
Template Based Automatic Generation of Runsets

Elena V. Ravve
Software Engineering Department

Ort Braude College
Karmiel, Israel

Email: cselena@braude.ac.il

Abstract—Layout of modern electronic devices consists of billions
of polygons for chemical layers. There exist hundreds of design
rules, defining how the polygons may be drowning. Design rule
checkers (DRC) guarantee that the chip may be manufactured.
Moreover, any manufacturing process allows a finite set of sup-
ported legal devices. Layout versus schematic (LVS) comparison
determines one-to-one equivalency between a circuit schematic
and its layout. The correctness of the DRC and LVS runsets
are verified using test cases, which contain shapes, representing
failing and passing conditions. Creation and maintenance of
the complete set of runsets and the corresponding test cases
is complicated and time consuming process that should be
automatized. Usually almost all design rules may be divided into
a set of categories: width, space/distance, enclosure, extension,
coverage, etc. Moreover, the set of legal devices for any process
may be divided into a set of technology independent categories:
transistors, capacitors, resistors, diodes and so on. In this paper,
we use these categories in order to define re-usable patterns. The
integrator will use the pre-defined patterns in order to compose
the design rule manuscript (DRM) rather than to write it. DRC
and LVS runsets are then automatically generated using the
DRM. Moreover, we use the patterns in order to automatically
create the corresponding test cases.

Keywords–Design Rule Manuscript; Design Rule Checker Run-
set; Layout versus Schematic Runset; Test Cases; Templates;
Automatic Generation.

I. INTRODUCTION

Typical layout of modern electronic devices consists of
billions of polygons for different chemical layers. For each
such a layer, there exist dozens of design rules (DRs), which
define how the polygons may be drowning. Any semiconductor
manufacturing process/technology contains a set of physical
DRs for geometrical configuration of available layers, wiring,
placement and so on.

DRs are series of quantitative limitations, provided by
semiconductor manufacturers that enable the designer to ver-
ify the correctness of a mask set. DRs have become in-
creasingly more complex with each subsequent generation
of semiconductor process. Every chip, which is expected to
be manufactured in the given technology, must satisfy the
limitations of the DRs. Design rule checking (DRC) runsets
are provided by the manufacturer in order to guarantee that
the given chip does not give the DR violations.

The document that contains all these rules: Design Rule
Manuscript (DRM) has dozens of tables for each layer with
free style description of the limitations. The fact leads to
various problems, starting from inconsistency in the under-
standing of the meaning of the rules and going to lots of
bugs in coding of the rules in DRC as well as poority of test
cases in verification of the DRC runsets. On the other hand,

according to our experience of the common work with Tower-
Jazz foundry, usually almost all the DRs may be divided into
a relatively small set of categories and sub-categories, such as
width, space/distance, enclosure, extension, coverage, etc. In
this paper, we use these categories in order to derive a set of
patterns. These patterns are the basis of an environment that
allows the integrator, who writes the DRM, to use the pre-
defined patterns in order to compose the DRM rather than to
write it. DRC runset is then automatically generated, based on
the instantiations of the patterns in the DRM.

DRC runsets are provided in order to guarantee that the
given chip does not give the design rule violations. The
correctness and completeness of the DRC runsets are verified
using test cases, which contain shapes of different chemical
layers, representing various failing and passing conditions for
each rule of the technology.

Creation, modification and maintenance of the complete
set of test cases is complicated and time consuming process
that should be automatized. Now, we enrich the derived set
of patterns, used for DRC runset generation, by the option
to create a set of test cases, which corresponds to the pass
condition or to failures of the DRs. When the option of failures
or passing is chosen, the particular type of the failure or of
the passing is defined as well as the form of the report. In
addition, particular subsets of the test cases, generated by the
given pattern, may be chosen by the user, etc.

