it to access other pages. The 

process is repeated with new pages that offer more external 
links to follow until a sufficient number of pages is 

identified, or a higher-level goal is reached Web crawlers 

are an essential component of web search engines, where 

they are used to gather the corpus of web pages indexed by 

the search engine. Moreover, they are used in many other 

applications that process large numbers of web pages, such 

as web data mining, and comparison-shopping engines. [1]. 

The crawler can start from any seed URL, but this is not 

enough to reach all the web pages. The pages referenced by 

the seed URLs should not reference it back to them, 

otherwise it will end up in an infinite loop, and this is a 
crucial factor to be considered. Hence, it is essential to start 

from a proper seed URL. For example, Bing or Google 

search engines can be used to get seed URL by merely 

entering the keywords into them and consider their resulting 

links as seed URLs. It is not possible to cover and index all 

the websites in the World Wide Web for a particular search 

entry. A web crawler always downloads a fraction of the 
web pages that contain the most relevant pages and not just 

a random sample of the Web [2] [3]. The relevance of a 

page depends on some factors such as the number of visits 

on the page. Web crawlers employ different strategies for 

selecting the websites to be downloaded, such as depth-first, 

breadth-first, best first, A* and other algorithms that will be 

covered in this survey.  
The crawler aims to crawl the World Wide Web and 

report back some essential data and then perform an initial 
data analysis using some additional data before it stores the 
collected data. To achieve this purpose, the crawler that 
crawls the Internet must have the following basic features to 
serve their purpose [5]: 

a) Robustness: The Web contains loops which are aims 
to mislead the crawler to recursively crawl a particular 

domain and get stuck in one single domain. 

b) Distributed: The crawler should be able to work in a 
distributed manner to crawl the Internet as quickly as 

possible.  

c) Scalable: The crawler should have the flexibility to 
add new machines whenever necessary. 

d) Extensible: The crawlers should be able to adapt to 
the increasing amount of data formats on the Web. 

e) Quality: The crawler should be able to distinguish 

between useful and useless information. In other words, 

they should be able to filter out the relevant content. 

f) Freshness: The crawler should make sure that the 

concepts on the search engine are the latest and relevant to 

the present context. 

This paper is organized like this: in Section 2, the 
architecture of web crawler is presented, and different types 

of web crawlers are listed. The web crawler strategies are 

specified in Section 3, and conclusion and future work are 

shown in the last, fourth section.  

9Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-718-4

ICCGI 2019 : The Fourteenth International Multi-Conference on Computing in the Global Information Technology

mailto:dragana.krstic@elfak.ni.ac.rs


II. ARCHITECTURE AND TYPES OF WEB CRAWLERS  

The architecture in Fig. 1 [6] provides an outline of the 

main modules of a web crawler. URL frontier contains a list 

of visited URLs (queue) to be fetched. A DNS resolution 

module converts the URLs to its equivalent IP addresses. 

Fetch module that uses the HTTP request to retrieve web 
pages associated with its URL. A parsing module extracts 

the query text and set of links from a fetched web page. 

Finally, a duplicate elimination module checks to determine 

whether an extracted link is already in the URL frontier or 

has recently been fetched. 

There are different types of crawler; in this survey, some 

of them will be covered. 

A. Focused Crawler 

This kind of crawlers works by gathering documents that 
have specific areas of interest. In other words, it collects the 
documents similar to each other. The main thing to be kept in 
mind is that the page is downloaded after it is estimated that 
the page is similar and relevant to the given topic. The main 
advantage of this type is the availability of the URLs without 
downloading the page to predicate the similarity of not 
traversal page, meaning fewer costs. 

B. Distributed Crawler 

This type of crawlers distributes the work to several 

other crawlers to perform the task at the same time. Then, it 

collects all downloaded pages from all crawlers and sends 

them to a central indexer where links are extracted and sent 
via the URL server to the crawlers. The main advantage of 

distributed crawler is that it is strong. It can withstand 

system crashes and other types of problems and can adapt to 

different crawling requirements.  

C. Parallel Crawler Algorithm 

Parallel Crawler (PC), which means more than one 
crawler, runs multiple processes in parallel, where PC 
depends on freshness and Selection Page [7]. The main idea 
for PC is to maximize the download rate and achieve 
minimum overhead by using parallelization. We can find 
more than one crawling processes for the same URL. PC can 
be distributed in different places or at the same local network 
[8]. In [7] and [8], the authors presented different algorithms 
that will help to achieve high performance. 

