
Reducing Power Consumption using Improved Wakelock on Android Platform

Joonkyo Kim and Jaehyun Park
School of Information and Communication Engineering

Inha University, Korea
Email: jkkim@emcl.org, jhyun@inha.ac.kr

Abstract—The power consumption is one of the most important
issues on a mobile device because they usually use battery as
a power source. The Android platform, a popular software
platform for a hand-held device, also supports various power-
saving schemes to reduce power consumption. This power-saving
feature sometimes causes unwanted computational disruption. To
avoid such disruption, the Android platform provides Wakelock
to disable the power-saving mode temporarily. However, since
Wakelock can be easily accessed through the user’s API, improper
use of Wakelock causes a huge extra power consumption. This
paper proposes an improved Wakelock scheme that predicts
the misuse of Wakelock. This improved Wakelock, called PR-
Wakelock (Predict & self-Release Wakelock), does not only detect
misuses of Wakelock, but also forcibly releases Wakelock for
the system to go into a sleep mode. Several Android apps
were implemented and an offline prediction software was also
implemented on a linux platform for the simulating PR-Wakelock.
The hit ratio of the proposed system obtained through an offline
prediction software was close to 86.44%.

Keywords-Energy-aware systems; power management; Android;
Wakelock

I. I NTRODUCTION

As the mobile technology evolves, the number of applicable
areas of the hand-held devices including a smartphone has
dramatically increased during the last decade. The power
consumption of a mobile device has become an important issue
because of the expanded application area and limited battery
life. With an expansion of the application area, the power
consumption of a mobile device has become an important issue
because most of the hand-held devices use a battery as a power
source. To reduce the power consumption and extend battery
life, various dynamic power management technologies have
been adopted in the hand-held devices.

Dynamic Voltage and Frequency Scaling (DVFS) technique
is one of the key technologies used in modern mobile devices.
It controls the clock frequency and CPU supply voltage in
order to reduce the switching power consumption of the
digital components [1], [2]. Since the power consumption(P)
is proportional to frequency(f) and voltage(V) as shown in (1),
controlling the clock frequency of CPU and supplying voltage
to CPU are effective ways to reduce power consumption at a
hardware level [3].

P ∝ f · V 2 (1)

Hence, the key idea of DVFS technique is to control both the
supply-voltage and operating-frequency of CPU according to
the software workload. To predict the workload of software,
statistical analysis of the runtime distribution of software
workload is usually used [4], [5].

Another power-saving technique at hardware level is Dy-
namic Power Management (DPM) , which predicts the idle

Figure 1. Behaviors of Wakelock

time of the system and controls the power supply to the unused
components such as external peripherals as well as CPU’s
internal modules [6], [7]. To predict the idle time of the system,
Program Counter-based Access Predictor (PCAP) algorithm
that monitors the applications’ function-calls based on the I/O
system-calls, was proposed [8]. Previous work showed that
DPM using a hardware-based PCAP algorithm can reduce the
power consumption up to 29% [9].

Even though the hardware-based power management tech-
niques described above are effective to reduce the overall
power consumption of mobile devices, they may cause un-
necessary side effects such as slowing down of an application
program or frequently disabling peripherals that may lose
connectivity. To compensate these side effects that DVFS/DPM
may cause, these power management features are able to be
controlled by software explicitly in most mobile platforms. To
run a background process without disruption on an Android
platform, which is one of the most widely used software
platforms in the mobile device market, a special power man-
agement module calledWakelock was introduced. Wakelock
prevents CPU from entering the sleep or power-saving mode
even when a mobile device is in an idle state such as a
screen-saving mode. Even though Wakelock is a useful feature
to manage power-saving feature, it should be handled very
carefully because misuse of Wakelock means CPU never goes
into power-saving mode, and, in turn, a huge amount of power
may be wasted [10]. Fig. 1 shows the timeline of normal and
abnormal use-case of Wakelock. Fig. 1(a) shows the timeline
of normal case of Wakelock. Since Wakelock is acquired at
t1, which means that the power-saving feature is disabled, and
released att2 normally, the system may enter into the power-
saving mode untilt4 at which Wakelock is acquired again.
However, if Wakelock is not released adequately att2 because

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Figure 2. Architecture of PR-Wakelock system

of software bugs, the system remains in an active mode with
power-saving mode disabled as shown in Fig. 1(b). In this
case, unnecessary power consumption is expected duringTa

period. Such inadequate situations of Wakelock have been
reported occasionally in many Android applications because
Wakelock can be accessed by any application through user’s
API [11]. Unfortunately, a systematic safeguard to preventsuch
undesirable situation does not exist in the Android platform.
To lessen this kind of Wakelock error, analyzing method of
the program at compile time was proposed recently [11]. The
compile-time analysis, however, has limitations because every
possible software flow cannot be analyzed at compile time
without actual running it.

