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Abstract—In this paper, we explore customer behavior in cellular
networks. We develop a novel model of the fundamental user
profiles. The study is based on investigation of activities of
millions of customers of Orange, France. We propose a way of
decomposition of the observed distributions according to certain
external criteria. We analyze distribution of customers having the
same number of calls during a fixed period. A segmentation of
the population is provided by an approximation of the considered
distribution by means of a mixture of several more ”basic”
distributions presenting the ”granularity” of the user’s activity.
In order to examine the meaning of the found approximation, a
clustering of the customers is provided using their daily activity,
and a new clustering procedure is constructed. The optimal
number of clusters turned out to be three. The approximation is
the reduced in the optimal partition to a single-exponential one in
one of the clusters and to two double-exponential in others. This
fact confirms that the proposed partition corresponds to reliable
consequential social groups.

Keywords–Consumer behavior pattern; Market segmentation;
Probability distribution; Mixture distribution model; Machine learn-
ing; Unsupervised classification; Clustering.

I. INTRODUCTION

General view of consumer behavior is a study how people,
groups and companies purchase, work with and organize
goods, services, ideas and knowledge in order to meet their
needs and desires [1][2]. Such a multidisciplinary study strives
to understand the decision-making processes of customers and
serves as a basis for market segmentation. Through market
segmentation, large mixed markets are partitioned into smaller
sufficiently homogeneous sectors having similar needs, wants,
or demand characteristics.

In the cellular networks context, the mentioned products
and services can be expressed in spending of the networks
resources such as the number of calls, SMS and bandwidth. In
fact, market segmentation in this area is able to characterize
behavior usage or preferences for each customers’ sector; in
other words, to typify the customers’ profiles, aiming to use
this pattern to intimately adopt specific products and services
to the clients in each market segment.

The research, presented in this paper, is devoted to de-
veloping of a novel model of the fundamental user behavior
patterns (user profiles) in the cellular networks. We base our
study on analyzing of the underlying distribution of customers
having the same number of calls during a fixed period, say
a day. A segmentation of the population is provided by an
approximation of the considered distribution by means of a
mixture of several more ”basic” distributions, which present
the ”granularity” of the user’s activity. Actually, the mixture

distribution models have come to be conventional in machine
learning due to their fruitful applications in unsupervised
classification (clustering), where the underling probability dis-
tribution is decomposed into a mixture of several simple ones,
which correspond to subgroups (clusters) with high inner
homogeneity.

Hypothetically, each one of these sets corresponds to a
social group of users having its own dynamics of calls depend-
ing upon the individual group social parameters. As it will be
demonstrated in this contribution, an empirical densities of the
studied underlying distributions are monotone decreasing and
do not exhibit multi-modality. These properties characterize
mixtures of the exponential distribution [3][4]. Hence, in this
research, an exponential distribution mixture model is applied,
and a three-exponential distribution well-fits the needed target.

In fact, the common applications, for instance in clustering,
of the known Expectation Maximization algorithm, which
estimates parameters of mixture models, suggests the Gaussian
Mixture Model of the data. However, many studies are recently
devoted to analysis of non-Gaussian processes, which are often
related to the power law distributions. Nevertheless, the very
existence of such a law does not depend on the particular
model, but rather it is a result of the process being non-
Gaussian in its own nature. Such models arise in some fields of
human endeavor. In fact, the Zipf’s law declares that the words
occurrences in a text collection is inversely proportional to its
position in the sorted frequency list.

In order to explore the meaning of the found approxima-
tion, a clustering of the customers is provided using daily ac-
tivity of the customers. Moreover, a new clustering procedure
is constructed in the spirit of the bi-clustering methodology.
The estimated optimal number of clusters turned out to be
three; in addition, the mentioned approximation is the reduced
in the optimal partition to a single-exponential one in one of
the clusters and to two double-exponential in others. This fact
confirms that the proposed partition corresponds to reliable
consequential social groups. Here, we emphasize the fact that
the similarity measure, applied in the clustering process, is
formed without any reference to the previously discussed
mixture model.

