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Abstract—The structure of the low-dimensional characteristics
of images is manifold, which is precisely what the human visual
system perceives. With this inspiration, a new Image Quality
Assessment (IQA) metric called Online Manifold Learning
based Quality (OMLQ) is proposed for color IQA in this
paper. Online manifold learning is employed to construct a
feature extraction matrix, which is used to obtain low-
dimensional manifold vectors. In addition, visually important
regions are detected to mimic the properties of the visual
perception. The new IQA score is defined as the similarity of
feature vectors between reference image and the
corresponding distorted one. Extensive experiments performed
on three publicly available benchmark databases demonstrate
that the proposed IQA index OMLQ works better in terms of
prediction accuracy than the other state-of-the-art indices.

Keywords-color image quality assessment; visual saliency;
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L INTRODUCTION

The quantitative evaluation of an image’s perceptual
quality is one of the most fundamental yet challenging
problems in image processing system and vision research,
confirmed by the idiom, “A picture is worth a thousand
words” [1]. Objective image quality assessment is capable of
approximating subjective opinion of an average human
observer by employing an efficient computational model,
which is suitable for different image content, different
distortion types and different degree of distortion [2]. As
conventional metrics, Mean Square Error (MSE) and Peak
Signal to Noise Ratio (PSNR) are widely accepted due to
their computational efficiency and definite physical meaning.
However, MSE or PSNR do not correlate well with human
beings’ subjective scores with a variety of image content and
distortion types involved since they do not consider the
properties of Human Visual System (HVS) and just measure
the pixel difference between reference and distorted image.

Structural Similarity (SSIM) [3] index based on the
hypotheses that HVS is highly adapted for extracting
structural information in images, can be considered a
milestone of the development of Image Quality Assessment
(IQA) models, it can provide a good prediction of the
perceived quality score. In the following years, many SSIM
extensions are proposed, such as Multi-Scale SSIM (MS-
SSIM) [4], Complex Wavelet SSIM (CW-SSIM) [5],
information weighted SSIM (IW-SSIM) [6], and so on. The
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research in [7] proposed a wavelet-based Visual Signal-to-
Noise Ratio (VSNR) metric, which operates via a two-stage
approach in the wavelet domain based on near-threshold and
supra-threshold properties of human vision. Except for
structural approaches, Sheikh et al. proposed the Visual
Information Fidelity (VIF) index [8], which was an extension
of its former version, namely the Information Fidelity
Criterion (IFC) index [9]. VIF tries to quantify the amount of
information shared between the reference image and the
corresponding distorted one. Larson et al. asserted that the
HVS performs different strategies for high-quality image and
low-quality image. Inspired by this, they proposed a Most
Apparent Distortion (MAD) model which shows remarkable
and robust result [10]. In addition, a different IQA approach,
based on Sparse Representation (SPARQ) index [2], is
proposed for gray image. Most commonly used algorithms
are just designed for gray image, but in RGB image graying
process, there is part of information lost, resulting in
inaccurate evaluation results.

For visual perception phenomenon, studies have shown
that manifold is the basis of perception [11]. There exists
massive redundancy in the high-dimensional digital image
data, it is essential to reduce the dimension but still maintain
essence of structure. Given a set of high-dimensional data
points, manifold learning aims at discovering the nonlinear
geometric properties embedded in high-dimensional data
space of low-dimensional manifolds, which reflects the
intrinsic nature of things. Deng et al. introduced a novel
subspace learning algorithm, called Orthogonal Locality
Preserving Projection (OLPP) [12], which can find the
manifold structure of image. We can apply OLPP algorithm
to the given image patches, mapping it to a low- dimensional
manifold, so the feature extraction will be achieved.

Motivated by above consideration, this paper presents a
novel IQA model for color image, called Online Manifold
Learning based Quality (OMLQ). We use visual saliency
(VS) model to strike a maximum combined saliency map and
a maximum absolute difference map from RGB color space
to detect visually important regions. OMLQ relates
perceived quality of an image with the fidelity to the
reference image in the form of manifold features that are
extracted in the detected salient regions by a feature detector,
i.e. feature extraction matrix obtained by online OLPP.
Finally, the manifold features are used to predict an objective
value.
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Figure 1. Illustration for the computational process of the proposed model OMLQ

II. THE PROPOSED APPROACH

Because HVS has the ability to capture nonlinear
manifold structure, we propose a metric based on online
manifold learning for color image quality assessment. The
procedures to compute OMLQ are illustrated in Figure 1.

It is acknowledged that not every pixel in an image
receives the same level of visual importance. The
relationship between VS and IQA has been investigated by
some researchers and it is broadly recognized that
incorporating VS information appropriately can benefit IQA
metrics. In this work, we experiment with the VS model in
[13] to detect the visually important regions.