The set of the varied parameters for the test cases generator
may be extended upon request. When all parameters are
defined, the set of test cases would be created automatically.
The complete set of the parametrized patterns may be (but
not necessary) organized as a library. For any design rule
for a given technology, one chooses the relevant parametrized
pattern or set of patterns, provides the specific values of
required parameters, and puts the obtained instances into the
set of test cases, which corresponds to the technology.

The instantiation and(or) modification process may be
automated as well. Using such a method, the complete set
of test cases for the full set of DRs for the given technology
may be created and easily maintained and(or) modified.

Any semiconductor manufacturing process allows a finite
set of legal devices, supported and recognizable in the process.
Layout versus schematic (LVS) comparison runsets determine
one-to-one equivalency between an integrated circuit schematic
and an integrated circuit layout. The correctness and com-
pleteness of the LVS runsets are verified using test cases,
which contain shapes (with connectivity) representing failing
and passing conditions for each legal device of the technology.

In this paper, we briefly explain how our general approach
may be extended to the case of automatic generation of LVS

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

runsets and sets of test cases in order to verify them. The
proposed innovation is based on the fact that again the set of
legal devices for any process or technology may be divided
into final set of technology independent categories and sub-
categories such that transistors, capacitors, resistors, diodes and
so on.

The environment that partially implements the approach
is provided. We restricted ourselves to the case of automatic
generation of a DRM and a DRC runset, which define and
verify limitations, related to width of different layers, as well as
the automatic generation of the corresponding set of test cases.
The complete tool would produce automatically the DRM, the
DRC/LVS runsets and the testcases to test them in a uniform
way for all layers and legal devices.

There are several benefits of the presented invention:

• Common methodological basis for different processes,
technologies and verification tools;

• Formal approach to DRM composition that allows
precise and consistent formulation of physical design
rules and description of legal devices for different
processes, technologies and verification tools;

• Human independent accumulation of knowledge;
• Significant reduction of human factor and manual

writing;
• Total elimination of manual coding and re-use of

patterns;
• Better quality and confidence level of the delivered

DRM, DRC/LVS runsets and test cases;
• Significant reduction of time and effort to implement

DRM, DRC/LVS runsets and test cases;
• Full coverage of all physical design rules and legal

devices and the corresponding test cases;
• Integrator does not learn any new programming lan-

guage;
• Effective, consistent and safe way to change, update

and maintain DRM and the corresponding DRC/LVS
runsets as well as test cases for all verification tools;

• Detection and correction of mistakes and bug at ear-
liest stages of the flow;

• Effective, consistent and safe way of bug fixes.

The paper is structured in the following way. In Section II,
we consider the previous results in the field under investigation.
Section III is central in our paper and describes our general
approach to solve the problem. In Section IV, we describe
in great details a particular implementation of our general
approach for creation of a DRC runset for verification of width
related DRs. In Section V, we provide the implementation
details. Method of automatic generation of test cases for
verifying DRC/LVS runsets, using process independent pre-
defined generic set of parametrized patterns is described in
Section VI. Section VII summarizes the paper.

II. REVIEW OF PREVIOUS WORKS

These exist a lot of attempts to improve the process of
creation of DRC and LVS runsets. They start at least from [1],
where a process flow representation was proposed in order
to create a single, unified wafer processing representation in

order to facilitate the integration of design and manufactur-
ing. Hardware assisted DRC was considered in [2][3][4] but
quickly returned back to software based solutions [5]. There
exist a lot of patents, which attack the same problem. We take
the description of the most relevant patents almost verbatim.

In [6], a method for generating test patterns for testing
digital electronic circuits, is defined. It fully specifies some
primary inputs, while other primary inputs are specified in
accordance with selected series of codes. The test pattern
template is then repeatedly converted into a stimulus pattern,
using different integers in the selected series of codes, and
fault simulation is performed on a circuit under test using
each stimulus pattern. A stimulus pattern is then saved for
subsequent testing of the circuit under test whenever fault
simulation using that stimulus pattern shows that fault coverage
has increased.