The results, reported in the paper, are obtained by means
of a study of the daily activity of a real group of users during
the period from March 31, 2009 through April 11, 2009. For
each considered day, several million users in this group are
active (making one or more calls), and the time location of
each input or output call is known. The sets of active users on
different days vary significantly.
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The remainder of this paper is structured as follows. Sec-
tion II is devoted to a distribution model of the user activity and
its decomposition. Section III describes the customer clustering
procedure and its evaluations. Section IV summarizes the
paper.

II. DISTRIBUTION MODEL OF USER ACTIVITY

In this section, we consider a mixture model approximation
of the underlying distribution of users having the same number
of calls during a day (DSN distribution). We distinguish two
types of user activity: input calls (Activity 1) and output calls
(Activity 2). All users (about five millions) are divided into
groups according to their number of calls per day. The i-th
group contains all customers having exactly i calls per a day.
The size of the i-th group is denoted by Ni.

Obviously, the groups’ content and sizes are, generally
speaking, not the same for different days. The amount groups
with i > 100 is very small in the dataset. They are most likely
containing ”non-standard” users: sales agents, call centers and
so on. We discard such groups together with users, who do not
call at all in a given day. Actually, this lack of activity could
be explained by factors, which are not directly related to the
user activity on the network.

De facto, for all collected days, the curves are of almost the
same monotonically decreasing form. On the other hand, it is
naturally to assume that the underlying population is actually a
mix of several different sub-populations. Practically, a mixture
distribution model with exponential components appears to be
an appropriate approximation to DSN . Mixture distribution
models appear in many applications such as an inherent
and straightforward tool in order to pattern the population
heterogeneity. The assumption about exponential distributed
mixture components commonly invokes in the study of lifetime
or more universal duration data. We give the following simple
k-finite exponential mixture model, having density function of
the form

f(x) =

k∑
j=1

Ajexp(−tjx), (1)

where Aj and tj , j = 1, ...k are non-negative numbers, and∑k
j=1Aj = 1.
For a given number of components k, the Expectation–

Maximization algorithm is a traditional method for maximum
likelihood estimates for finite mixtures. This well under-
standable technique is much admired because it satisfies a
monotonic convergence property and can be easily imple-
mented. Nevertheless, there are several known drawbacks of
the method. In fact, if there are multiple maxima, the algorithm
may discover a local maximum, which is not a global one.
Moreover, the obtained solution strongly depends on the initial
values selection (see, e.g. [5]).

In this contribution, another approach in the spirit of the
linear regression methodology is applied without any prior
suggestion about the components number k. For this purpose,
we initially form the explanatory variable X = (1, 2, ..., 100)
and the response Y , which for each value x ∈ X is composed
of the logarithm values of the normalized frequencies of DSN
in a day: ln (f(x)).

Using the standard simple regression methodology (see,
e.g. [6]), a linear regression model is identified: Y = a+ bX

TABLE I. p-VALUES

component number 1 2 3 4
p-value 0 8.6e-06 0.025 0.282

and the first estimation of the density f(x) in (1) is con-
structed f (1)(x) = A1 exp(−t1x), for A1 = exp(a) and
t1 = −b. In the next step, a new response is built Y =
ln
(
f(x)− f (1)(x) + C

)
, where C is a sufficiently positive

number, insuring that f(x)− f (1)(x)+C > 0 for all x and j;
then, the described procedure is repeated and so on. In each
step, p-value coefficient of significance:

F =
R2(X,Y )

1−R2(X,Y )
(100− 1) (2)

is calculated. The process is stopped if the actual p-value is
greater than the traditional level of significance 0.05. Here,
R(X,Y ) is the Pearson correlation coefficient between X and
Y . For all cases of daily activity, the method has been stopped
after three components were extracted.

The parameters of model (1), calculated for each of the
13 studied days, demonstrate high stability of the exponent in-
dexes (t1, t2, t3), which are practically independent on time but
are rather somewhat different on the weekends, i.e. Saturday
(4.04 and 11.04) and Sunday (5.04). Amplitudes A1, A2, A3

differ to a greater degree (in percentage terms). Thus, the abso-
lute number of active users varies from day to day to a greater
extent than the distribution pattern, which actually corresponds
to a set of exponent indexes. The p-values, calculated for the
first of the considered days, are presented in Table I.

