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Abstract— The demand and capacity management (DCM) is an 

essential component of the automotive supply chain 

management. DCM synchronizes resource requirements with 

capacities and restrictions of the supply chain and production 

system. Those requirements result from future or already 

realized market demands. One major challenge of the DCM is 

the uncertainty and volatility of the market demands. Other 

challenges are product variety and supply chain complexity. 

Here, efficient data management increases transparency and 

can support the DCM processes effectively. In this context, this 

contribution analyses the benefits of an integration of 

distributed product data into a hierarchical tree structure 

against the background of complexity reduction. The results of 

this study prove that a hierarchical integrated information 

model provides an optimized basis for a scenario-based DCM 

planning process. Data from a German automotive 

manufacturer served as basis for this evaluation. 

Keywords- product structure; automotive production; demand 

and capacity management; optimization; complexity. 

I.  INTRODUCTION 

To compete in international markets, automobile 

manufacturers, i.e., original equipment manufacturers, OEMs, 

tend to offer their customers buying incentives, a huge variety 

of models which can be further individualized by several 

hundred options, i.e., colors, assistance systems, etc. 

Furthermore, OEMs constantly update their product range in 

an increasing frequency [1]. Though customers have to deal 

with the variety of models, they tend to expect that vehicle 

orders can still be customized shortly before actual production 

and that the produced car is rapidly delivered on the planned 

date [2][3]. 

Here, logistics plays an important role. Nowadays, 

suppliers do not only produce simple components, but also 

develop complex modules [4]. The competence of the car 

manufacturer has shifted to product marketing, the 

coordination of suppliers, assembly of supplied parts, and the 

distribution of the end product [5]. Therefore, the integrated 

management of the automotive production and supply chain 

is critical for the OEM. The anticipation of the future market 

demand, the timely derivation of resource and component 

requirements as well as the integrated and coordinated 

capacity planning are indispensable prerequisites [6]. Most 

critical, resource requirements resulting from anticipated or 

realized market demand need to be synchronized with 

resource capacities and restrictions of the production and 

procurement system by an effective demand and capacity 

management (DCM). DCM processes identify demand- and 

capacity-asynchronies and implement appropriate 

countermeasures in a timely manner. DCM acts as an essential 

interface between market, production and supply chain 

processes [7][8]. Nevertheless, it is obviously impossible to 

predict the exact future vehicle orders, as customers can 

choose from billions of possible configurations for each car 

type [9][10]. Today, regional and central sales departments of 

the OEM forecast sales volumes for the models offered in the 

different sales regions (e.g., number of VW Golf Trendline 2.0 
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TDI) and sales quotas for the selectable options (e.g., ratio of 

vehicles with xenon light or navigation system).  

Fig. 1 depicts the interdependences of demand and capacity 

information. The compatibility of options for a respective car 

is described by a complex set of technical rules, while the 

relationship between the fully-configured car type and the 

corresponding parts is described by the bill of material 

(BOM). Capacity constraints and restrictions exist on sales 

level, production level and supply chain level. To balance 

volumes and quotas with constraints and restrictions in order 

to identify possible bottlenecks, it is necessary to bridge the 

gap between demand information and capacity information 

[11][12][13]. Forecast uncertainty, demand volatility, rapid 

product changes, as well as changes in the supply chain 

complicate this task significantly. 

 

Figure 1. Bridging the gap between demand information and capacity 

information 

Furthermore, the relevant data is typically kept in a highly 

fragmented information landscape. For example, part demand 

is typically gradually derived from sales figures in a number 

of sequential processes taking into account a variety of 

systems [14][15]. Since automated processes only allow the 

identification and reporting of formal inconsistencies, 

typically an experienced human planner has to review the 

process.  

As it is easily understood, an integrated information base 

could reduce the complexity and increase transparency of the 

DCM processes immensely. So, highly innovative systems 

integrate all related data from sales to supply chain into a 

consistent and integrated information structure, thus providing 

the essential basis for a continuous DCM process. In this 

context, this paper analyses the benefits of a hierarchical tree-

based data structure for the integration of distributed product 

data against the background of complexity reduction and 

transparency increase.  