Another close approach was proposed in [7], which consid-
ers automatic generation of DRC runsets, using templates per
verification tools. The main idea of the invention is that instead
of a user creating runsets in a language of a specific verification
tool (also called ”native language”), the user expresses the
DRC rules in a high level programming language (also called
”meta language”) that is independent of the native language.
The meta language includes, in addition to normal constructs
of the high level programming language, a set of keywords
that identify DRC rules from an abstract viewpoint, unrelated
to any native language.

In [8], an approach to deal with programming language,
such as C, C++, Perl or Tcl was proposed. In addition, DRC
templates of the type described herein capture the expertise of
the template author for use by numerous novice users who do
not need to learn the native language of a verification tool.
In our approach, we eliminate the need to use any (either
experienced or novice) user/programmer in order to write the
DRC/LVS runsets. In order to reach the target, we propose
to force the DRM composer (who is assumed to remain in
the game in any case) to instantiate the relevant pre-defined
generic patterns rather than to write the DRM as a free-
style document. When these patterns are instantiated and the
relevant information is extracted and stored in the suitable way,
we use the patterns for DRC runsets generation and similar
(new proposed) patterns for LVS runsets generation for any
particular verification tool.

In [9], use of patterns for improving design checking was
proposed but in another context. Moreover, one aspect of the
present invention includes a method for generating functional
testcases for multiple boolean algorithms from a single generic
testcase template. The method includes the preliminary step
of creating a generic testcase template containing user-entered
mask levels shapes and grouping the shapes within each
mask level of the template. Next, testcase generation code
comprising mask build language is developed to copy and
rename the mask levels from the template into the desired
input levels necessary to test a mask build operation. Finally,
testcase generation code is executed to generate a testcase. The
testcase generation code can be easily modified as necessary
to change the mask levels. Additionally, shape interactions
for new mask level builds can be added into the generic
testcase template, allowing the patterns to be reused to generate
additional testcases, see also [10].

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

A more general approach to use patterns was proposed
in [11]. During the design of semiconductor products which
incorporates a user specification and an application set, the
application set being a partially manufactured semiconductor
platform and its resources, a template engine is disclosed
which uses a simplified computer language having a character
whereby data used in commands identified by the character
need only be input once, either by a user or by files, and that
data, after it has been verified to be correct, is automatically
allocated to one or more templates used to generate shells for
the specification of a final semiconductor product. Data must
be correct and compatible with other data before it can be used
within the template engine and the generated shells; indeed
the template engine cooperates with a plurality of rules and
directives to verify the correctness of the data. The template
engine may generate one or more of the following shells: an
RTL shell, a documentation shell, a timing analysis shell, a
synthesis shell, a manufacturing test shell, and/or a floorplan
shell.

In [12], an automatic LVS rule file generation apparatus,
which includes a definition file generating unit and a rule file
generating unit, was proposed. The definition file generating
unit generates definition files used for a layout verification
based on first data and templates that are used for the layout
verification in a layout design of a semiconductor apparatus.
The rule file generating unit automatically generates a LVS rule
file based on the definition rule files. The templates includes
first parameters indicating three-dimensional structures of the
semiconductor apparatus. The definition files includes second
data with respect to the first parameters. However, unlike our
approach, a template for an automatic LVS rule file generation
is used for generating a LVS rule file that indicates a rule for
a layout verification of a layout design.

In [13], a method for comprehensively verifying design
rule checking runsets was proposed. It seems to be the
most relevant patent to our test cases generation approach.
The patent describes a system and method for automatically
creating testcases for design rule checking, which comprises
first creating a table with a design rule number, a description,
and the values from a design rule manual. Next, any design
specific options are derived that affect the flow of the design
rule checking, including back end of the line stack options.
Then, the design rule values and any design specific options are
extracted into testcases. Next, the testcases are organized such
that there is one library with a plurality of root cells, further
comprising one root cell for checking all rules pertaining to
the front end of the line, and another root cell for checking
design specific options including back end of the line stack
options. Finally, the DRC runset is run against the testcases to
determine if the DRC runset provides for design rule checking.
However, while the patent deals with the general flow of
testcase creation for a particular technology, we propose a
general method for instantiations of technology independent
generic patterns.

