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Abstract—The effort-based model of usability aids in 
evaluating user interface (UI), development of usable software, 
and pinpointing software usability defects. In this context, the 
term pinpoint analysis refers to identifying and locating 
software usability issues and correlating these issues with the 
UI software code. In this paper, the underlying theory of the 
effort-based model along with pattern recognition techniques 
are used to produce a framework for pinpointing usability 
deficiencies in software via automatic classification of segments 
of video file containing eye tracking results. This allows 
developers to harness their effort and focus on excessive effort 
segments that need attention. To verify the results of the 
pattern recognition procedures, the video is manually classified 
into excessive and non-excessive segments and the results of 
automatic and manual classification are compared. The paper 
details the theory of effort-based pinpoint analysis and reports 
on experiments performed to evaluate the utility of this theory. 
Experiment results show more than 40% reduction in time for 
usability testing.  

Keywords-Software Development; Software Usability; 
Human Computer Interaction; Pinpoint Analysis.  

I. INTRODUCTION  
The Effort-based model of usability [1-4] aids in 

evaluating user interface, development of usable software, 
and pinpointing software usability defects. It is developed 
using the principle that the usability is an inverse function of 
effort. The model is used for comparison of different 
implementations of the same application. The results of 
several experiments conducted on the effort-based model 
show strong relationship between effort and usability [1-4]. 

The underlying theory of the effort-based Model is used 
to produce a framework to identify usability deficiencies in 
the software. Identifying and locating software usability 
issues and correlating these issues with UI software code is 
referred to as Pinpoint Analysis [3,4]. For example, users 
who are in a state of confusion, and users that are not sure 
how to use the software, tend to look around the screen to 
figure out the best way to accomplish a task. This behavior 
is referred to as an excessive effort [3,4]. Identifying and 
pinpointing excessive effort behavior helps UI designers 
rectify numerous usability related issues.  

This research attempts to evaluate the utility of 
pinpointing user interface deficiencies using pattern 

recognition techniques for identifying excessive effort in 
segments of software interaction session records. 
Segmentation of user’s software interaction session is done 
using the time slice between two consecutive 
mouse/keyboard clicks. Automatic identification of 
segments showing excessive effort behavior helps the UI 
designers to reduce the time required for analysis and 
rearranging the interface at the pinpointed time snapshot.  

The pattern recognition methods used in this work 
include feature selection, principal component analysis, K-
means clustering, and threshold based classification [5-7]. 
Several experiments were conducted to evaluate the new 
framework for pinpointing software usability issues. 
Experiment results show more than 40% reduction in time 
for usability testing. 

The rest of this paper is organized as follows. Section II 
contains background information. Section III summarizes 
the related work. Section IV details the experimental setup. 
Section V details the experiments. Section VI presents 
experiment results and Section VII contains results 
evaluation. Section VIII concludes the paper with a 
summary of our findings and proposals for further research. 

II. BACKGROUND 

A. Software Usability  
According to the International Organization for 

Standardization/International Electro Technical Commission 
(ISO/IEC) 9126 standard, software usability is: “The 
capability of a software product to be understood, learned, 
used, and be attractive to the user when used under specified 
conditions.” There are several characteristics that play an 
important part in defining software usability: 
understandability, learnability, operability, and 
attractiveness [8,9]. 

Cognitive modeling involves creating a computational 
model to estimate how long it takes the users to perform a 
given task [10-13]. It involves one or more evaluators 
inspecting a user interface by going through a set of tasks by 
which understandability and ease of learning are evaluated. 
The user interface is often presented in the form of a paper 
mock-up or a working prototype; but, it might be a fully 
developed interface. Cognitive models are based on 
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psychological principles and experimental studies to 
determine times for cognitive processing and motor 
movements. They are used to improve user interfaces or 
predict problem areas during the design process. 

B. The Effort-based Usability Model 
Several studies indicate that many system users 

associate the “physical” effort required for accomplishing 
tasks with the usability of the software [1-4]. The effort-
based model for software usability stems from the notion 
that the usability is an inverse function of effort. For 
example, an eye tracking device is used to measure the 
effort expanded by the user in navigating through the user 
interface of software. In the case of interactive computer 
tasks, it is possible to calculate effort as a linear 
combination or a weighted sum of metrics such as the 
number of mouse clicks, number of keyboard clicks, eye 
path traversed as well as other eye activity measures, and 
mouse path traversed.  