In the case of input calls, the ratio of the exponent indexes
is: 3 · t1 ≈ t2, 3 · t2 ≈ t3. In the case of output calls,
this ratio is somewhat different: 2 · t1 ≈ t2, 3.5 · t2 ≈ t3.
The decay value, x0, of each component in (1) is chosen
to normalize the component value at this point to 1. The
components are not equivalent in the sense of their decay value.
Thereby, the exponent with index t3 = 1.0 and amplitude
A3 = 500, 000 (these parameter values are typical of one of
the three exponents, which constitute the daily activity) already
decays at x0 = 13. For the second typical pair of parameter
values (t2 = 0.33 and A2 = 400, 000), the decay occurs at
x0 = 39. The exponent with t1 = 0.12 and A1 = 90, 000 has
the longest effect on DSN (x0 = 95).

Accordingly, two of the three components that describe
user activity disappear in the middle of the considered interval
of calls. Only the third exponent continues, and its values
can be considered to represent the ”asymptotic behavior” of
the distribution. The relatively complex nature of the obtained
empirical distribution model of user activity may be indicative
of the heterogeneity of the entire set of users. This set is
conceivably composed of a few groups such that the total
user activity in a group is described by a certain simpler
distribution.

Obviously, the social status, gender and age of the users
affect their activity on telephone networks; however such type
of personal data is not available for us. Therefore, in the
following section we divide the users into groups based merely
on the features of their individual activity during a given day.
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III. USER CLASSIFICATION

As it was justified in the previous section, we proceeded
from the assumption that the obtained three-component expo-
nential mixture model reflects the inner customers’ behavior
patterns, demonstrated by the data. In order to identify these
patterns, all the users under investigation are divided into
groups according to a comparable daily performance.

A straightforward clustering of the original data is hardly
expected to deliver a robust and meaningful partition. Actually,
such a situation is a common place in the current practice.
Moreover, in many applications, the aim is to reveal not merely
potential clusters, but also a quite small number of variables,
which adequately settle that partition. For instance, the sparse
K-means, proposed in [7], at once discovers the clusters and
the key clustering variables.

A procedure in the spirit of such a bi-clustering method-
ology, where features and items are simultaneously clustered,
is applied in this paper. First of all, 24 hours inside a day
(the features) are clustered according to the corresponding
users’ activity. In the next step, the users are divided in groups
according to their occurrences in the hour’s partition. As a
result, a sufficiently robust clustering of users is obtained
together with the clusters’ description in terms of the call
activity.

A. Clustering of hours
In order to outline a similarity between hours in a day, we

consider each hour as a distribution of users across the actual
numbers of calls within this hour. It means: how many people
did not call at all in this hour, how many people called just
one time, two times and so on.

A dissimilarity between hours from the point of view of
the users’ behavior can be naturally characterized by a distance
between the corresponding distributions. Generally speaking,
any asymptotically distribution-free statistic is suitable for this
purpose. In this study, we employ the well-known Kolmogorov-
Smirnov (KS) two sample test statistic (see, e.g., [8][9]),
which is actually the maximal distance between two empirical
normalized cumulative distribution functions.

Calculating the KS-distance for each pair of hours, we
get a 24 × 24 distance matrix. Now, the Partitioning Around
Medoids (PAM ) clustering algorithm (see, e.g., [10]) is
applied in order to cluster the data. This algorithm operates
merely with a distance matrix, but not with the items them-
selves; it is feasible for small data sets (such as considered
one composed from 24 hours) and a small number of clusters.
In order to divide a data set into k clusters using PAM ,
firstly, k objects from the data are chosen as initial cluster
centers (medoids) with the intention to attain the minimal total
scattering around them (to reduce the loss function value).
Then, the process iteratively replaces each one of these center
points by non-center ones with the same purpose. If any further
change cannot improve the value of the loss function then the
procedure ends.