In [14], a system and method for automatically creating
testcases for design rule checking was proposed. The method
first creates a table with a design rule number, a description,
and the values from a design rule manual. The design rule
values and any design specific options are extracted into
testcases. Finally, the DRC runset is run against the testcases
to determine if the DRC runset provides for design rule

checking. Other methods for verifying design rule checking
were proposed in particular in [15] and [16].

One more techniques for verifying error detection of a
design rule checking runset was introduced in [16]. Another
method for verifying design rule checking software was pro-
posed in [15]. One more technique for verifying error detection
of a design rule checking runset was introduced in [16].
However, all the mentioned methods and approaches do not
reach our level of generality. Moreover, they do not use sets
of pre-defined patterns in the consistent way.

III. A SYSTEMATIC APPROACH TO AUTOMATIC
GENERATION OF DRC AND LVS RUNSETS AND THE

CORRESPONDING TEST CASES

A DR set specifies certain geometric and connectivity re-
strictions to ensure sufficient margins to account for variability
in semiconductor manufacturing processes. DRC is a major
step during physical verification signoff on the design. Each
process allows a finite list of legal devices, which may be
used and recognizable in the process. LVS comparison runsets
determine one-to-one equivalency between an integrated circuit
schematic and an integrated circuit layout. DRM may contain
hundreds of physical design rules and definitions of dozens
legal devices.

Like each physical DR must be implemented in DRC
runsets, each legal device must be recognized by LVS runsets.
Wafer foundry must provide customers with DRC and LVS
runsets, implemented in all required verification tools and
languages. Creation, modification and maintenance of the
complete set of DRC and LVS runsets is a complicated and
time consuming process that should be automatized.

The proposed approach is based on the fact that the set
of physical design rules for any process or technology usually
may be divided into a final set of technology independent cat-
egories such that width, space, enclosure and so on. Moreover,
the set of legal devices for any process or technology may be
divided into a final set of technology independent categories
such that transistors, capacitors, resistors, diodes and so on.

We create one set of parametrized patterns for DRC pur-
poses, such that one pattern (or rather sub-set of patterns)
corresponds to a DRC category. In addition, we create another
set of parametrized patterns for LVS purposes, such that
one pattern (or rather sub-set of patterns) corresponds to a
LVS category. The parameters of the patterns may contain in
particular (but not limited to) involved layout layers, specific
design values, connectivity, additional constrains, etc. The set
of parameters may be enriched upon request. While earlier
proposed methods involve the patterns in pretty late stages of
the runsets generation, we propose to force the DRM composer
to fulfill the templates, defined by the patterns, (in any relevant
way, for example, using GUI) instead of free-style writing of
the document.

For any design rule or legal device for a given technology,
the DRM composer chooses the relevant parametrized pattern
or set of patterns, provides the specific values of required
parameters or (preferably) chooses them from a choice list.
The obtained information is transformed and stored as a data
structure that will be used for different purposes, such that
automatic generation of DRM itself as well as DRC and LVS
runsets in particular verification tools and so on. All devices

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

of the process are put in the list of legal devices with their
description in DRM.

Moreover, any verification tool uses different commands,
key words and options for features. When free style is used for
DRM writing, different interpretations and further implemen-
tations of sentences are allowed that may lead to unexpected
results in runs of DRC/LVS runsets. In addition, when different
formulations are used for definitions of derived layers as
well as special options, hardly detectable effects in DRC/LVS
runsets may be produced.