Eye trackers acquire eye position data and enable 
classifying the data into several eye movement types useful 
for eye related effort assessment [11,12]. The main types of 
eye movements are: 1) fixation – eye movement that keeps 
an eye gaze stable with regard to a stationary target 
providing visual pictures with high acuity, 2) saccade –
rapid eye movement from one fixation point to another, and 
3) pursuit – stabilizes the retina with regard to a moving 
object of interest [1,11,12]. Usually, the Human Visual 
System (HVS) does not exhibit pursuits when dynamically 
moving targets are not a part of the interface [1,11,12].  

In this research, the following metrics are used as a 
measure of the physical effort 1) Average fixation duration, 
2) Average saccade amplitude, 3) Number of saccades, and 
4) Average eye path traversed [1-4,11,12].  

The effort-based software usability evaluation is 
divided into three phases: Measurement, Analysis, and 
Assessment [3,4].  In the measurement phase, a group of 
users executes a set of identical independent tasks, which 
emerge from a single scenario. These tasks differ in key 
parameters, which prevent the users from memorizing a 
sequence of interaction activities. Throughout the 
interaction process, certain user actions such as eye 
movement, time on task, keyboard activities, and mouse 
activities are logged. 

The analysis phase involves accumulating data for 
several metrics such as the number of saccades, average 
saccade amplitude, number of fixations, average fixation 
duration, and average eye path traversed, that relate to user 
effort. Another metric is the time on task. The average task 
completion time is compared to a learning curve, which 
reflects users’ mastery of software.  

The final step is the assessment. Using the above steps, 
the learnability of software systems is assessed and the point 
of users’ mastery of the software is identified. The same 
model is applied to obtain operability and understandability 
of various software systems or different groups of users 

using the same system. The effort-based metrics provides 
interface designers with means to evaluate their designs [1]. 

C.  Pinpoint Analysis 
Software usability testing is considered one of the most 

expensive, tedious, and least rewarding tests to implement 
[1,2]. This perception is likely to change if the usability 
testing is made less expensive and more rewarding. This 
requires accurate means through which an engineer can 
identify and pinpoint issues in the software or the interface. 
This process is called pinpoint analysis. Pinpoint analysis is 
one of two types; inter-pinpoint analysis deals with 
identifying issues with tasks performed by the users in a 
specific system, whereas intra-pinpoint analysis refers to 
identifying issues within tasks in a specific system. For 
example, outlier tasks might be identified through inter-
pinpoint analysis and used for intra-pinpoint analysis. This 
analysis also helps graphical user interface (GUI) designers 
to make decisions about element placement on displays and 
determine the level of effort that is related to different 
widgets [3,4]. 

1) Inter-pinpoint Analysis 
Inter-pinpoint analysis involves detecting tasks that 

present anomalies and identifying the reasons for these 
anomalies at a high level. The mouse is used as an example 
to understand inter-pinpoint analysis. In a particular task, 
the right mouse button helps users complete a task 
effectively; however, some of the users are unaware of it. It 
is possible that anomalies like this can be identified in inter-
pinpoint analysis [3,4].  

Inter-pinpoint analysis helps identifying alternative 
methods to perform a task effectively with less effort; 
however, it does not provide users with a hint of the 
alternative method. Other issues like the necessity of help 
facilities in software can be identified by the high level 
analysis of tasks that present anomalies.  

2) Intra-pinpoint Analysis 
A more detailed method for analyzing tasks and 

identifying specific issues with the software is intra-pinpoint 
analysis. Intra-pinpoint analysis can be done manually by 
watching all the video recordings of the users’ interactions 
with software, obtained from an eye tracking device. This 
review helps identifying interaction issues and areas where 
the user has difficulty while performing tasks. For example, 
the analysis might reveal that most of the users go into a 
state of confusion in a specific part of a task and are looking 
around the screen to identify the best way to proceed with 
the task. This might prompt the designers to rearrange the 
interface at the relevant time snapshot. Clearly, this option is 
tedious and potentially expensive. An alternative is to use a 
semi-automatic method applying pattern recognition 
technique. This method eliminates the need for a person to 
watch the entire video in order to identify interaction issues 
thereby cutting down the cost and time. It enables automatic 
identification of areas where the user has difficulty and 
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marking these areas for further evaluation. For this reason, 
we refer to the process as semi-automatic.   