In the next Section, the state of the art of information 

structures for automotive DCM is presented. Afterwards, an 

introduction to specific data optimization methods is given in 

Section 3. Section 4 analyses the complexity reductions 

gained by these optimization methods. A conclusion including 

a summary and a perspective on future research and 

development is given in Section 5. 

II. STATE OF THE ART IN AUTOMOTIVE DCM 

PROCESSES 

This Section illustrates the state of the art in automotive 

DCM processes. The DCM process is initiated by the sales 

department predicting medium-term and future market 

demands [16]. Here, model volumes and option quotas for 

hundreds of sales regions worldwide must be planned. These 

figures are integrated with order volumes and translated into a 

production program for all sites. The planning complexity of 

this step is tremendous due to the variety of products. For 

example, a typical mid-class series (e.g., VW Golf, BMW 1 

Series, Audi A3) offers about 30 to 50 different car models 

(car type of a specific series with typically body type, engine 

and gear system specification) with about 400 to 800 options. 

This results in several thousand volumes to be planned for car 

models in sales regions in a specific time period (e.g., month, 

week or day depending on planning granularity) and some 10 

million option quotas. Furthermore, technical restrictions 

prohibit options for specific models (e.g., no 17’’ tires for 

convertibles), force specific combinations of options (e.g., 

LED head light only in combination with LED back lights) or 

prohibit combinations (e.g., a navigation system rules out all 

other radios). In addition, sales constraints and customer 

preferences need to be included.  This complex planning can 

often only be handled by the integration of human experience 

and intuition (cf. [17]). 

Even more so, a huge amount of the resulting resource 

requirements for production or logistics (supply of parts) are 

not only depended on single model volumes and quotas for 

options, but on a particular combination of model, options and 

sales region. Therefore, some part volumes are hard to predict 

until the exact configuration of the vehicle, i.e., the order, is 

known. Nevertheless, as lead times in global supply networks 

can be long, a certain amount of vehicle parts has to be ordered 

long before customer orders are known (cf. [16]). 

Consequently, the DCM process is challenging and 

characterized by conflicting goals: because of market 

dynamics, a huge number of possible vehicle configurations 

and correlations among vehicle models, options, and parts, the 

planning itself is already complex [18]. Sales departments are 

forced to react to volatile markets, increased global 

competitions, and changing customer requirements: flexibility 
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and reactivity is requested. Production is interested in a stable 

production program, which guarantees both high capacity 

utilization and optimal operating results. Material planning 

wants to fix part requirements as early as possible to avoid 

bottlenecks proactively as well as to negotiate the flexibility 

of suppliers appropriately.  

This conflict can be named the dilemma of automotive 

DCM. Typically, it is solved by planning cycles of four to six 

weeks, which are based on numerous workshops and 

committee meetings between sales, programming- and 

material planning [18][19]. The consequence is insufficient 

flexibility in reaction to market changes. Furthermore, the 

program is adjusted manually between program approvals and 

even after program freeze, within the so-called frozen period. 

However, these adjustments cause a lack of program stability 

and poor transparency on future demand for parts on supply 

side. The probability of bottlenecks increases and induces 

additional internal costs, as well as deterioration of the 

delivery service to the customer. 

There are two theoretical approaches for the integration of 

these sequential planning processes in an effective holistic 

DCM process.  

The first one is the early inclusion of selected critical 

resource restrictions into the sales and program planning. The 

planning variables, i.e., model volumes and option quotas, 

typically include several million variables. Furthermore, 

technical rules and BOM rules relate these planning variables 

to part demands and thus capacity restrictions. For example, a 

capacity restriction may exist which limits the number of a 

specific powerful battery. Unfortunately, the selection of this 

battery may depend on several combinations of options, e.g., 

the battery is only selected if specific electronical options are 

chosen. To derive restrictions on model volumes and option 

quotas all BOM rules and technical rules that relate directly or 

indirectly to that battery have to be analyzed. In the worst, case 

this amounts to a significant proportion of the overall number 

of rules, for a midrange model about 15,000 technical and 

600,000 BOM rules. Even more so, partially unmanageable 

correlations exist between option quotas and model volumes. 