The following flow is proposed. We start first from precise
definitions of all derived layers or options, which are expected
to be used in physical design rules or descriptions of legal
devices. The definitions lead to a final fixed set of key words,
which are allowed in physical DRs or descriptions of legal
devices. The set contains, for example, entries for defini-
tion of such notions as GATE, HOT NWELL, NTAP ,
BUTTED DIFFUSION and so on, as well as information,
extracted from the technology file, such that names and pur-
poses of layout layers, value of grid and so on. In addition, the
set contains key words to choose between minimal, maximal,
exact options for the values and so on. The set of key words
may be divided into sub-sets, such that only values from
a particular sub-set are allowed in certain fields of certain
templates.

When the set of allowed key words is fixed and stored
as the relevant data structure, the DRM composer may pass to
the stage of filling the fields in the pre-defined set of templates
for physical design rules or descriptions of legal devices. Any
field that is aimed to contain a value from the (sub-)set of
key words, either is checked on-the-fly for its correctness or
is presented as a choice list.

Only fields for the numerical values (for example, the
particular value of the width) will not be so. Moreover, many
other checking procedures may be involved at this step. For
example, check precision on the given numeric values against
grid, etc. The precise information, obtained as the result of the
filling of the templates is stored as a relevant data structure and
will be re-used for particular patterns for further generation
of DRM as well as DRC and LVS runsets, implemented in
particular languages or tools. Moreover, the information will
be used also for the automatic generation of the corresponding
test cases for the DRC and LVS runsets.

IV. FROM RULE DEFINITION TO DRM AND DRC

In fact, typically, every DR is constructed from the rule
number, the rule parameter such as width, space, overlap, etc.,
and the layer name, followed by the description of the rule.
The last thing is the size, which is typically maximum or
minimum. Moreover, a rule may be exclusive for a specific
voltage, devices, combination of layers or purpose.

In order to demonstrate how our general approach works,
we decided to treat all width rules of a particular existing
DRM of Tower-Jazz foundry. We collected all the width rules
for all the layers. Then we transformed every rule to a set
of short expressions. We proved that an integrator, who writes
DRM, may compose any width rule as detailed as she/he wants
by composing the expressions without having to add anything
manually.

We had a lot of meetings with the target audience of the
tool that implements our approach: the integrators. We wanted
to understand what is the best way to build the user interface
and where we may encounter difficulties. After summing these
meetings, we understood that our Achilles heel of the tradi-
tionally used practice is the inconsistency of the rule writing.
In fact, adding a rule without considering the previous rules
or the way that they were written may cause inconsistency in
DRM. Moreover, they mostly used to patch new phrase to the
old rule, which describes the new need, without changing all
the rule from scratch. In order to overcome the obstacle, we
analyzed every width rule and divided it into its components
in one long table, taking in account what is the purpose of
each one as well as what are the corresponding constraints.

For example: if we use nMOS transistors and the gate layer
with 3.3V voltage then we approve one value of minimum
width. Unlikely, if we use pMOS transistors for the same
gate layer with 5V voltage then we approve an absolutely
different value of minimum width. We concluded with the help
of Tower-Jazz’s experts that we may map all the additions to
the width DRs into six main categories:

1) Rules for special layers like marking layers;
2) Rules for layer under other layers;
3) Device dependent rules;
4) Voltage dependent rules;
5) Area despondent rules; For example, two layers are

used to define thick gate oxide 5V for mask gen-
eration and device recognition. AREA2 defines area
with thick oxide either 3.3V. AREA6 marks thick
oxide as 5V for DRC, LVS and MDP purposes.

6) Purpose dependent rules.

In order to translate all these short sentences into one rule,
we got help from Mentor Graphics experts with profound
knowledge how Calibre works. For example: The most com-
ment and basic example to write a width rule will be coded
as follows:
XP.W.1 {

@XP.W.1: XP width, min. 0.XX (XP.W.1)
internal XP< 0.8 region singular abut> 0 < 90

}
Let us consider a more complicated example. A metal

width rule MI.W.2 for I=2,.,6 is formulated as follows:
MI.W.2

Minimal width of MI line, connected to a wide MI.