Except of the clustered data, PAM includes as an input
parameter the number of clusters k. Hence, the first step of
our procedure is devoted to estimation of the optimal number
of hour’s clusters. For this purpose, the well-known Silhouette
coefficient of [11] is employed. Here, ideas of both cohesion
and separation are combined, but for individual points, as well

Figure 1. Silhouette plots for 05.04 (upper) and 10.04 (lower)

as for partitions. For each point, the Silhouette index takes
values in [−1, 1] interval, such that the Silhouette mean value,
calculated across the whole data, close to one specifies ”well
clustered” data, and value -1 characterizes a very ”poor” clus-
tering solution. Therefore, the Silhouette mean value, found
for several different numbers of clusters, can indicate the most
appropriate number of clusters by its maximal value. The
number of clusters was checked in the interval of [2−10], and
the optimal one was found to be 3 for all the considered data
sets (i.e., for all considered days). An example of Silhouette
plots (for 05.04 and 10.04) is shown in Fig. 1.

From the observed partition of 24 hours into 3 hour clus-
ters, it can be concluded that although the partitions slightly
depend on the particular data set (date), the overall structure
of the clusters is preserved. Namely, there is a silent ’night’
cluster, an active ’day’ cluster, and a ’morning/evening’ cluster.

1) Clusterization procedure: Now, every user is repre-
sented by means of a three dimensional vector (r1, r2, r3),
where ri is the ratio of a user’s activity during a cluster of
hours number i. More precisely, it is a fraction of a user’s calls
during the cluster i in the total number of calls during a day.
The proposed resampling clustering procedure is based on the
well-known K-means (see, e.g., [12]) algorithm, implementing
de-facto the idea, proposed in [13].

The K-means algorithm has two input parameters: the
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number of clusters k and the data set to be clustered X .
It strives to find a partition π(X) = {π1(X), . . . , πk(X)}
minimizing the following loss function

ρ{c1,...ck}(π(X)) =
1

N

k∑
j=1

∑
x∈πj(X)

‖x− cj‖2 , (3)

where cj , j = 1, ..., k is the mean position (the cluster
centroid) of the objects belonging to cluster πj(X), and N
is the size of X . Initially, the centroid set can be predefined or
chosen randomly. Using the current centroid set, the K-means
algorithm assigns each point to the nearest centroid, aiming to
form the current clusters, and, then, recalculates centroids as
the clusters means.

The process is reiterated until the centroids are stabilized.
In the general case, as a result of this procedure, the objective
function (3) reaches its local minimum. As a matter of fact, in
the K-means algorithm, a partition is unambiguously defined
by the centroid set and vise versa. Moreover, in the general
case, the loss function (3) can be used for assessing the quality
of arbitrary partition π̂(X) with respect to the given set of
centroids {c1, . . . ck}.

The resampling procedure allows partitioning a large data
set, based upon partitioning its parts. The algorithm is pre-
sented below:

Algorithm 1: Input:
• X - dataset to be clustered;
• k - the number of clusters;
• N - the number of samples;
• m - the sample size.
• ε - the threshold value.

Procedure:
1) Randomly draw N samples of size m from X without

replacement.
2) For each sample Si

a) In the first iteration, the centroid set C is
chosen randomly.

b) Clustering Si by K-means algorithm with
starting from the given centroid set C.

c) Clustering π(X) of the whole data set by
assignment to the nearest centroid using cen-
troids obtained in the previous step.

d) Calculate the object function value of π(X)
according to (3).

3) Choose from a set {S1, . . . , SN} a sample S0 with
the minimal object function value.

4) If the first iteration is being processed or if the
absolute difference between two minimal object func-
tion values calculated for two sequential iterations is
greater than ε, replace C with the set of centroids of
π(S0), and return to step 2; otherwise stop.

2) Choosing number of users’ clusters: In order to evaluate
the optimal number of clusters, it is natural to compare stability
of the obtained partition for different cluster numbers. To this
end, we repeat the user clustering procedure ten times on the
same data set and evaluate the Rand index value between
all obtained partitions. The Rand index [14], represents the
measure of similarity between two partitions. It is calculated by

Figure 2. Rand index plot for the dataset 01.04

TABLE II. MINIMUM OF AVERAGE DISTANCES TO THE NEAREST
CENTROID FOR THE FIRST 5 ITERATIONS OF RESAMPLING

PROCEDURE

iteration num 1 2 3 4 5
min avg of dist 0.014487 0.013302 0.013295 0.013309 0.0132901

counting the pairs of samples, which are assigned to the same
or to different clusters in these partitions. The closeness of the
Rand index value to 1 indicates similarity of the considered
partitions.

