ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Reducing Power Consumption using Improved Wakelock on gidd?latform

Joonkyo Kim and Jaehyun Park
School of Information and Communication Engineering
Inha University, Korea
Email: jkkim@emcl.org, jhyun@inha.ac.kr

Abstract—The power consumption is one of the most important fcqu're /Re'ease /\cqu"e /Re'ease
issues on a mobile device because they usually use battery as :
a power source. The Android platform, a popular software
platform for a hand-held device, also supports various power- g
saving schemes to reduce power consumption. This power-saving
feature sometimes causes unwanted computational disruption.oT

avoid such disruption, the Android platform provides Wakelock 4
to disable the power-saving mode temporarily. However, since !
Wakelock can be easily accessed through the user’s API, improper it e o s
use of Wakelock causes a huge extra power consumption. This : by e ”(b)‘;ele';; s ‘

|
'

A ' A
'

T
) 4 ! A
tr 2 ! ts its

| (a) Normal

*

'
| Miss !
'

S

paper proposes an improved Wakelock scheme that predicts E ! Miss ! prediction
the misuse of Wakelock. This improved Wakelock, called PR- "\ ./ } -
Wakelock (Predict & self-Release Wakelock), does not only detect i

misuses of Wakelock, but also forcibly releases Wakelock for
the system to go into a sleep mode. Several Android apps
were implemented and an offline prediction software was also
implemented on a linux platform for the simulating PR-Wakelock.
The hit ratio of the proposed system obtained through an offline
prediction software was close to 86.44%.

|
| 4 Y
T

b 2 3 ts ts
f .
! Energe Save Interval(To) '

(c) Miss Predict
Figure 1. Behaviors of Wakelock

L 4

*

Keywords-Energy-aware systems; power management; Android;

Wakelack time of the system and controls the power supply to the unused

components such as external peripherals as well as CPU’s
internal modules [6], [7]. To predict the idle time of the ®m,
|. INTRODUCTION Program Counter-based Access Predictor (PCAP) algorithm

As the mobile technology evolves, the number of applicabléhat monitors the applications’ function-calls based an if®
areas of the hand-held devices including a smartphone h&yStem-calls, was proposed [8]. Previous work showed that
dramatically increased during the last decade. The powd?PM using a har.dware-basegi PCAP algorithm can reduce the
consumption of a mobile device has become an important issUPWer consumption up to 29% [9].
because of the expanded application area and limited patter
life. With an expansion of the application area, the power . EVen though the hardware-based power management tech-

consumption of a mobile device has become an important issyidues described above are effective to reduce the overall
owver consumption of mobile devices, they may cause un-

becauseTmostdof th(tehhand—held devices tu sea bO? tte;y ads g F;? cessary side effects such as slowing down of an applicatio

source. To reduce the power consumption and extend batte) ; .

life, various dynamic power management technologies havgrﬁogram or frequently dlsabrlllng p%rlphgrals tr?at ma)i/wlose

been adopted in the hand-held devices. connectivity. To compensate these side effects that DVPSID

may cause, these power management features are able to be
Dynamic Voltage and Frequency Scaling (DVFS) techniquecontrolled by software explicitly in most mobile platform

is one of the key technologies used in modern mobile devicesun a background process without disruption on an Android

It controls the clock frequency and CPU supply voltage inplatform, which is one of the most widely used software

order to reduce the switching power consumption of theplatforms in the mobile device market, a special power man-

digital components [1], [2]. Since the power consumption(agement module callethMakelock was introduced. Wakelock

is proportional to frequency] and voltage¥’) as shown in (1), prevents CPU from entering the sleep or power-saving mode

controlling the clock frequency of CPU and supplying voiag even when a mobile device is in an idle state such as a

to CPU are effective ways to reduce power consumption at acreen-saving mode. Even though Wakelock is a useful featur

hardware level [3]. to manage power-saving feature, it should be handled very
P f-V? (1) carefully because misuse of Wakelock means CPU never goes