In order to better understand the above, we look at the rule’s
layout in Fig. 1. Now, we see that layer M2 is connected to
a wide M2. The metal is wide if it dimensions are equal or
bigger then 35um. Note, that the definition unfortunately does
not appear at all in the original formulation in the rule and
it is expected to be known from the common knowledge of
the integrators’ team. However, the narrow metal, according
to the DRs, is approved to be minimum 1um. Otherwise, if it
is smaller, our runset must report the violation. In this case,
these details are hidden in the original formulation of the rule
and must be extracted from other sources of knowledge.

The main problem in the maintenance of DRMs and the
corresponding runsets is that, as a rule, the well defined,
consistent and well supported source of the knowledge does

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

not exist at all and it is replaced by some common local
folklore, transferred verbally in the integrators’ community.
Our approach starts from precise definitions of all such short-
cuts, which are reviewed by the corresponding experts and
supported in a uniform way.

In our particular case, we have, for example, M2NRW
shortcut that actually means in Calibre coding:

M2NRW = ((M2MS or (M2slits interact M2MS))
interact M2WIDE) not M2WIDE.

Now, let us code the rule in Calibre for M2.

• The first thing, to be written in the runset file, is the
rule name, followed by {. In our specific example, it
should be:
M2.W.2 {
In this way, we know where this rule begins.

• Next, usually, we want to write comments for this rule
to make it easier maintained. We start the comment
with sign @. That leads us to the next line in the
runset:

@M2.W.2: Width of Narrow Metal, Connecting
to Wide Metal min. 0.YY (M2.W.2)

• Now we put the body of the rule for constraints, which
are interpreted as violations for this specific layer:

X2=not outside edge M2NRW M2WIDE
EX2=expand edge X2 by 0.01
area EX2 < 0.02

• Sign } finishes the composition of the rule, so that we
determine where it ends.

As the result of our coding, we receive the following
automatically generated piece of the runset:
M2.W.2 {

@M2.W.2: Width of Narrow Metal, Connecting to
Wide Metal min. 1 (M2.W.2).
X2=not outside edge M2NRW M2WIDE
EX2=expand edge X2 by 0.01
area EX2 < 0.02

}
The considered example represents a single rule of dozens

of rules, while each such a rule has dozens of layers. Even-
tually, each rule must be translated into DRC statements. We
have shown how the coding may be automatized.

V. IMPLEMENTATION DETAILS

In this section, we show in great details, how our general
approach is implemented in a particular toy-tool. We start from
a complete snapshot of the GUI, see Fig. 2, then, we explain
each step.

A. Let us start
The user(integrator) is expected to provide her/his pass-

word, when starting the tool, see Fig. 2 step 1.

B. What about the process?
Using the tool, the user may add a new process, remove

an existing process or use a stored process, see Fig. 2 step 2.

Figure 1. M2.W.2 rule

Figure 2. Complete snapshot of the GUI

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

C. Which layer?
When the process is chosen, see Fig. 2 step 3. The techfile

of the chosen process is used in order to access the list of the
available layers.

D. Composing a rule
When the layer is chosen, the user gets the list of all

available categories of the rule. By double-clicking on the de-
sired category, the user gets all the pre-defined sub-categories,
available in order to compose the new rule, see Fig. 2 step
4. The sub-categories include in our particular case (but not
limited in the general case to):

• the list of all layers from the techfile as well as special
layers, like marking layers;

• the list of purposes and recommended options;
• the list of not relevant cases and available devices;
• the list of voltages.

The user may choose any allowed combination of the sub-
categories for the new rule, see Fig. 2 step 5. If some
combination of the sub-categories is not allowed then the fact
is checked automatically by the tool and the user is updated
accordingly.

Now, the user should insert the value of the rule: width in
our particular case, as well as a free style comment, see Fig. 2
step 6. These are the only values, which are inserted and not
chosen from pre-defined options. Then, the corresponding DR
is put to its place in the DRM.

E. Generating the code of the rule
It remains to choose the corresponding tool: Calibre in

our example, see Fig. 2 step 7. The corresponding code is
generated automatically by the tool.