D. Pattern Recognition  
One of the applications of pattern recognition is the 

assignment of labels to a given input value, or instance, 
according to a specific algorithm. An example of pattern 
recognition is classification, which attempts to assign each 
input value to one of a given set of classes. Pattern 
recognition is generally categorized according to the type of 
learning procedure used to generate the output value. 
Supervised learning assumes that a set of training data (the 
training set), consisting of a set of instances that have been 
properly labeled by hand with the correct output, has been 
provided. Next, a learning procedure generates a model that 
attempts to meet two sometimes conflicting objectives: 
Perform as well as possible on the training data, and 
generalize as well as possible to new data. On the other 
hand, unsupervised learning assumes the availability of 
training data that has not been hand-labeled and attempts to 
find inherent patterns that are used to determine the correct 
classification value for new data instances [5-7]. 

III. LITERATURE REVIEW 
Usability is a highly researched topic with much 

literature available [8-15].  Nevertheless, extensive review 
did not reveal any research papers related to pinpointing 
usability issues. There are some papers on effort-based 
usability evaluation that are discussed below.  

Tamir et al. [2] conclude that effort and usability are 
related but they did not address pinpointing issues. Mueller 
et al. [16] use effort metrics to evaluate software usability. 
Their method allows comparison of two or more 
implementations of the same application, but does not 
identify where exactly the problem lies. Hvannberg et al. 
[17] describe the design and test of a defect classification 
scheme that extracts information from usability problems, 
but is limited since it does not define the causes underlying 
usability problems. Nakamichi et al. [18] investigate the 
relations between quantitative data, viewing behavior of 
users, and web usability evaluation by subjects. They 
conclude that the moving speed of the gazing points is 
effective in detecting low usability. Makoto et al.  [19] use a 
Web-Tracer to evaluate web usability. Web-Tracer is an 
integrated environment for web usability testing that collects 
the operation log of users on the Web pages. The data 
collected is used to determine the usability of the Web 
pages. However, the reasons for low usability are not 
identified using this approach. This paper thoroughly 
addresses and resolves all of the issues listed above.  

IV. EXPERIMENTAL SETUP 

A. Manual Input Devices 
The subject performs the tasks on a computer using a 

standard keyboard and a mouse as input devices. An event 
driven logging program is used to obtain details of mouse 

and keystroke activities from the operating system event 
queue. The program saves each event along with a time 
stamp into a file. The logged events are:  mickeys (mouse 
pixels), keystrokes, mouse button clicks, mouse wheel 
rolling, and mouse wheel clicks. 

The eye tracker used for the experiments is Tobii X120 
Eye Tracker, version 2.2.5 [20]. The Tobii device is a 
standalone eye tracking unit designed for eye tracking 
studies. It measures unfiltered and spontaneous human 
reactions, responses along with gaze and other real-time 
data. The data collected by the eye tracker is logged to a 
file, which is referred to as a data file in this paper. The eye 
tracker also records video version of the user interaction 
session and is referred to as a video file, which is very 
helpful in verifying experiment results. 

B. Software Environment for Analysis 
A software program developed in MATLAB is used to 

perform data analysis of the experiments performed in this 
paper [21]. The parameters of the program are detailed in 
the respective sections. 

C. Test Procedure 
Experiments conducted to evaluate the capability of 

pattern recognition techniques to identify software usability 
issues are done using the steps depicted in Fig. 1.  

Figure 1. Experiment Procedure. 
 