Hence, the key idea of DVFS technique is to control both theInto power-saving mode, and, in turn, a huge amount of power

supply-voltage and operating-frequency of CPU according ¢ may be wasted [10]. Fig. 1 shows the timeline of normal and

the software workload. To predict the workload of software,g? rr:%rrnr':gl u;gg a;evsgﬁlg%ﬁ(lO%ﬁhgégv\};?glggfvy: ;EZJ::EE"Q?
3\}3:;32;3' isﬁzgg;i Sgege[:él]ru[r;t]lme distribution of softe:a t1, which means that the power-saving feature is disabled, and

released at, normally, the system may enter into the power-
Another power-saving technique at hardware level is Dy-saving mode untilty, at which Wakelock is acquired again.
namic Power Management (DPM) , which predicts the idleHowever, if Wakelock is not released adequately,dbecause

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7 171

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

>
5
a
5
=2
a
>

o

°
=
Q
=4
S
=}

Function Call

—PR-Wakelock System: T

Common Pattern Analyzer(CPA)

Change to
"Begin" state

Fetch function call

Compare &
Remove
Common Info.

Current
Path(CP)

Error Common
Path(ECP)
Normal Common
Path(NCP)

Erroneous
- - Wakelock
Path information Predictor(EWP)

A

"acquire”
function?

Change to
"Lock" state
Update ECP

————

Force release

H Wakelock
Device Driver

Figure 2. Architecture of PR-Wakelock system

"release”
function?

of software bugs, the system remains in an active mode with
power-saving mode disabled as shown in Fig. 1(b). In this
case, unnecessary power consumption is expected diffing
period. Such inadequate situations of Wakelock have been
reported occasionally in many Android applications beeaus
Wakelock can be accessed by any application through user’s

Result is
Error?

hi t
"C an?e ° Update NCP
Error” state

API [11]. Unfortunately, a systematic safeguard to prewerch | Change 10 | -~ | R
undesirable situation does not exist in the Android platfor Nomal ste I d
To lessen this kind of Wakelock error, analyzing method of _* — .

the program at compile time was proposed recently [11]. The Figure 3. Flowchart of prediction algorithm

compile-time analysis, however, has limitations becawseye
possible software flow cannot be analyzed at compile time

without actual running it. In this system, analyzing the sequencéh\ékel ock-acquire

and Wakelock-release function-call is the key feature for pre-
To overcome this limitation, this paper proposes a run-timeficting the erroneous Wakelock operation. CPA updatesdsave

algorithm to prevent power waste caused by unreleased Wakeommon paths whe@ommon Path(CP) is revised. It checks

lock. Fig. 1(c) shows the benefits of the proposed algorithnsequence of the Wakelock function. If tiveakel ock-acquire

in this paper. Even if Wakelock is not releasedtat run- andWakelock-release functions are invoked in order, CP stands

time algorithm proposed in this paper can detect unreleasei@r normal path because Wakelock is released normally after

Wakelock and forcibly release it a§, which prevents waste acquired. However, ithakel ock-acquire function of Wakelock

of power consumption during this unnecessary wake-up @erio is invoked twice in order, CP is at an erroneous path because

Ty. Wakelock is locked until the next request. The algorithm of

)))) the PR-Wakelock system is presented in Fig. 3. For predjctin

_ This paper describes the key idea and algorithm of the runerroneous Wakelock operation, EWP monitors function-clls

time Wakelock predictor. However, since this work is sttllea | ock or Nor mal state, and it performs prediction whenever

work-in-process stage, the implementation result is nowsh function-call is detected. If EWP predicts that the curreft C

in this paper. Instead, offline analysis software will prdle might be a part of an erroneous Wakelock sequence, the ¢urren

feasibility of the proposed idea. Wakelock is forcibly released by EWP.

This paper consists of five sections including this intreduc
tion. In Section Il, the basic concept of PR-Wakelock systemA. Common Path Analyzer
is proposed. For evaluating the performance of PR-Wakelock
system, offline simulation results are shown in Section IIl.
Finally, conclusions and future works are described iniSact
IV and Section V, respectively.