III. WEB CRAWLER STRATEGIES  

In this section, several search algorithms used by Web 

crawlers will be enumerated and described. 

A. Breadth First Search 

It is the simplest form of crawling algorithms, which 
starts with the root URL links and searches on the connected 
links URL (in the same level). This algorithm is also known 
as Blind search algorithm. That is because it is not 
considering any information about the topic and means the 
breadth-first search requires the maximum amount of 
searching time.  

On each page the crawler visits, all external links 
(hyperlinks) will be extracted from the web pages, and all 
these links will be distributed in the searching tree on the 
leaves of the current node [9]. 

In Fig. 2, we show an example where the search starts 
from the root URL (i.e., Seed page 1) and then collects URL 
page 1.1 and page 1.2 which get searched in sequence at the 
same level, then pages 1.1.1, 1.1.2, 1.2.1 and 1.2.2 are 
searched in order [9]. 

 

 

 
Figure 1.  The architecture of crawler.

 

10Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-718-4

ICCGI 2019 : The Fourteenth International Multi-Conference on Computing in the Global Information Technology



 
Figure 2.  Web crawler forest.

B. Depth First Search 

In this search algorithm, the crawler starts from the root 
URL and traverses to child URLs in the deep form. If there is 
more than one child, the priority will be going to the most 
left child and then keep performing deep traversal until it 
receives no more nodes for searching steps. After that, 
backtrack to the previous node to check whether there exists 
another unvisited node, and then continue similarly. This 
algorithm might end up in an infinite loop in case of large 
number of branches. 

 
In the example in Fig. 2, the search starts with root URL 

(i.e., Seed page 1), and then the search proceeds by 
downloading pages 1.1, and 1.1.1, then page 1.2 and its own 
child’s are searched in order. 

C. Best First Search 

Best First Search is an informed search algorithm based 
on estimate function which predicts the similarity between 
the candidate URLs to pick the best one to fetch. This 
estimated value could be the score or rank of relevancy. 
There are many algorithms to apply the classifier for these 
heuristic values, such as the cosine similarity, Support 
Vector Machine (SVM) and string matching used for scoring 
[10].  

Unlike Uninformed search, the best first search algorithm 
uses heuristic function to improve its result as much as 
possible by exploring the node with the best score first [5].   

D.  A* Search 

A* algorithm uses the best first search algorithm to 

estimates the lowest total cost of any solution path. It 

combines the features of uniform-cost search and greedy 

(heuristic) search to compute the optimal path solution. The 

cost associated with a node is f(n)= g(n) + h(n), where g(n) 

is the cost of the path from the initial state to the goal node, 

and h(n) is the heuristic estimate for the cost of the path 
from node n to the goal node. f(n) can be referred to as the 

relevancy cost of each link.  

The A* algorithm gives the best result of relevant 

retrieve information with the lowest time compared with 

other algorithms that don't use a heuristic function. 

E. Adaptive A* Search 

Adaptive A* Search is an informed heuristic search. In 

each iteration, it improves the relevancy value of the Web 

page and uses this new update in the next iteration. At the 

beginning of the process, it takes more time because it stores 

the history of previous iterations with every search. Once it 

gathers sufficient knowledge about the relevant pages, it 

needs the same time as A* search, Best-first search and any 
other heuristic-based search algorithms. 

F. Page Rank Search  

Page Rank algorithm works by counting the number and 

quality of links to a page in order to determine how 

important the website is. So, as it is shown by the equation 

below, the Page Rank does not rank websites but is 
determined for each page individually 

PR(P1) = PR(T1)/L(T1) + ... + PR(Ti)/L(Ti). 

To find the Page Rank for a page, called PR(P1), we 

need to find Page Rank of all pages Ti with inbound links 

and outbound links to page P1. For example, page T1, which 

has a link from P1, is calculated. Then page L(T1) will give 

the number of outbound links to the page P1. We do the 

same for T2, T3, up to page Ti, then the Sum of all the 

weighted Page Ranks of all pages is calculated. 

G. Path-Ascending Crawling Algorithm (PAC) 

The crawler tries to obtain more information for a 

specific website by crawling every path for that URL [11]. 