These result not only from technical restrictions, but also from 

product strategy, customer preference, and marketing 

strategies. A customer preference as the choice of navigation 

system and hands-free module shall be given as an example 

for such correlations. These two options are independent from 

the viewpoint of the customer. But historical data has shown 

that most customers (80%) who choose the navigation system 

also select the hands-free module; customers who do not 

select the navigation system rarely choose the hands-free 

module [20]. 

As a result, not all restrictions may be deterministically 

traced back to the decision variables. This is aggravated by 

ramp-ups and run-outs (continuous change in options, models, 

etc.), dynamic changes in capacity information, multiple use 

of parts, parts commonality strategies and other restrictions 

that may change daily. The complete derivation of restrictions 

on planning variables harbors an immense complexity and is 

not deterministically feasible. The selection of historically 

critical restrictions is not sufficient. 

Consequently, the most promising perspective of an 

effective holistic DCM process is seen in scenario-based real-

time planning. Starting from a planning scenario, resources 

and component requirements are derived and capacity 

bottlenecks are identified and disclosed.  

The basis for this is a consistent and holistic information 

model, which consists of all planning information for the 

planning process. The simplest form of the DCM information 

model is divided into three data partitions: the planning 

scenarios, the resource information, and the product 

structures. Resource and part requirements are then derived 

from planning scenarios by propagation of the product 

structure from models and options to parts. Typically planned 

orders are applied here.  

To make fast and qualified statements about the feasibility 

of a scenario, the integrated DCM requires the application of 

smart quantitative methods to derive future resource 

requirements from market requirements. 

In [17], an evaluation of a number of publications has been 

performed, that have introduced innovative processes and 

methods for DCM (e.g., approaches of [11][21][22][23]) and 

developed an approach that applies planned orders that are 

applicable for calculation of part demand for the automotive 

industry.  

These algorithms have been implemented and validated at 

several German OEMs. The respective tool suite is now 

known under the name of OTD-DCM, where OTD refers to 

the basic instrument OTD-NET (order-to-delivery and 

network simulator, cf. [23]). To reduce the amount of data of 

BOM rules and to optimize their terms, the next Section 

presents optimization methods that are partially used in this 

approach. 

III. HIERARCHICHAL PRODUCT STRUCTURE AND 

OPTIMIZATION METHODS USED IN THE DCM 

As described in Section 2, the possible number of BOM 

rules for a fully specified car amounts to over 600,000. Hence, 

it is necessary to assure consistency and avoid redundancy in 

and between all data entities when integrating data into one 

data structure. Inconsistencies occur for example when 

subsets of technical rules contradict each other so that orders 

cannot be specified fully. Hence, it is necessary to adapt 

planning-relevant information regarding structural 

requirements and to verify their consistency before they are 

processed. As a result, the implemented data processing in 

OTD-DCM has been based on the principle of generating a 

hierarchically-linked structure of variant clusters (cf. [24]). 

Here, a variant cluster contains by definition a subset of 

allowed vehicle variants (typically car models), that have 

common properties (example: sales region=Germany, 

body=medium class sedan, engine=150hp diesel, 

transmission=automatic, and trim=comfort). The first pre-

optimization of the product structure is the generation of a 

hierarchical data tree where tree levels are based on 
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subsequently detailed variant cluster specifications. The tree 

structure is an intuitively attractive approach because of its 

proximity to car design principles. Tree levels may be defined 

based on for example the model type, target country, engine 

type (see Fig. 2). 

 

  

Figure 2. Extract of the generated tree structure 

Each level can have one to several nodes, depending on the 

level and type of car (e.g., gasoline, diesel, electronic for the 

fuel nodes). As all product information have a specific 

temporal validity, these dynamics have to be handled within 

this tree structure [17].  