As the figure shows, the main steps are: data gathering, 

segmentation, data reduction, feature extraction and 
selection. These actions are followed by several different 
classification techniques. The sequence of actions depicted 
in the figure is further described in three subsections: data 
gathering, data reduction and identification of excessive 
effort segments. 
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1) Data Gathering 
A group of five users executes a set of seven identical 

independent tasks, which emerge from a single scenario. 
Throughout the interaction process, certain user activities 
such as eye movement, time on task, keyboard, and mouse 
activities are logged using an eye tracking device. 
According to the learnability-based usability model, the 
point at which the user’s effort reaches the acceptable level 
is called the learning point. Based on this model, it is 
assumed that the users’ effort reaches the acceptable level 
by the time they perform task 5. Hence, in this paper, task 5 
of each subject is used for conducting experiments.  

2) Data Reduction 
Phase 2 includes activities such as segmentation, data 

reduction, and feature extraction. The data logged 
throughout the user interaction session, i.e., the data file is 
used for event based segmentation where the events are 
consecutive keyboard/mouse clicks. Metrics such as:         
(a) segment duration (for event based segmentation), (b) the 
average fixation duration, (c) the average saccade 
amplitude, (d) the number of fixations, (e) the number of 
saccades , (f) the standard deviation of the fixation duration, 
(g) the standard deviation of the saccade amplitude, and     
(h) the eye path traversed are inferred for each segment. 
These metrics are used to generate a feature set, which is 
obtained by applying data reduction programs to the data 
file. The features data is calculated for all features within 
each segment and this data is useful to identify excessive 
effort segments.  

3) Identification of Excessive Effort Segments 
Pattern recognition techniques are applied to the feature 

set obtained from the data reduction process to identify 
segments that exhibit excessive effort. The techniques used 
and applied on the feature set are briefly explained below. 

Thresholding - a threshold value is calculated for each 
feature in the feature set. For a given feature, all the 
segments that have a feature value that is less than the 
threshold value are classified as non-excessive segments and 
vice-versa. 

K-means clustering - the segments are grouped into 
clusters. Based on the value of cluster centers, the cluster is 
classified as excessive or non-excessive. All segments that 
fall in the excessive cluster are segments exhibiting 
excessive effort behavior and vice versa.  

Principle component analysis (PCA) - the first, the 
second, and the third principal components are obtained for 
the feature data. The threshold classification is applied on 
the first principal component and K-means clustering is 
applied on the first, second, and third components to 
classify the segments into excessive or non-excessive.  

By the end of phase 3, the excessive effort segments are 
identified by the software program. To verify the results, the 
video file is carefully watched segment by segment and 
classified into excessive or non-excessive segments 
manually. The manual classification process of the video 
file is described in the following section. 

D. Manual Classification 
The manual classification process involves event based 

segmentation on the entire video file. Each segment is 
carefully watched and classified into the following 
categories: 

Idle behavior segments; idle behavior is due to system 
response. Waiting for a progress bar to complete; or waiting 
for a page to load are examples of idle behavior. Segments 
with such behavior are classified as idle behavior segments. 

Excessive effort segments; segments without any 
useful user actions are classified as excessive effort 
segments. A subject looking at different components on an 
interface instead of the actual target component, which help 
in accomplishing the task is an example for excessive effort 
behavior. Such behavior can be eliminated without 
sacrificing task completion quality. 

Non-Excessive effort segments; segments with useful 
action that result in task completion are classified as non-
excessive segments. 

Off screen behavior segments: Intervals of time where 
the subject’s view is not within the screen for more than one 
second, with no meaningful user action, are classified as off 
screen behavior segments. 

Attention segments; segments with frequent off screen 
behavior, frequent mouse/keyboard clicks are classified as 
attention segments. 

Once the video file is classified into one of the above 
five segment categories, the manual classification results are 
ready for comparison with the automatic classification 
results. 

E. Result Verification 
The number of Excessive vs. Excessive, Excessive vs. 

Non-Excessive, Non-Excessive vs. Excessive and Non-
Excessive vs. Non-Excessive segments as well as related 
error rates are calculated for each result file and graphs are 
plotted to visualize the results and enable comparing the 
performance of different methods and features. During the 
verification of results, the attention segments are not 
considered as they are not clearly distinguished as excessive 
effort or non-excessive effort. Non-Excessive vs. Excessive 
segments are regarded as false positive or type-I error 
segments. It is assumed that all the segments classified as 
excessive effort segments are due for manual evaluation. 
Hence, in the case of type-I error, the software program is 
highlighting extra segments for further review, but is not 
missing any segments that need attention.  