1) Let M and M“ denote the saliency maps pertaining to
reference image /" and distorted image /¢, computed by VS
model mentioned above. A maximum combined saliency
map M™ with the same size of M" and M? is created
withmax(M",M*) . It is well known that an average observer
perceives the world in color instead of black and white, so
we directly deal with the RGB image. Before the
computation, the 7", 1", M", M, and M™ should be first
divided into non- overlapping 8x8 patches and then each of
them is vectorized and arranged by scanning the numerical
values in columns, which forms the matrices: reference
image patch matrix X", distorted image patch matrix X¢,
reference saliency patch matrixS”, distorted saliency patch
matrix S¢ , and the maximum combined saliency patch
matrix S™ , respectively. Since a color image has three
channels, the length of X" and X/ is 8x8x3=192. The length
of 8", S¢, and S™ is 8x8=64.

2) Let 87™ denote the value of the jth column in the

maximum combined saliency patch matrix $™* , then the
saliency of the jth patch of M™" is expressed by
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N
d; = ZI:S;MX (1

where N denotes the number of pixels in a patch,
S; " denotes the value of the ith row and jth column inS™".
Suppose 7, = 4, -k , where A, to the range (0,1] indicates the
scale factor of the selected maximum combined saliency
patch, ¢ represents the number of selected salient patches.
and k& denotes the number of patches extracted from each
image. We select the first largest ¢ saliency value d,
corresponding to the reference image patch matrix X" and
the distorted patch matrix X** . Similarly we can get the
corresponding reference saliency patch matrix ™ and the
distorted saliency patch matrix S* .

Here, based onS™ and S**, the difference between a pair
of vectors is measured by the mean absolute error, then the
absolute difference value e, is defined as

I & o . .
€ :;lefj =S5 L J=LL g
i=1

A,

2)

Let’2 =

patch and 2 denotes the number of selected maximum

t‘, where & is the scale factor of the selected

absolute difference patches. We take the first g largest ¢
corresponding X and X** as the final visually important

regions, denoted by Y" and Y’ The goal of feature extraction
is the acquisition of a feature detector, which is applied to
evaluate the image quality. Many researchers usually receive
a learner through off-line mode, which requires a lot of
training samples and has significant limitations in real-time
applications. Therefore, we apply online learning adaptively
updating feature detector. First, each sample vector is
centered by subtracting the mean pixel value of each patch.
All the sample vectors construct a matrix Y as online OLPP
learning input. Next, following the intuition that the image

22



ICCGI 2018 : The Thirteenth International Multi-Conference on Computing in the Global Information Technology

data may be generated by sampling a probability distribution
that has support on or near a submanifold of ambient space,
we apply OLPP algorithm to project the sample vectors into
a subspace to obtain manifold features. The procedure of
online OLPP learning is stated by.

1) PCA Projection: By throwing away dispensable
components, we preserve the maximum amount of the
sample vectors and discard redundant information after the
matrix Y is projected into the PCA subspace. PCA can be
done by eigenvalue decomposition of a covariance matrix.
After the decomposition, let v =diag(y,L ,y,) and
E = diag(e,,L ,e, ) indicate the M largest eigenvalues and
the corresponding eigenvectors for the covariance matrix. In
our work, M is fixed at 8. This means the dimension of each
whitened vector will be reduced from 192 to M=S8. The
whitened matrix, W, is given by

W=¥"xE" 3)
Eventually, sample data Y can be whitened into Y” by the
following implementation
Y'"=WxY 4)

2) Constructing the Adjacency Graph: Let G represent
a graph with m nodes. The a-th node corresponds to
whitened sample data y)’. We connect them when node a and

node b are adjacent, i.e., y!is among k nearest neighbors
ofy, .
3) Choosing the Weights: If node a and b are connected,

2

ny},‘ -

setS, =e , otherwise, set S, = 0. The weight matrix S

of graph G exactly explains the local structure of image
manifold.

4) Computing the Orthogonal Basis Function: We
define ® as a diagonal matrix, which is expressed

by @, :Z:/ZISG,?. We also define Laplacian matrix L, i.e.
L=®-S . Let {p,,L ,p,} be the orthogonal basis vectors,
then

PV =[p.L.p,.] )

Q(nfl) — [P(nfl) ]T (YW(I)YWT )71P(nfl) (6)

The orthogonal basis vectors are computed as follows.

*  Compute p, by the eigenvector corresponding to the
smallest eigenvalue of (Y"®Y"")'Y"LY"" .
*  Compute p, by the eigenvector corresponding to the
smallest eigenvalue of M™
M(n) _ {I _(YW(DYwT )—1P(n—l)[Q(n—l)]—I[P(n—l)]T}.
(YW‘I)YWT )71 YwLYwT
5) Feature Extraction Matrix by OLPP Embedding:
Suppose the best projection matrix J,,,, =[p,,....p,] . After
the learning process, the feature is transformed from the
whitened space to original space by
D=WxJg.p @)
where D is the feature extraction matrix through online
OLPP learning, which is used to extract image features that
capture intrinsic manifold structure in an image.