To overcome this limitation, this paper proposes a run-time
algorithm to prevent power waste caused by unreleased Wake-
lock. Fig. 1(c) shows the benefits of the proposed algorithm
in this paper. Even if Wakelock is not released att2, run-
time algorithm proposed in this paper can detect unreleased
Wakelock and forcibly release it att3, which prevents waste
of power consumption during this unnecessary wake-up period,
Tb.

This paper describes the key idea and algorithm of the run-
time Wakelock predictor. However, since this work is still at a
work-in-process stage, the implementation result is not shown
in this paper. Instead, offline analysis software will provethe
feasibility of the proposed idea.

This paper consists of five sections including this introduc-
tion. In Section II, the basic concept of PR-Wakelock system
is proposed. For evaluating the performance of PR-Wakelock
system, offline simulation results are shown in Section III.
Finally, conclusions and future works are described in Section
IV and Section V, respectively.

II. I MPROVED WAKELOCK SYSTEM

As described above, since unreleased Wakelock may cause
a huge waste of power in the Android platform, this paper
proposes an improved Wakelock system, which is called PR-
Wakelock (Predict & self-Release Wakelock) as shown in
Fig. 2. PR-Wakelock consists of two major modules;Common
Pattern Analyzer (CPA) and Erroneous Wakelock Predictor
(EWP).

Start

Fetch function call

"acquire"
function?

"release"
function?

Change to
"Lock" state

Yes

"Lock"
State?

No

No

Yes No

Prediction

Yes

Change to
"Begin" state

Update ECP

Release Wakelock

Result is
Error?

Change to
"Error" state

Change to
"Normal" state

No

Yes

No

Yes

"Lock"
State?

Update NCP

Figure 3. Flowchart of prediction algorithm

In this system, analyzing the sequence ofWakelock-acquire
and Wakelock-release function-call is the key feature for pre-
dicting the erroneous Wakelock operation. CPA updates saved
common paths whenCommon Path(CP) is revised. It checks
sequence of the Wakelock function. If theWakelock-acquire
andWakelock-release functions are invoked in order, CP stands
for normal path because Wakelock is released normally after
acquired. However, ifWakelock-acquire function of Wakelock
is invoked twice in order, CP is at an erroneous path because
Wakelock is locked until the next request. The algorithm of
the PR-Wakelock system is presented in Fig. 3. For predicting
erroneous Wakelock operation, EWP monitors function-callsat
Lock or Normal state, and it performs prediction whenever
function-call is detected. If EWP predicts that the current CP
might be a part of an erroneous Wakelock sequence, the current
Wakelock is forcibly released by EWP.

A. Common Path Analyzer

To analyze the usage of Wakelock in an application soft-
ware, it is necessary to monitor and record the executing pat-
tern of application software in real-time manner. The execution
patterns are recorded as a unit ofPath, defined as a “sequence
of function calls” in this paper. CPA module in Fig. 2 forms
a Path from the executing sequence of function-calls in real-
time. Since only the usage of Wakelock is important in this
paper, CPA module in Fig. 2 starts recording the executing
sequence of function-calls wheneverWakelock-acquire func-
tion is invoked, and stops recording if anotherWakelock-
acquire or Wakelock-release function is invoked. The recorded
Path in real-time is saved as CP (Current Path). Besides this
CP, in CPA module, Error Common Path (ECP) and Normal
Common Path (NCP) are also managed. NCP means that a

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Figure 4. Example of Analyzing Subsequence

part of software sequence that has bothWakelock-acquire and
Wakelock-release function. This NCP stands for normal situ-
ation of Wakelock system becauseWakelock-release function
is invoked afterWakelock-acquire function. On the contrary,
ECP represents a part of software sequence that doesn’t have
Wakelock-release after Wakelock-acquire. Using these three
Paths’, CPA analyzes the characteristics of software modules
and provides information to determine erroneous situationof
Wakelock.