This paper especially focuses on the processing and thus 

complexity reduction of rules when integrating product data 

into this hierarchical structure. Technical rules represent the 

technical feasibility by Boolean expressions, e.g., “if motor = 

90 kW then suspension = 6-speed manual gearbox“.  BOM 

rules follow the same Boolean schema but link options to part 

demands, e.g., “if motor = 90 kW and radio = “Radio Basic” 

then parts 5678973 and 5678974”. The mentioned 

optimization has been subdivided into three optimization 

steps.   

 The first objective has been to identify all forced 

options, i.e., the options that have necessarily to be 

chosen for a specific variant cluster (e.g., every car for 

the German market has necessarily a specific exhaust 

system). Therefore, principally allowed options for 

one variant cluster are reduced by non-feasible 

options. This is done by checking intelligently 

selected, partly specified theoretical configurations 

against all applicable technical rules. If a contradiction 

occurs, the option will be deleted from the set of 

allowed options. When this process leads to only one 

possible option from a set of alternative options, this 

option is set as forced.  

An inner inconsistency is identified if the last 

identified forced property violates a technical rule. An 

outer inconsistency is identified if a positive demand 

quota for an option has been planned, but the option 

itself is technically not allowed. Another outer 

inconsistency is identified, if the sum of all planned 

quotas for all allowed options within a subset of 

alternative options in a specified time period does not 

equal 100%.  

 The second optimization step reduces the number and 

the length of rules by application of the Identity Law 

of the Boolean algebra (cf. [25]). It should be noted 

that these steps are valid only for one variant cluster 

and a specified, fixed time period. Therefore, these 

steps need to be executed for each variant cluster and 

all relevant time periods. The OTD-DCM 

implementation is able to shorten rules by merging 

several BOM or technical rules that belong to more 

than one resource, i.e., workstations, assembly lines 

and more [17][26][27]. Next, this second optimization 

step aims to further reduce the actual length of all rules 

by Boolean simplification of terms. In contrast to the 

first step, it is used for each rule separately. If the 

optimized length of the rule is shorter than the original 

one, it is replaced by the new representation. Example: 

The Boolean expression “¬ ( ¬A ∧ B ∧ ¬C)“ will be 

reduced to “¬B ∨ A ∨ C”.  

 The third and last optimization step tries to identify 

commonalities for nodes in the hierarchical product 

structure. For example, rules which are valid for each 

child node of one variant cluster are moved upwards to 

the parent node and deleted from all children. The 

preliminary condition for this step is that all derived 

variant clusters share this rule over the same time 

period. Example: The forced option “Owner’s manual 

in German language” may be valid for all variant 

clusters within the sales market = Germany. Hence, it 

can be transferred upwards to the variant cluster 

"variants - German" [17].  

The analysis of the complexity reductions which these 

methods provide, will be presented in the next Section.   

IV. ANALYSIS OF COMPLEXITY REDUCTIONS 

The evaluation of the previously described optimization 
steps has been executed on real data for two middle class 
series from a German OEM. It should be noted that these two 
car series represent only a small fraction of the OEM portfolio 
and the analysis is limited here on BOM rules only. In the 

following the parameter n(l) is defined as the number of tree 
nodes on a level. A tree node represents a variant cluster as 
described in the previous Section. The respective sum of 

BOM rules before optimization are defined as rpre(l) and after 

optimization as rpost(l). The number of average rules per tree 
node within a level is defined as  

 apre(l)= rpre(l) / n(l) 

and 

 apost(l)= rpost(l) / n(l) 
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A null-entry rule characterizes a rule without condition, 
i.e., this rule is valid for the whole variant cluster. 
Accordingly, the total number of null-entry rules on a specific 

level l before optimization is defined as vpre(l) and on a 

specific level l after optimization as vpost(l). 
The results in Table 1 illustrate, that the lowest level of the 

hierarchical product structure contains all existing BOM rules 

rpre(l) before all optimization steps. Levels 1 to 11 do not 
contain rules because these levels have been added artificially 
to the product structure in the first pre-optimization step in 
order to construct the primary tree structure. After 

optimization, several BOM rules have been hoisted to higher 

levels resulting in rpost(l). 
Furthermore, the overall number of rules is reduced from 

1,076,428 to 111,070, which amounts to a reduction of 89.7% 
in relation to the original number.  