On a similar note, segments that show excessive effort 
per manual classification but identified as non-excessive 
effort segments by the software program are regarded as 
false negative or type-II error segments. These segments 
require extra attention as the software program has missed 
identified segments that require manual inspection. The total 
time of segments classified as excessive by the software 
program is also referred as inspection time. It is the sum of 
the time interval of each excessive effort segment. In this 
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paper, type-II errors and inspection time are considered as 
the most important factors for analyzing experiment results. 

V. EXPERIMENTS 
In this paper, the automatic part of the process is used 

to analyze five data files by applying the different pattern 
recognition techniques discussed. Each of the files is a text 
file that contains the entire data collected by the eye tracker 
throughout each experiment. The following is a list of the 
experiments performed: 
1. Applying the threshold method 
2. Applying heuristic feature selection and K-means 

clustering 
3. Using principal component analysis 
4. Applying K-means clustering on principal components. 
Each experiment procedure is discussed in detail in the 
following sections. 

A. Experiment 1: Applying the threshold method 
In this experiment, event based segmentation is applied 

to the video and data file generated by the eye tracker. Next, 
a feature set is generated for the data file. All the segments 
are classified into excessive or non-excessive effort 
segments by the software program, which applies the 
threshold method on the following features: 1) number of 
fixations, 2) average fixation duration, 3) number of 
saccades, 4) average saccade amplitude, and 5) eye path 
traversed.  

B. Experiment 2: Applying heuristic feature selection and 
K-means clustering 
Due to the fact that evaluating all the possible subsets 

of the feature set is prohibitively time consuming, we have 
adopted a heuristic feature selection method. The following 
subsets are selected: 1) Number of fixations, 2) Number of 
saccades, 3) Eye path traversed,  4) Number of fixations, 
number of saccades, eye path traversed, and 5) Number of 
fixations, number of saccades, eye path traversed, average 
fixation duration and average saccade amplitude. 

C. Experiment 3: Using principal component analysis 
In this experiment, the feature set is transformed into 

principal components by a program that implements PCA. 
Here, only the first principal component is considered, as it 
carries the most significant information related to the 
feature set. The first principal component is subjected to 
the threshold method for identifying segments exhibiting 
excessive effort and non-excessive effort.   

D. Experiment 4: Applying K-means clustering on 
principal components 
In this experiment, K-means clustering is applied to 

different combinations of principal components for 
identifying segments exhibiting excessive effort and non-
excessive effort. The following constitute the feature set 
for this experiment: 1) 1st principal component, 2) 1st and 

2nd principal components, and 3) 1st, 2nd, and 3rd principal 
components. 

VI. RESULTS 
In this section, the results obtained from the 

experiments are discussed. The results of each data file in 
the experiments are shown in [4]. A sample of these results, 
concentrating on applying the threshold method using data 
file 1, is presented here. For clarity, the notation used for the 
feature values in the graphs is presented below: 1) # Fix – 
denotes number of fixations, 2) Avg. Fix Dur. – denotes 
average fixation duration, 3) # Sacc – denotes number of 
saccades, 4) Sacc Amp. – denotes average saccade 
amplitude, 5) Eye Path denotes eye path traversed, and      6) 
FPC - denotes first principal component: 

The video file corresponding to data file 1 is 6.09 
minutes in length. Fig. 2 shows the results of an experiment 
using the threshold method on data file 1. 

 

 
Figure 2. Percent of segments of each type. 

When the graph in Fig. 2 is extrapolated and as seen 
from the E vs. NE bars, the feature value, number of 
fixations demonstrate a small percentage of E vs. NE 
segments. This shows that the number of fixations has the 
least number of type-II errors. Number of saccades and eye 
path traversed follow number of fixations in terms of type-II 
errors.  