CPA analyzes the recorded CP when anotherWakelock-
acquire or Wakelock-release function is invoked again. If
Wakelock-release function ends the current recording sequence,
the path stored in CP is considered as a normal Wakelock
pattern and updated into NCP. If anotherWakelock-acquire
function is invoked, on the other hand, this path is considered
as an erroneous case of Wakelock and updated in ECP. To
extract the feature of executing pattern,Common Path, defined
as a subsequence of function calls, is extracted from CP after
applying Longest Common Subsequence (LCS) algorithm to
NCP and ECP that stores the latest common path of normal and
erroneous case, respectively [12], [13]. CPA also comparesthe
subsequences between ECP and NCP in order to remove the
common path between them because both ECP and NCP may
have the Wakelock-related path in common. The LCS-based
common path analyzing algorithm used in CPA is depicted
in Fig. 4, in which two subsequence, AGCAT and GAC, are
compared. LCS algorithms can build the table in Fig. 4 using
a dynamic programming technique [12], [13]. Each alphabet
in the figure means function name. The circled numbers are
common functions, which is related to common path. As a
result, CPA extracts AC as a common path from these two
sequences. On the other hand, numbers with rectangle are
different path position. These can be selected for removing
common path from original paths. After removing common
path from NCP and ECP, the remaining subsequence, GAT and
G, are updated to NCP and ECP, respectively. CPA manages
NCP and ECP in this manner and supply to the EWP so that
it can detect erroneous situation.

B. Erroneous Wakelock Predictor

During recording the path into CP, EWP shown in Fig. 2
predicts a possible Wakelock errors whenever CP is updated.
EWP determines whether current usage of Wakelock might
be error or not based on the similarity between CP and either
NCP or ECP. The similarity between the two paths are defined
as the length of common path that can be determined by LCS
algorithm. By comparing the similarity, EWP decides if the
current executing sequence might be an error if the length of
common path between CP and ECP is longer than the length

Figure 5. State of PR-Wakelock System

between CP and NCP as shown in (2). In (2)L denotes length
of sequence and⊓ operator denotes LCS algorithm.

L(⊓(CP,NCP)) + ∆ < L(⊓(CP,ECP)) (2)

However, the subsquence stored in CP is not a complete
sequence but a portion of it, because CP stores only executing
sequence path afterWakelock-acquire function is invoked. This
means that CP may contain insufficient information to predict
accurately. To increase the accuracy of prediction regardless of
incomplete information of CP, predictor maintains a threshold
value, ∆, in (2) adaptively. To correct current information,
EWP monitors function calls continuously until second Wake-
lock function is invoked, even though EWP decided current
state. And EWP decides whether prediction is correct or not
after it confirms second Wakelock function. At the beginning,
∆ starts from zero. If the prediction is confirmed as wrong,
threshold value increases.

Fig. 5 shows the state diagram of predictor. EWP starts
from Begin state, and returns toBegin state when the path
from CP is completed recording. If Wakelock is acquired at
sometime, EWP moves toLock state and starts prediction to
decide whether CP is error or not. EWP can predictNormal
state despite of CP is error actually, because CP is not enough
long to predict correctly. So EWP continues prediction until
another Wakelock function is invoked even though current state
is Normal. On the other hand, if EWP decides CP is error,
state moves toError state. And then PR-Wakelock system
forcibly releases Wakelock.

III. S IMULATION RESULTS

To verify the feasibility of the proposed Wakelock system,
a simulation system was implemented on Samsung Galaxy
Note (SHV-E160K), which is based on Android 4.0.3 (Ice
Cream Sandwich). In order to test the algorithm, three An-
droid applications were implemented for simulating erroneous
situation. First application was based on a socket application,
which connected to a server and periodically sent data through
network. In this case, Wakelock was acquired when this
application tried to connect the socket, and released when
transmission of data was finished normally. Second application
was based on I/O operation of file system that tries to write

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

TABLE I. SIMULATION RESULTS

Socket program I/O program Music player

Average 77.45 86.44 74.58

Maximum 84 90.28 79.31

Minimum 56.5 81.21 68.10

Std. Dev. 10.69 2.72 3.28

∆(Final value) 15 17 23.2

random data to SD Card. Wakelock was used between the
open and close functions of theWriter class. Last one was the
music player application. That played MP3 music when user
requested, and Wakelock was used to prevent stopping of the
music when the system entered the power-saving mode. In all
three applications, invocation of theWakelock-release function
was omitted randomly with uniform distribution.