F. Testing the generated code of the rule
In order to test the generated code, we composed a layout

with the corresponding DRC violation. The violation was
found and reported by the automatically generated runset.

VI. METHOD OF AUTOMATIC GENERATION OF TEST
CASES FOR VERIFYING DRC/LVS RUNSETS, USING

PROCESS INDEPENDENT PRE-DEFINED GENERIC SET OF
PARAMETRIZED TEMPLATES

In general, dozens of test cases per a design rule should be
provided in order to guarantee correctness and completeness
of all DRC runsets implemented in all tools and all languages.
Moreover, different test cases should be created for failing and
passing conditions per each design rule. In addition, all the
test cases must be maintained and modified according to any
relevant change in DR. As for now, both code of DRC runsets
and test cases are manually created and maintained. All the
above justifies that automated methodology and system should
be proposed for these tasks.

We propose a new approach to the automated test cases
generation for DRC runsets again based on the fact that there
exists a finite fixed set of categories, which may be defined at
once, such that the categories cover all (or most) design rules
for any given process or technology. The set again contains
such categories as width rules, spacing rules, enclosure rules
etc. Then we propose to re-use the parametrized patterns,

Figure 3. Menu to generate test cases

defined for DRM generator, for each category such that, the
pattern may be calibrated to the particular testing purposes by
assignment of the corresponding parameters.

Fig. 3 illustrates the concept. The example shows some
part of the technology parameters such as the layout layers and
purposes as they are defined in the technology file, different
values taken from DRM, as well as parameters, related to the
testing purpose such that the failing or passing case and its
particular version.

In addition, the corresponding report format may be defined
using, for example, error layers and so on. All the parameters
(or any part of them) may be assigned either manually or in
some automated way. The assignment procedure leads to cre-
ation of a particular instance of the template that corresponds
to the chosen pattern, testing purpose, etc.

Fig. 4 illustrates one of the possible implementation of such
instantiation. The particular test case generator was written in
SKILL and it is included as an integrated part in the proposed
tool.

This approach may be extended to the case of automatically
created testcases for LVS checking as well. In fact, the list of
legal devices of the process as well as their detailed description
is available in DRM. DRM may contain dozens of legal devices
such that their final list for the process may be combined
from different sub-sets, according to additional options or
limitations. LVS runsets are implemented, using different tools

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

Figure 4. Automatically generated test cases

and program languages, each one with its own algorithms and
particular implementations of checking procedures for different
features.

Hundreds of test cases per a legal device should be
provided in order to guarantee correctness and completeness
of all LVS runsets, implemented in all tools and languages.
Moreover, different test cases should be created for failing
and passing conditions per each legal device and/or their
combination. In addition, all the test cases must be maintained
and modified according to any relevant change in DRM.

Our method comprises first of all creating of a data
structure (say, a table) with a device identifier, its description
(including involved layers and connectivity), and the corre-
sponding values from DRM. The data structure contains all
legal devices for the process. Any design specific options
or limitations, which affect the recognition process, may be
added.

Then, the device descriptions and design specific options
are implemented into a set of test cases. The implementation
is expected to be automatic for both failing and passing
conditions. Next, the testcases are organized in a data structure
(say, a library) that is suitable for the further run of LVS
checkers. Finally, the LVS runset is run against the testcases
to determine if the LVS runset is correct and complete. The
LVS test case generator is still not included in the implemented
tool.

VII. CONCLUSION AND OUTLOOKS

In this paper, we propose a general approach that allows
automatized generation of a design rule manuscript, based on
a final set of pre-defined patterns. The particular instantiations
of the patterns in the DRM generator are then used for
automatic generation of DRC and LVS runsets as well as the
corresponding test cases.

The approach is based on the fact that usually almost
all design rules may be divided into relatively small set of
categories: width, space/distance, enclosure, extension, cover-
age, etc. Moreover, the set of legal devices for any process
or technology may be divided into final set of independent
categories: transistors, capacitors, resistors, diodes and so on.