To analyze the usage of Wakelock in an application soft-
ware, it is necessary to monitor and record the executing pat
tern of application software in real-time manner. The ekeou
patterns are recorded as a unitRath, defined as a “sequence
of function calls” in this paper. CPA module in Fig. 2 forms
. IMPROVEDWAKELOCK SYSTEM a Path from the executing sequence of function-calls in-real
time. Since only the usage of Wakelock is important in this
As described above, since unreleased Wakelock may caugaper, CPA module in Fig. 2 starts recording the executing
a huge waste of power in the Android platform, this papersequence of function-calls whenewAikelock-acquire func-
proposes an improved Wakelock system, which is called PRtion is invoked, and stops recording if anoth@gkel ock-
Wakelock (Predict & self-Release Wakelock) as shown inacquire or Wakel ock-release function is invoked. The recorded
Fig. 2. PR-Wakelock consists of two major modul€smmon Path in real-time is saved as CP (Current Path). Besides this
Pattern Analyzer (CPA) and Erroneous Wakelock Predictor CP, in CPA module, Error Common Path (ECP) and Normal
(EWP). Common Path (NCP) are also managed. NCP means that a

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7 172

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

OlA|G|CI|A]|T release
0 9_ 0O 0O 0O O
Gjoy0 1 111 eauie
AlO (\,Li_]\ 1.2 2 acaure TN reease
Clo 1 11 gﬁtz_ﬁz_ ! J'success

Figure 4. Example of Analyzing Subsequence
- Inputs

acquire
release

part of software sequence that has bd#ikel ock-acquire and error

Wakelock-release function. This NCP stands for normal situ- normal

ation of Wakelock system becau¥ékel ock-release function -Outputs

is invoked afterWakelock-acquire function. On the contrary, oaeees

ECP represents a part of software sequence that doesn’t have normal

Wakelock-release after Wakelock-acquire. Using these three Figure 5. State of PR-Wakelock System

Paths’, CPA analyzes the characteristics of software nasdul
and provides information to determine erroneous situatibn

Wakelock. between CP and NCP as shown in (2). In (2)lenotes length

of sequence and operator denotes LCS algorithm.
CPA analyzes the recorded CP when anoti\ékel ock-
acquire or Wakelock-release function is invoked again. If LN(CP,NCP)) + A < L(N(CP, ECP)) 2)
Wakel ock-release function ends the current recording sequence,) .
the path stored in CP is considered as a normal Wakelock However, the subsquence stored in CP is not a complete
pattern and updated into NCP. If anothékkelock-acquire ~ S€quence but a portion of it, because CP stores only exgcutin
function is invoked, on the other hand, this path is consider Sedquence path aft¥takelock-acquire function is invoked. This
as an erroneous case of Wakelock and updated in ECP. T§€ans that CP may contain insufficient information to priedic
extract the feature of executing patte@ommon Path, defined ~ accurately. To increase the accuracy of prediction regasdbf

as a subsequence of function calls, is extracted from CP afténcomplete information of CP, predictor maintains a thaidh
app|y|ng Longest Common Subsequence (LCS) a'gorithm tdalue, A, !n (2) adf:_lptlvely. To Cprrect Curl’e!’lt |nf0rmat|0n,
NCP and ECP that stores the latest common path of normal arfeVP monitors function calls continuously until second Wake-
subsequences between ECP and NCP in order to remove thtate. And EWP decides whether prediction is correct or not
common path between them because both ECP and NCP majfer it confirms second Wakelock function. At the beginning
have the Wakelock-related path in common. The LCS-based Starts from zero. If the prediction is confirmed as wrong,
common path analyzing algorithm used in CPA is depictedhreshold value increases.