After the online OLPP learning step, the manifold
feature vectors, uw, and v, , can be extracted by a
multiplication operation.

u, =Dxy/,v,=Dxy/ 8)

Since the size of D is §x192, the length of wi and vi is 8.
For simplicity, we use a vector pair to represent the features
of a reference patch together with its distorted patch.
Therefore, all of the feature vectors of Y" and Y¢ are
concatenated to form two matrices, U and V, respectively.

Finally, we defined perceived quality score as the
feature similarity by

1 ¥ 20,V +C
Score = ZZ ——
KoM F55(U,) +(V,) +C
where K denotes the number of image patches in visually
important region, i.e., the number of manifold features is

reserved, M represents the dimension of manifold features.
C is a positive constant that supplies numerical stability.

©

TABLE I. PERFORMANCE COMPARISON UNDER DIFFERENT TYPES OF DISTORTION ON LIVE DATABASE

JP2K JPEG WN GB FF ALL
SROCC 0.9558 | 0.9724 | 0.9574 | 0.9473 | 0.9514 | 0.9523
PLCC 0.9524 | 0.9709 | 0.9645 | 0.9492 | 0.9433 | 0.9506
RMSE 8.4314 | 7.5546 | 5.7865 | 5.8132 | 8.9312 | 8.4433

TABLE II. PERFORMANCE COMPARISON FOR SEVEN IQA METRICS ON THREE TEST DATABASES

PSNR SSIM IFC VIF VSNR | SPARQ | OMLQ

LIVE | 0.8756 | 0.9479 | 0.9259 | 0.9636 | 0.9274 0.9310 | 0.9523

SROCC | CSIQ | 0.8057 | 0.8756 | 0.7671 | 0.9195 | 0.8106 0.9460 | 0.9465
TID 0.5531 | 0.7749 | 0.5675 | 0.7491 | 0.7046 0.7920 | 0.8356

LIVE | 0.8723 | 0.9449 | 0.9268 | 0.9604 | 0.9231 0.9280 | 0.9506

PLCC | CSIQ | 0.8000 | 0.8613 | 0.8384 | 0.9277 | 0.8002 0.9390 | 0.9433

TID 0.5734 | 0.7732 | 0.7340 | 0.8084 | 0.6820 0.8200 | 0.8228

LIVE | 13.3600 | 8.9455 | 10.2641 | 7.6137 | 10.5060 | 10.1850 | 8.4433

RMSE | CSIQ | 0.1575 | 0.1344 | 0.1431 | 0.0980 | 0.1575 0.0900 | 0.0871
TID 1.0994 | 0.8511 | 0.9113 | 0.7899 | 0.9815 0.7680 | 0.5975
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III. EXPERIMENTAL RESULTS

Three publicly benchmark databases including LIVE
[14], CSIQ [15] and TID2008 [16] are involved. Each
database consists of hundreds of degraded images with Mean
Opinion Score (MOS) or Differential Mean Opinion Score
(DMOS). It is customary to nonlinearly map the metric
scores to the ones that have a linear relationship with the
subjective scores. Three commonly used performance
metrics, including Spearman Rank Order Correlation
Coefficient (SROCC), Pearson Linear Correlation
Coefficient (PLCC), and Root Mean Squared Error (RMSE)
are adopted to evaluate the IQA model. As mentioned
previously, there are three parameters, i.e., the scale factors
Ay and 4, for the detection of visually important regions, and
stability parameter C for feature similarity, which are
determined by training. The training set consists of all
images from LIVE database. For each A, and 4,, which are
changed from 0.3 to 0.8 in step of 0.1, and for C, which is
changed from 0.01 to 0.1 in step of 0.01, the best values are
found by maximizing the SROCC value of OMLQ metric on
the training set. When 1,=0.7 , 1,=0.6 , and C = 0.05 are used,

SROCC reaches the peak by performance tuning. To validate
the performance of OMLQ on different distortion types, the
individual experimental results on LIVE database are
summarized in Table I. For each distortion type, we can see
this metric has good performance whether it is an individual
distortion or a crossover distortion test.

We have evaluated the performance of the proposed
metric with other six IQA metrics: PSNR, SSIM [3], IFC [8],
VIF [7], VSNR [6] and SPARQ [2]. Table II lists the
performance indicators on the three databases, where the best
value across the seven IQA results is highlighted in boldface.
It is clear that our metric outperforms other IQA metrics in
CSIQ and TID2008 databases. Although the result in LIVE
database is inferior to VIF, its SROCC value and PLCC
value have already been reached 0.95, which means the
proposed metric can accurately predict the perceptual image

quality.
IV. CONCLUSION

In this paper, we proposed a novel metric for color IQA.
It is based on the assumption that an image’s VS map has a
close relationship with its perceptual quality and online
learning can exploit the low-dimensional manifold
embedded in high-dimensional data. Our contribution in this
work is that we apply manifold learning to IQA. The
proposed OMLQ was thoroughly tested and compared with
six state-of-the-art IQA indices on three publicly benchmark
databases. The results demonstrated that OMLQ could yield
much better results in terms of prediction accuracy than all
competing methods.
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