
Parallelization of Loops with Complicated Data Dependency and its Experiment

Kyoko Iwasawa

Computer Science dept.

Takushoku University

Hachioji, Tokyo Japan, 193-0985

E-mail : kiwasawa@cs.takushoku-u.ac.jp

Abstract— This study discusses a loop parallelizing method for

compilers in a multi-core architecture that enables to detect fine

grain parallelism. Our method involves generating parallelized

loops from nested loops carrying complicated data dependencies.

These loop transformations are formalized by matrix operations.

They enable the original loop indexes to be expressed using new

loop indexes so that compiler does not need to make any changes

in loop body. Our experiments have determined that bubble sort

programs can also be parallelized effectively by using our

proposed method.

Keywords-fine grain parallelism; parallelization; data

dependency ; compiler; double- nested loops;

I. INTRODUCTION

Multi-core architecture is being widely use; however
sometimes multiple central processing unit (CPUs) are not
used efficiently for sequential programs. In particular, in some
instances, loops with complicated data flow dependency are
designed to execute in parallel without any synchronization
among compilers (or such types of system software).

To optimize multi-core architecture, developers have been
attempting to speed up the execution times of nested loops,
which consume a large fraction of execution time, by mean of
parallelization.

One of the method to parallelize double-nested loops is the
wave-front-line method [1]. This method analyzes not only
the inner loop data flow but also the outer loop data flow, in
order to identify the line where loop bodies can be executed in
parallel. This method uses various synchronization controls
(e.g., data passing, lock-unlock, etc.), and the overhead of
these synchronization is too high for multi-core and Single
Instruction Multiple Data (SIMD) architecture (e.g., packed
operation or vector operation).

The characteristic of our study is the restructuring of
double-nested loops that may include complicated data
dependency constraining loop exchange and splitting. Our
method generates a parallel loop by shearing conversion on
the double-loop iteration space and then exchanging loops.
Our method involves shearing along the inner loop index. This
method does not seem to have been discussed previously, in
literature and is particularly useful in case of fine grain
parallelism. In our study we show how compilers should
generate parallelized codes, so that loops with complicated
data dependencies can be parallelized and vectorized without
any synchronization, this would lead to reduces overheads in
multi-core or SIMD architecture.

The rest of this paper is organized as follows: Section II
describes parallel conversions. Section III discusses the result
of our experiments. Section IV describes the related works and
Section V concludes this article.

II. PARALLELIZING CONVERSION

We first discuss the case of the loop which includes
separable data dependence between inner and outer loop.
Then, we discuss the parallelizing conversion of the more
complicated case; this is due to the inseparable data
dependence between inner and outer loop, is shown.

A. Separable data dependence between inner and outer

loop

In double-nested loop, when both inner and outer loops
carry data dependence, individual loop bodies cannot be
executed in parallel neither along the inner loop index nor the
outer loop index. In the case where inner loop carried data
dependencies and outer loops carried data dependencies are
independent, it is easier to identify the wave front line, where
loop bodies can execute in parallel. Fig. 1 shows the loop
iteration space and separable loop carried dependencies. As is
clear from Fig. 1 parallelism takes place on a diagonal line.

B. Inseparable data dependence between inner and outer

loop : critical data dependence

If both inner and outer loops carry critical data dependence,
then it bothers neither loop parallelization nor loop exchange.
In such a case, loop body on diagonal line cannot execute in
parallel.

Figure 1 The wave front line on the iteration space

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

To detect parallelism, we generate a new inner parallel
loop. The loop bodies are on the line where they can be
executed independently, using the following

(1) Find critical data dependencies and calculate the
delay by its loop carried iteration number.

(2) Exchange the inner loop and the outer loop
(3) Insert the calculating code of the new loop indexes(I,

J) from the original loop indexes(i, j)






































ijdelay

j

i

j

delayI

J

*1

01

This result in a parallel inner loop is generated without any of
the loop body conversion as can be seen in Fig. 2

 Figure. 2 Shearing conversion along to inner loop index on the iteration

space

III. EXPERIMENT OF BUBBLE SORT PROGRAM

 This section discusses the experiment of parallelizing

bubble sort program, which is executed serially in general. It

accesses one dimensional array in a double-nested loop,

therefore there is critical data flow dependency. In addition

the wave-front-line (Section II(a)) cannot be detected.

Figure. 3 Parallelizing of bubble sort program

 The inner loop of Fig. 3(2) can be executed in parallel.

Some parameters from the result of data flow analysis are

necessary to fill the template (Fig. 2.), and the OpenMP

direction is inserted. The converted program was compiled

by Intel OpenMP C compiler.

 Fig. 4 shows the execution time of Fig. 3(2) program

using Intel i7 quad core CPU. When the input data is

sufficiently large, it takes half the time on four parallel. The

paralle execution time can not be reduced down to a fourth

of serial execution time, because outer loop length of

parallel program becames two times of the serial program

by sheraing conversion.

Figure. 4 Execution time of parallelized bubble sort program

IV. RELATED WORKS

There is a lot of previous work. Array data flow analysis

has been studied widely [1][2][4][5][7]. Wolf [1] showed

loop skewing by wave front line. Kim [2] showed loop

parallelization by using wave front method.

Our study is different from them at the following points.

One of them is preparing two shearing methods and choosing

suitable one. Shearing along the inner loop index has not been

studied, but we notice that it has some advantages [6]. This

article shows the result of the implementation by automatic

translator of these nested loop conversion [6][7].

V. CONCLUSION

This study presents a parallelizing method for nested

loops for compiler. The compiler makes inner-most parallel

and vector loop from nested loop with complicated loop

carried data dependency. The new parallel loop enables the

expression of original loop indices using new loop indices

without requiring the compiler to make any changes in the

loop body. The parallelizing translator based on COINS-

project [3] has been developing, and it will generate

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

parallelized code from programs with more complicated data

dependencies automatically, in the future.

REFERENCES

[1] Wolfe, M., Loop Skewing: The Wavefront Method Revisited,
International Journal of Parallel Programming, Springer
Netherlands, pp.279-293, (1986).

[2] Kim, K., and Nicolau, A., Parallelizing tightly nested loops,
Proceedings of Parallel Processing Symposium, pp.630-633
(1991).

[3] http://coins-compiler.osdn.jp/international/index.html
(2016.9.1)

[4] Dulong,C., Krishnaiyer,R., Kulkarni, D. Lavery, W. Li, J. Ng,
and D. Sehr, An Overview of the Intel IA-64 Compiler, (2005).

[5] Vasilache, N., Bastoul, C., and Cohen, A., Polyhedral Code
Generation in the Real World, proceedings of 15th International
Conference CC2006, pp.185-201, (2006).

[6] Iwasawa, K. and Mycroft, A., Choosing Method of the Most
Effective Nested Loop Shearing for Parallelism, Proc. Eighth
International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp.267-276,
(2007).

[7] Chakilam, K. C., Representing and Minimizing
Multidimensional Dependencies. M.S.C.S. Thesis, Dept. of
Computer Science, The University of Akron, (2009).

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-513-5

ICCGI 2016 : The Eleventh International Multi-Conference on Computing in the Global Information Technology