The reduction as well as the average ratio of rules per node 

are recognizable by comparing apre(l) and apost(l). The 
weighted average considers the number of nodes of the whole 
tree per level, where the reduction in this case also results in 
89.7% coincidentally. This analysis proves the immense 
complexity reduction by application of the OTD-DCM 
hierarchical product structure.  

TABLE I. INDICATORS WITHOUT OPTIMIZATION (PRE) AND WITH OPTIMIZATION (POST) 

level l 𝒏(l) rpre(l) rpost(l) apre(l) apost(l) vpre(l) vpost(l) 

1 1 0 38 0 38 0 35 

2 2 0 4,389 0 2,194 0 2,554 

3 3 0 1,204 0 401 0 425 

4 3 0 0 0 0 0 0 

5 4 0 1,293 0 323 0 498 

6 4 0 0 0 0 0 0 

7 5 0 1,047 0 209 0 111 

8 8 0 4,101 0 512 0 845 

9 8 0 0 0 0 0 0 

10 8 0 0 0 0 0 0 

11 12 0 1,501 0 125 0 416 

12 184 1,076,428 97,497 5,850 529 287,841 7,324 

 sum sum sum 
weighted 

average 

weighted 

average 
sum sum 

 242 1,076,428 111,070 4,448 458 287,841 12,208 

 
Nevertheless, rules at parent nodes are valid for all child 

nodes. When a specific variant cluster at lowest level is 
regarded (for example, for generation of fully specified 
planned orders) it is necessary to take into account all valid 
rules for this specific node. Thus, rules on the upper levels 
need to be propagated downwards to all child nodes and have 
to be considered when calculating the total number (sum) of 
valid rules for one variant cluster.  

TABLE II. PROPAGATED RULES PER VARIANT CLUSTER            

AT LOWEST LEVEL (LEVEL 12) 

propagated rules - 

level 12 

pre-

optimization 

post-

optimization 

sum 1,076,428 813,823 

average ratio 5,850 4,423 

median 6,734 4,725 

minimum 3,007 2,653 

maximum 7,522 5,344 

 
Table 2 shows that the propagated number of rules on the 

lowest level. The total number is still significantly smaller 
than the original number. The reduction of the number of rules 
is still about 24.4%.  

 

V. CONCLUSION AND FUTURE WORK 

An integral component of the automotive supply chain 
management is DCM, where resource requirements, resulting 
from future or already realized market demands, are 
synchronized with capacities and restrictions of the supply 
chain and production system. Because it is impossible to 
predict the exact future vehicle orders, part demand is 
typically gradually derived from sales figures in a number of 
sequential processes involving a variety of systems as well as 
experienced human planners. In this paper, the integration of 
the respective distributed product data into a hierarchical tree 
structure has been analyzed against the background of 
complexity reduction.  

It has been demonstrated that by choosing a hierarchical 

tree structure the total number of BOM rules could be reduced 

by a factor of 10 (reduction of 89.7%). Furthermore, the 

number of BOM rules relating to a variant cluster could be 

reduced by 24.4% in the current case. In summary, the 

hierarchical integrated information model provides more 

transparency as redundant and surplus information is 

dramatically reduced. Thus, it proves to be an optimized basis 

for a scenario-based DCM planning process for the 

automotive industry which relies on transparent and 

consistent data. A sound DCM process will increase program 
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stability and transparency on future part demand. Bottlenecks 

and the resulting deterioration of delivery service levels will 

be decreased. Furthermore, all applications using the 

information model will save computation time and memory 

space [17]. 
Since only a small information model of two car series has 

been considered here, an analysis of a full product spectrum 
may be necessary to provide greater insights into the effects 
of the optimization steps. The chosen tree structure is an 
intuitively attractive approach because of its proximity to car 
design principles. Nevertheless, when targeting an integrated 
product structure, product characteristics from other 
departments like sales, productions and logistics need to be 
taken into account. Here, a more generalized graph structure 
instead of the applied tree structure may hold further benefits 
in terms of complexity reduction. Against this background, 
generic graph structures will be analyzed in the near future.  
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