in Fig. 4, in which two subsequence, AGCAT and GAC, are Fig 5 shows the state diagram of predictor. EWP starts
compare_d. LCS algorl_thms can build the table in Fig. 4 using,om Begi n state, and returns Begi n state when the path

a dynamic programming technique [12], [13]. Each alphabefom cp is completed recording. If Wakelock is acquired at
in the figure means fur)cthn name. The circled numbers argometime, EWP moves toock state and starts prediction to
common functions, which is related to common path. As gjecide whether CP is error or not. EWP can predict mal
result, CPA extracts AC as a common path from these WQiate despite of CP is error actually, because CP is not énoug
sequences. On the other hand, numbers with rectangle ajgnq 1o predict correctly. So EWP continues prediction until
different path position. These can be selected for removingnother Wakelock function is invoked even though curreatest
common path from original paths. After removing commonig Nor i . On the other hand, if EWP decides CP is error,

path from NCP and ECP, the remaining subsequence, GAT andate moves tdEr ror state. And then PR-Wakelock system
G, are updated to NCP and ECP, respectively. CPA managgsyciply releases Wakelock.

NCP and ECP in this manner and supply to the EWP so that

it can detect erroneous situation.
IIl. SIMULATION RESULTS

B. Erroneous Wakelock Predictor To verify the feasibility of the proposed Wakelock system,
a simulation system was implemented on Samsung Galaxy
During recording the path into CP, EWP shown in Fig. 2Note (SHV-E160K), which is based on Android 4.0.3 (Ice
predicts a possible Wakelock errors whenever CP is update€ream Sandwich). In order to test the algorithm, three An-
EWP determines whether current usage of Wakelock mighdlroid applications were implemented for simulating erarse
be error or not based on the similarity between CP and eithesituation. First application was based on a socket apjicat
NCP or ECP. The similarity between the two paths are defineavhich connected to a server and periodically sent data gtrou
as the length of common path that can be determined by LC8etwork. In this case, Wakelock was acquired when this
algorithm. By comparing the similarity, EWP decides if the application tried to connect the socket, and released when
current executing sequence might be an error if the length diransmission of data was finished normally. Second apicat
common path between CP and ECP is longer than the lengtivas based on 1/O operation of file system that tries to write

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7 173

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

TABLE I. SIMULATION RESULTS
Socket program 1/O program Music player
Average 77.45 86.44 74.58
Maximum 84 90.28 79.31
Minimum 56.5 81.21 68.10
Std. Dev. 10.69 2.72 3.28
A(Final value) 15 17 23.2

random data to SD Card. Wakelock was used between the
open and close functions of thgriter class. Last one was the
music player application. That played MP3 music when user
requested, and Wakelock was used to prevent stopping of the
music when the system entered the power-saving mode. In all
three applications, invocation of tivsakel ock-release function

was omitted randomly with uniform distribution. [1

During the software execution, the function-calls are
logged using theDebug class provided by Android APL. |3
The function name, thread ID, and calling time were logged
in order to analyze path information. Since the purpose of
the test-bed system was to demonstrate the feasibility ef th
proposed algorithm, the actual analysis was not performed i [
real-time yet. Rather, the logged information was analyzed
by the separate analysis and prediction software that was
implemented on a Linux platform. [4]

The prediction accuracy of the implemented CPA and
EWP was evaluated through 10 executions of each application
programs and the results were shown in Fig. 6 and Table |5
It showed about 86.44% of predictions are valid on flash 1/O
based application. Because similarity between NCP and ECP i
different according to application\ in (2) was also different.

IV. CONCLUSION

This paper proposes PR-Wakelock, which is an improved 7]
Wakelock algorithm for an Android platform. The proposed
algorithm analyzes the behavior of Wakelock through the g
function-call analysis and predicts possible errors of glagk.

Once improper operation of Wakelock is found, Wakelock is
automatically released and CPU enters power-saving modé9]
to reduce power consumption. Three Android softwares are
implemented for simulating erroneous Wakelock behaviors
and offline analyzing software was also implemented on Linu>£10]
platform for predicting error of Wakelock. According to the
offline analysis, the prediction ratio of PR-Wakelock syste |45,
was up to 86.44%. So, result shows that Wakelock error
detection from function-call path analysis is feasible wgio

to apply on a real device.