Fig. 3 shows the total time of segments classified as 
excessive by the software program and the manual process 
after the threshold method is applied on each of the 
following features: 1) number of fixations, 2) average 
fixation duration, 3) number of saccades, 4) average saccade 
amplitude, and 5) eye path traversed.  
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The light black bars in Fig. 3 represent the total time of 
video recorded by the eye tracker. Manual classification of 
the video file, depicted by the dark black bars, shows 1.71 
minutes of excessive effort. The average fixation duration 
and average saccade amplitude show a relatively low value 
for time of segments classified as excessive by the software 
program when compared with the total video time. This is 
depicted by the bright bars present in the figure. From Fig. 
3, it is observed that the percentage of type-II errors is 
15.05% for average fixation duration and 12.9% for average 
saccade amplitude. However, the feature value with a 
reasonable type-II errors and lower percentage of time of 
segments classified as excessive is average saccade 
amplitude. 
 

 
 Figure 3. Total time of excessive effort segments. 
 
The set of experiments include three more experiments 

the results of these experiments are detailed in [4]. The 
experiments are: 
• Identifying excessive effort segments using heuristic 

feature selection and K-means clustering. 
• Identifying excessive effort segments using principal 

component analysis 
• Identifying excessive effort segments using K-means 

clustering on principal components. 

VII. RESULT EVALUATION 
In this section, we evaluate and discuss the results of 

the experiments conducted in this work. Our criteria for 
success are based on 1) The number of type-II errors and    
2) A minimal time to investigate the usability issues with an 
acceptable level of type-II errors. Based on discussions with 
several engineers in the company sponsoring this work and 

other companies, we are assuming that 15% of error of type-
II is the upper bound for being considered as acceptable. 
This is also consistent with a two-step approach where after 
a first pinpoint analysis stage, which allows for high rate of 
errors but provides significant reduction in evaluation time, 
the errors identified are fixed; leading to a more rigorous 
pinpoint analysis with lower error bound. The results are 
evaluated based on the performance of each pattern 
recognition method on individual features. In addition, the 
overall performance of each pattern recognition method is 
evaluated.  

Tables I to IV (attached at the end of this paper) 
summarize the results of the experiments. An additional set 
of tables, which contains the entire results, can be found in 
[4]. The items listed in Tables I to IV are: 

A. Applying the threshold method 
The following observations are derived from Table I. 

• The results of Table I show that the threshold method 
on the feature value, number of fixations, gives good 
results in terms of type-II errors but, the average 
inspection time is relatively high when compared to 
other feature values. The average value of type-II errors 
for number of fixations is 3.3%. Average saccade 
amplitude and eye path traversed follow the number of 
fixations in terms of type-II errors. 

• A threshold on average fixation duration performs well 
in terms of minimal inspection time with an acceptable 
value of 9.8% for type-II errors.  

• A feature value with minimum number of total errors is 
eye path traversed. This feature value is a good choice 
when inspection time is not taken into account. 

• The inspection time is not completely correlated to 
type-I errors. In the case of average fixation duration, 
the inspection time is 1.67 minutes with 29.4% of type-
I errors. On the other hand, the average saccade 
amplitude with almost the same percentage of type-I 
errors has higher inspection time than average fixation 
duration.  

• The values of the average number of excessive effort 
segments for all features are in close proximity to each 
other. However, the percentage of type-I and type-II 
errors differs invariably. This portrays that the segments 
classified as excessive are different for each feature 
value. 

• Despite the fact that the percentages of total errors for 
each feature value are in close proximity to each other, 
the inspection time varies. This delineates that the 
segments classified as excessive are different for each 
feature value.  

B. Applying heuristic  feature selection and K-means 
clustering. 
The following observations are derived from Table II: 

• The results from Table II show that the K-means 
clustering on the feature subset - number of fixations, 
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number of saccades, eye path traversed, average 
fixation duration, and average saccade amplitude, 
gives good results in terms of type-II errors with an 
average value of 5.4%. But, the average inspection time 
is relatively high when compared to other feature 
values. The number of fixations follows the above 
identified feature value in terms of type-II errors.   

• Clustering on the eye path traversed performs well in 
terms of minimal inspection time with an acceptable 
value of 10.1% for type-II errors.  

• A feature value with minimum number of total errors is 
the number of fixations. This feature value is a good 
choice when inspection time is not taken into account. 