For example, in Fig. 3, we have a URL: 

http://llama.org/hamster/monkey/page.html, PAC will try to 

crawl /hamster/monkey/, /hamster/, and /. The added values 

for PCA algorithm become very efficient while finding the 

resource.   

11Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-718-4

ICCGI 2019 : The Fourteenth International Multi-Conference on Computing in the Global Information Technology

http://llama.org/hamster/monkey/page.html


 
Figure 3.  Path-Ascending Crawling Algorithm (PAC) 

 

TABLE I.  COMPARISON BETWEEN ALGORITHM  

Algorithm indicator Number of the 

relevant pages   

Time to retrieve 

Breadth-first search Extremely small Extremely large  

Depth-first search Quite small Large 

Best-first search Large  Low  

A* algorithm Extremely large Extremely Low 

Adaptive A* search Large  Low 

Page Rank search Large  Large  

 

IV. CONCLUSION AND FUTURE WORK 

Reducing the search time with the best relevant result is 
one of the main issues being targeted by search engines these 
days. This survey focuses on the Web crawling algorithms 
that use heuristic function and do not to retrieve relevant 
data. Breadth-first search is a blind algorithm and is not an 
efficient method. The depth-first search may end up in an 
infinite loop when the branches are too large. The Best first 
search and A* algorithm show nearly the same result with 
respect to search time. They can be improved by enhancing 
the heuristic function. Adaptive A* performs more 
efficiently when the users search at the same type of content 
because it depends on the history of searches, and with each 
search, the efficiency of the search will increase. This may 
consume some amount of time compared with the A* 
algorithm. All algorithms discussed in this paper are 
effective for search engine, however, the advantages favor 
algorithms that use the heuristic functions to retrieve the best 
relevant URLs and least response time.  

REFERENCES 

 
[1] M. Najork, Web Crawler Architecture, Microsoft Research, Mountain 

View, CA, USA 

[2] V. Kancherla, A Smart Web Crawler for a Concept Based Semantic 
Search Engine, San Jose State University, 2014. 

[3] D. Yadav, A. Sharma, and J. P. Gupta, “Parallel crawler architecture 
and Web page change detection”, WSEAS Transactions on 

Computers, issue 7, volume 7, July 2008, pp. 929-940. 

[4] S. M. Pavalam, S. V. Kasmir Raja, M. Jawahar, and F. K. Akorli, 
“Web crawler in mobile systems”, International Journal of Machine 

Learning and Computing, International Journal of Machine Learning 
and Computing, vol. 2, no. 4, August 2012. pp. 531-534. 

[5] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to 

Information Retrieval, Cambridge University Press. 2008. 

[6] R. Thite, B. Pawar, T. Mode, and M. Mete “Survey paper on smart 
Web crawler”, International Journal of Novel Research in Computer 

Science and Software Engineering, vol. 3, issue 1, pp. 274-277. 

[7] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling: a 

new approach to topic-specific Web resource discovery”, Computer 
Networks, 31.11-16, 1999, pp. 1623-1640. 

[8] N. Tyagi and D. Gupta. “A novel architecture for domain specific 

parallel crawler”, Department of Computer Engineering, Shobhit 
University, Meerut, India, 2010. 

[9] Y. Yu, S. Huang, N. Tashi, H. Zhang, F. Lei, and L.Wu, “A survey 

about algorithms utilized by focused Web crawler”, Journal of 
Electronic Science and Technology, vol. 16, no. 2, June 2018. 

[10] R. Dechter and Judea Pearl. “Generalized best-first search strategies 

and the optimality of A*”, Journal of the ACM, 32(3), pp. 505–536, 
1985, doi:10.1145/3828.3830  

[11] V. Cothey, “Web‐crawling reliability”, Journal of the American 

Society for Information Science and Technology 55.14, 2004, pp. 
1228-1238. 

[12] R. Janbandhu, P. Prashant, and M. M. Raghuwanshi, “Analysis of 

web crawling algorithms”, International Journal on Recent and 
Innovation Trends in Computing and Communication, 2.3, pp. 488-

492, 2014.  

12Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-718-4

ICCGI 2019 : The Fourteenth International Multi-Conference on Computing in the Global Information Technology

http://nlp.stanford.edu/~manning/
http://theory.stanford.edu/~pragh/
http://www.cis.uni-muenchen.de/personen/professoren/schuetze/