During the software execution, the function-calls are
logged using theDebug class provided by Android API.
The function name, thread ID, and calling time were logged
in order to analyze path information. Since the purpose of
the test-bed system was to demonstrate the feasibility of the
proposed algorithm, the actual analysis was not performed in
real-time yet. Rather, the logged information was analyzed
by the separate analysis and prediction software that was
implemented on a Linux platform.

The prediction accuracy of the implemented CPA and
EWP was evaluated through 10 executions of each application
programs and the results were shown in Fig. 6 and Table I.
It showed about 86.44% of predictions are valid on flash I/O
based application. Because similarity between NCP and ECP is
different according to application,∆ in (2) was also different.

IV. CONCLUSION

This paper proposes PR-Wakelock, which is an improved
Wakelock algorithm for an Android platform. The proposed
algorithm analyzes the behavior of Wakelock through the
function-call analysis and predicts possible errors of Wakelock.
Once improper operation of Wakelock is found, Wakelock is
automatically released and CPU enters power-saving mode
to reduce power consumption. Three Android softwares are
implemented for simulating erroneous Wakelock behaviors,
and offline analyzing software was also implemented on Linux
platform for predicting error of Wakelock. According to the
offline analysis, the prediction ratio of PR-Wakelock system
was up to 86.44%. So, result shows that Wakelock error
detection from function-call path analysis is feasible enough
to apply on a real device.

V. FUTURE WORKS

PR-Wakelock system proposed in this paper has not been
implemented yet. However, it can be implemented on Android
system in order to monitor the operation of Wakelock in
real-time, and, in turn, reduce the power consumption of
Android-based mobile system. For this, CPA module can be
implemented usingDebug class device driver to monitor func-
tion calls without modifying Android framework itself. With
implementing PR-Wakelock, the actual power consumption
can be analyzed in the future work.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n
 R

a
ti

o
(%

)

Test Count(n)

Socket
I/O

Music

Figure 6. Simulation Results

REFERENCES

[1] J.-B. Lee, M.-J. Kim, S. Yoon, and E.-Y. Chung, “Application-support
particle filter for dynamic voltage scaling of multimedia applications,”
IEEE Trans. Comput., vol. 61, no. 9, Sep. 2012, pp. 1256–1269.

[2] X. Chen, C. Xu, and R. P. Dick, “Memory access aware on-linevolt-
age control for performance and energy optimization,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2010,
Nov. 2010, pp. 365–372.

[3] W.-Y. Liang, S.-C. Chen, Y.-L. Chang, and J.-P. Fang, “Memory-aware
dynamic voltage and frequency prediction for portable devices,” in 14th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2008, pp. 229–236.

[4] J. Kim, S. Yoo, and C.-M. Kyung, “Program phase and runtime
distribution-aware online dvfs for combined vdd/vbb scaling,” in De-
sign, Automation Test in Europe Conference Exhibition, 2009, DATE
’09, Apr. 2009, pp. 417–422.

[5] ——, “Program phase-aware dynamic voltage scaling under variable
computational workload and memory stall environment,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 1,Jan 2011,
pp. 110–123.

[6] L. Cai, N. Pettis, and Y.-H. Lu, “Joint power management of memory
and disk under performance contraints,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 12, Dec 2006, pp.2697–2711.

[7] W.-K. Lee, S.-W. Lee, and W.-O. Siew, “Hybrid model for dynamic
power management,” IEEE Trans. Consum. Electron., vol. 55, no.2,
May 2009, pp. 656–664.

[8] C. Gniady, A. R. Butt, Y. C. Hu, and Y.-H. Lu, “Program counter-based
prediction techniques for dynamic power management,” IEEE Trans.
Comput., vol. 55, no. 6, Jun. 2006, pp. 641–658.

[9] Y.-S. Hwang, S.-K. Ku, and K.-S. Chung, “A predictive dynamic power
management technique for embedded mobile devices,” IEEE Trans.
Consum. Electron., vol. 56, no. 2, Jul. 2010, pp. 713–719.

[10] “PowerManager.WakeLock—Android Developer.” [Online]. Avail-
able: http://developer.android.com/reference/android/os/PowerManager.
WakeLock.html. [retrieved: Feb, 2013]

[11] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps,” in Proceedings of the 10th international conference
on Mobile systems, applications, and services MobiSys ’12, 2012, pp.
267–280.

[12] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of ACM, vol. 24, no. 4, Oct. 1977, pp. 664–675.

[13] T. H. Comen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to Algorithms, 2nd Ed.” The MIT Press, 2001.

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