The environment that partially implements the approach is
provided.

We restricted ourselves to the case of automatic generation
of a DRM and a DRC runset, which defines and verifies
limitations, related to width of different layers, as well as the
automatic generation of the corresponding set of test cases.
The complete tool would produce automatically the DRM, the
DRC/LVS runsets and the testcases to test them in a uniform
way for all layers and all legal devices.

The approach may be extended to automatic generation of
other runsets, say, antenna runsets and the corresponding test
cases. In general, the approach may be applied in a uniform
way to all steps of the of masks’ generation and verification.

Acknowledgments
We are would like to thank T. Estrugo (Tower-Jazz) for

valuable discussions, general support and his many sugges-
tions. We are would like to thank U. Krispil (Mentor Graphics)
for his technical assistance. We also appreciate the effort of our
students M. Ankonina and N. Mazuz, who implemented the
tool.

REFERENCES
[1] E. Ünver, Implementation of a Design Rule Checker for Silicon Wafer

Fabrication, ser. MTL memo. Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 1994.

[2] L. Seiler, A Hardware Assisted Methodology for VLSI Design Rule
Checking, ser. MIT/LCS/TR-. Mass. Inst. of Technology, Laboratory
for Computer Science, 1985.

[3] T. Blank, M. Stefik, and W. vanCleemput, “A parallel bit map processor
architecture for DA algorithms,” in Proceedings of the 18th Design
Automation Conference, ser. DAC ’81. Piscataway, NJ, USA: IEEE
Press, 1981, pp. 837–845.

[4] R. M. Lougheed and D. L. McCubbrey, “The Cytocomputer: A practical
pipelined image processor,” in ISCA, J. Lenfant, B. R. Borgerson, D. E.
Atkins, K. B. Irani, D. Kinniment, and H. Aiso, Eds. ACM, 1980, pp.
271–277.

[5] D. Wittenmyer, Offline Design Rule Checking for VLSI Circuits.
University of Toledo., 1992.

[6] K. Bowden, “Method for generating test patterns,” Apr. 18 2000, uS
Patent 6,052,809.

[7] G. Richardson and D. Rigg, “Method and system for automatic gen-
eration of DRC rules with just in time definition of derived layers,”
Aug. 26 2003, US Patent 6,611,946.

[8] D. Shei and J. Cheng, “Configuration management and automated test
system ASIC design software,” Dec. 30 1997, US Patent 5,703,788.

[9] S. O’Brien, “Methods and systems for performing design checking
using a template,” Aug. 4 2009, US Patent 7,571,419.

[10] P. Selvam, “Method for generating integrated functional testcases for
multiple boolean algorithms from a single generic testcase template,”
Feb. 24 2009, US Patent 7,496,876.

[11] T. Youngman and J. Nordman, “Language and templates for use in the
design of semiconductor products,” Oct. 11 2011, US Patent 8,037,448.

[12] K. Okuaki, “Automatic LVS rule file generation apparatus, template for
automatic LVS rule file generation, and method for automatic lvs rule
file generation,” Oct. 6 2005, US Patent App. 11/093,100.

[13] D. Shei and J. Cheng, “Configuration management and automated test
system ASIC design software,” Dec. 30 1997, US Patent 5,703,788.

[14] J. Crouse, T. Lowe, L. Miao, J. Montstream, N. Vogl, and C. Wyckoff,
“Method for comprehensively verifying design rule checking runsets,”
May 4 2004, US Patent 6,732,338.

[15] W. DeCamp, L. Earl, J. Minahan, J. Montstream, D. Nickel, J. Oler,
and R. Williams, “Method for verifying design rule checking software,”
May 16 2000, US Patent 6,063,132.

[16] J. Lawrence, “Techniques for verifying error detection of a design rule
checking runset,” Jul. 23 2009, US Patent App. 12/017,524.

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