For the same purpose also Adjusted Rand index [15], which
is the corrected-for-chance version of Rand index, can be used.
However, in our consideration, it is suitable to use the regular
one because it well reflects partitions’ closeness. The mean
value of the obtained Rand indexes naturally characterizes
partition stability by its maximal value. Thereby, the ’true’
number of clusters corresponds to the most stable partition.

B. Experimental study
1) ’True’ number of clusters estimation: In order to esti-

mate the optimal number of clusters in the users’ clusterization
procedure, we repeat the clustering stability evaluation pro-
cedure, described in Section III-A2, for each of the possible
numbers of clusters in the interval [2, 10]. The results for all
dates are very similar. Fig. 2 demonstrates an example of
Rand-index curve for 01.04. It is easy to see that the maximal
stability attitudes appear for N = 2 and N = 3.

Recall that the purpose of the user clustering is to recognize
behavior patterns, which represent the general structure of the
user population. Let us consider two possible estimators for
’true’ number of clusters from this point of view. We describe
a behavior pattern via an average level of the users’ activity
within each of 3 hour clusters, defined in Section III-A. In
this way, we take a three-dimensional representation of users
and calculate the mean as well as standard deviation of each
coordinate in each user cluster.

The user activity patterns, found for 01.04, are shown in
Fig. 3 by means of the error bar plot of values in each hour
cluster. Recall that for the given data we obtained a ’night’
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Figure 3. Profiles of 3 customer clusters for work day (01.04; Activity 1)

Figure 4. Profiles of 3 customer clusters for off day (05.04; Activity 1)

cluster with hours 1-8; a ’day’ cluster with hours 11-21; and
a ’morning/evening’ cluster containing hours 9-10 and 22-
24. For example, pattern A (the left panel in the picture) is
characterized by the prevalence of the day activity since the
average activity value is 0.84 for the ’day’ hour cluster, in
comparison with the values of 0.09 and 0.06 for the other hour
clusters. Similarly, the behavior pattern B (the middle panel)
describes users with significant activity in all hour clusters,
while the pattern C (the right panel) is characterized by high
activity in the morning-evening hours.

The obtained result shows that we have a ”clear” partition
into 2 clusters and that one of them is well divided into 2
more sub-clusters. In fact, the two-clusters partitions contain
the cluster corresponding to Pattern B and the united cluster
for Patterns A and C. For our purposes, therefore, it is natural
to choose 3 as the ”true” number of clusters. Actually, it
is a common situation in cluster analysis, where the ”ill-
pose” number of clusters determination task can have several
solutions depending on the model resolution.

2) Procedure convergence: Now, we demonstrate that the
resampling clustering procedure converges very fast. Table
II shows the minimal objective function values for the first
five iterations of the resampling procedure, conducted on 100
samples for k = 3 (for others k the situation is similar). The
results show that even in the second iteration the minimal
average of the distances does not change significantly as
compared to the first iteration. In the subsequent iterations,
this value remains constant to within 0.0001.

Figure 5. (a) Distribution of Activity 1 for the clusters obtained for Activity
2. (b) Distribution of Activity 1 for the clusters obtained for Activity 1.

Date: 08.04.

3) Profile stability: Further, we use the behavior patterns
for comparison of the results of our procedure on different
datasets. The obtained results show that they are stable both for
work days and off days. However, the difference between work
and off days is significant (see Fig. 3 and 4 for comparison).

Although, qualitative descriptions of profiles are very sim-
ilar in both cases: pattern A with prevalent ”day” activity;
pattern B with significant activity throughout 24 hours and
pattern C with prevalent ”morning-evening” activity; in off
days higher ”night” activity is detected.

C. Call activity, associated within patterns
Let us consider the call activity of users, located in each

one of the found clusters. The total activity of all the users
within a day has a density with two peaks. One of them is
placed in the workday middle, and the second one, the higher
peak, is located in the period after 7 p.m such that a local
activity minimum is observed immediately after. The shape of
the corresponding density in the first cluster (A) is actually
the same. However, the user’s activity almost does not vary
in the second cluster (B), i.e. the density curve has several
insignificant peaks, and the activity decreases at 10 p.m. The
total activity of the users belonging to cluster three (C) has
two peaks located in the morning and in the evening of a day.