V. FUTURE WORKS =

PR-Wakelock system proposed in this paper has not bedf3!
implemented yet. However, it can be implemented on Android
system in order to monitor the operation of Wakelock in
real-time, and, in turn, reduce the power consumption of
Android-based mobile system. For this, CPA module can be
implemented usindpebug class device driver to monitor func-
tion calls without modifying Android framework itself. Wit
implementing PR-Wakelock, the actual power consumption
can be analyzed in the future work.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

100

80

60

40

Prediction Ratio(%)

20

Socket
1/0

0 Music ---e--
0 1 2 3 4 5 6 7 8 9
Test Count(n)
Figure 6. Simulation Results
REFERENCES

J.-B. Lee, M.-J. Kim, S. Yoon, and E.-Y. Chung, “Applicati-support
particle filter for dynamic voltage scaling of multimedia applions,”
IEEE Trans. Comput., vol. 61, no. 9, Sep. 2012, pp. 1256-1269.

X. Chen, C. Xu, and R. P. Dick, “Memory access aware on-iin#-
age control for performance and energy optimization,” in |E&EM
International Conference on Computer-Aided Design (ICCAZ)10,
Nov. 2010, pp. 365-372.

W.-Y. Liang, S.-C. Chen, Y.-L. Chang, and J.-P. Fang, fvey-aware
dynamic voltage and frequency prediction for portable devicin 14th
IEEE International Conference on Embedded and Real-Time Cungpu
Systems and Applications, 2008, pp. 229-236.

J. Kim, S. Yoo, and C.-M. Kyung, “Program phase and runtime
distribution-aware online dvfs for combined vdd/vbb soglinn De-
sign, Automation Test in Europe Conference Exhibition, 20D8TE
‘09, Apr. 2009, pp. 417-422.

——, “Program phase-aware dynamic voltage scaling undeiable

computational workload and memory stall environment,” IEEEn$ra
Comput.-Aided Design Integr. Circuits Syst., vol. 30, noJan 2011,
pp. 110-123.

L. Cai, N. Pettis, and Y.-H. Lu, “Joint power management ofnmoey
and disk under performance contraints,” IEEE Trans. Comidgied
Design Integr. Circuits Syst., vol. 25, no. 12, Dec 2006,2§97-2711.

W.-K. Lee, S.-W. Lee, and W.-O. Siew, “Hybrid model for dymic
power management,” IEEE Trans. Consum. Electron., vol. 552no.
May 2009, pp. 656—664.

C. Gniady, A. R. Butt, Y. C. Hu, and Y.-H. Lu, “Program cden-based
prediction techniques for dynamic power management,” IEEEhSra
Comput., vol. 55, no. 6, Jun. 2006, pp. 641-658.

Y.-S. Hwang, S.-K. Ku, and K.-S. Chung, “A predictive dymic power
management technique for embedded mobile devices,” IEEE Trans.
Consum. Electron., vol. 56, no. 2, Jul. 2010, pp. 713-719.

“PowerManager.WakeLock—Android Developer.” [Ordin Avail-
able: http://developer.android.com/reference/andosi®owerManager.
WakeLock.html. [retrieved: Feb, 2013]

A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What ieéping
my phone awake?: characterizing and detecting no-sleepyebags in
smartphone apps,” in Proceedings of the 10th internatiomadecence
on Mobile systems, applications, and services MobiSys '04.22 pp.
267-280.

D. S. Hirschberg, “Algorithms for the longest common suhsmce
problem,” Journal of ACM, vol. 24, no. 4, Oct. 1977, pp. 664567
T. H. Comen, C. E. Leiserson, R. L. Rivest, and C. Steintrdduction
to Algorithms, 2nd Ed.” The MIT Press, 2001.

174