Furthermore, we observe that the distribution of calls
during a day for all three clusters is almost independent on
the activity type, see Fig. 5. Here, the blue curves corresponds
to the total activity densities of all the users; the red, green
and brown ones give the total activity densities for clusters 1,
2 and 3, respectively. Note that both activity types have the
same distribution shapes.

1) Features of the cluster model parameters: The model,
which we use, reveals major differences between the DSN
of the entire set of users and the DSN ’s for the individual
clusters. For Activity 1, the DSN for Cluster 1 is almost
always best fitted by a single exponent. However, in more
than half of the cases, the DSN for Cluster 2 is fitted by two
exponents. Moreover, during the weekend period, the curve is
fitted by three exponents. The DSN for Cluster 3 is usually
fitted by two exponents, while the three-exponent fit sometimes
arises without regard for the day of the week. For Activity 2,
the above regularities are more pronounced for Clusters 1 and
2, since all the best fits for Cluster 3 are two-exponential.
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Our results demonstrate an obvious simplification of the
DSNs for Clusters 1-3 as compared to the DSN for the total
set of users. Nevertheless, joining any two of these clusters
results in a three-component DSN . At the same time, random
partition into three clusters (with the same number of users
as in the calculation of Clusters 1, 2, 3 as mentioned above)
yields the same three exponent indexes, t1 = 0.11, t2 = 0.31
and t3 = 1.01 for all three clusters. The results coincide with
those calculated for the total set of users on the same day.

Thus, simplification of the cluster model shows that the
partition into Clusters 1-3 actually reflects different activity
characteristics for different groups of users. There are some
differences on the weekends, but on the whole the parameters
of a particular DSN are the same for each day. Note also
that the DSN ’s of Clusters 2 and 3 are not in the least close
to the second or third component (exponent) of the total set
DSN . Indeed, in our model, the DSN of Cluster 2 consists
mainly of two exponents, with one exponent disappearing at
the decay value of 30, while the other as a rule not decaying up
to the value of 70. The DSN of Cluster 3 also has long-lasting
components (up to 100 and more).

IV. CONCLUSION

In the present study, we are interested in the mechanisms,
which generate non-Gaussian distributions. We investigate the
reason that non-Gaussian distributions occur in the social
sciences. Internet activity and, in particular user activity on
social networks, appears to be an appropriate area for such
analysis. Numerous studies suggest different models of social
networks and try to link particular network characteristics to
some measure of the user activity. These characteristics often
obey the hyperbolic law in one form or another.

Although, the social activity distribution of a population
takes a specific and constant form, it can be assumed that
the observed distribution is in some sense an averaged one.
Obviously, it is composed of various types of distributions,
generated by different social layers. We have in mind not only
the groups, arising from the simplest types of differences such
as age and gender, but also the more complex features of
the population under consideration. It can be assumed that
the demonstration of the hyperbolic law or, in contrast, the
combination of distribution laws for various social groups,
depends on the nature of the user joint activity. In some cases,
each user’s action is in some sense sequential, so that their
average behavior can be considered in the framework of a
single law.

An example of parallel user activity is the number of
records in an email address book, cf. [16]. In cases, where
users’ actions occur in parallel, each user group, which is
uniform with respect to some criterion, can generate its own
law of activity distribution. Since telephone calls are also more
likely to be a parallel user’s activity in the sense.

In this research, we expected to find that the observed
distribution of calls is the sum of several distribution func-
tions, corresponding to different social groups of users. The
limited number of these groups is an important prerequisite
for such differentiation because averaging over the groups is
absent in this case. In [17], we introduced the notion of user
strategy (with respect to alternating different types of telephone
activity) and showed that the number of different strategies is
small.

Therefore, we expected to obtain a small number of groups
with equivalent user activity. Having no real-life socio-relevant
parameters, we assumed that the peculiarities of a user’s
activity during a day may correlate with the user’s social status.
Finally, we partitioned the results into three clusters, with 70,
21, and 9 user percentages in these clusters. We showed that
these clusters have simpler distribution functions than those
for the total population.
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