• The average number of excessive effort segments for 
number of fixations and the feature subset with the 
following features - number of saccades, eye path 
traversed, average fixation duration, average saccade 
amplitude are the same. However, the inspection times 
vary. This portrays that the segments classified as 
excessive are different for each feature value. 

• Unlike the results of the threshold method, the 
percentages of total errors for each feature value vary 
by a wide margin when applying the K-means 
clustering on the feature subsets.  

C. Using principal component analysis 
The results summarized in Table III are compared with 

the results obtained from Experiment 1 to analyze the 
performance of the threshold method on the first principal 
component with other features such as: 1) number of 
fixations, 2) average fixation duration, 3) number of 
saccades, 4) average saccade amplitude, and 5) eye path 
traversed. Experiment 1 result evaluation shows that the 
feature value, number of fixations, gives good results in 
terms of type-II errors. The average percentage of type-II 
errors for number of fixations is 3.3%, whereas it is 4.1% 
for first principal component. Initially, average saccade 
amplitude and eye path traversed succeeded number of 
fixations in terms of performance. However, the new results 
place a threshold on the first principal component after the 
number of fixations with respect to type-II errors. The 
inspection times for the first principal component and for 
the average fixation duration are 2.7 and 1.6 minutes 
respectively. A threshold on average fixation duration 
performs better than first principal component in terms of 
lower inspection time and an acceptable 9.8% for type-II 
errors.  

D. Applying K-means clustering on principal components. 
Table IV shows the average values of all the features 

used in experiment 4 over five data files. The average type-
II error is very high when using the K-means on the 
principal components. The average inspection time is only 
1.96%. When taking type-II errors also into consideration, 
this method is not suitable to identify excessive effort 
segments. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 
The framework presented in this research enables 

software developers to efficiently identify the usability 
issues thereby optimizing the time spent on software-
usability testing. Excessive effort segments, which typically 
relate to the usability issues, are identified by applying 
pattern recognition techniques such as K-means clustering 
algorithm, thresholding, principal component analysis, and 
feature selection. The analysis of the experiments conducted 
in this paper shows that the time taken for software usability 
testing can be reduced by 40% or more. 

Of all the pattern recognition methods used, a threshold 
on number of fixations yields the best results in terms of 
type-II errors and is followed by a threshold on the first 
principal component. The K-means clustering on feature 
subset with the features: number of fixations, number of 
saccades, average saccade amplitude, average fixation 
duration, and eye path traversed ranks third.  

When the inspection time is taken into consideration 
while also confirming that type-II errors are within a 
reasonable limit, the K-means clustering on the number of 
saccades yields the best results and precedes the threshold 
method on average fixation duration in performance. 

With time and resources at one’s disposal, there is a 
scope to enhance the definition and implementation of 
pattern recognition techniques in identifying usability issues 
in software. 

In this research, the time between two consecutive 
keyboard/mouse clicks by user is considered as a segment 
and this has served as the basic pattern for pattern 
recognition techniques. Equal time slicing of user’s software 
interaction session can be used instead and the performance 
results can be analyzed and compared with the results from 
this research.  

Further refinement of pattern recognition techniques can 
be pursued to minimize errors and inspection time. Also, 
more focus can be given to the criteria for manual 
classification of video segments thus allowing excessive 
effort segments to be identified more accurately.  

Another direction for future research is to automate 
some of the manual steps in this process. This can include 
software that automatically log users' software interaction 
session data, manipulate data, and without human 
intervention lists the start and end times of all the excessive 
effort segments. This can significantly reduce time taken for 
the usability testing. 

In this work, we have concentrated on pattern 
recognition techniques that do not rely on human 
intelligence. Hence, results are generated using non-
supervised learning procedures. A surrogate approach can 
use supervised learning procedures to produce the output. 
This involves conducting experiments using training data 
sets to manually arrive at an archetype that can be applied 
on any data set to generate the output. 

Another direction for further research is to consider 
information fusion. Information fusion combines different 
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techniques of pattern recognition classification to achieve 
more accurate results. An additional approach that can be 
researched is to arrive at a formula or function that can be 
applied to any data set by which the usability deficiencies 
can be identified.  
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TABLE I. AVERAGE VALUES OF EXPERIMENT 1 RESULTS 

 
 
 
 

Feature value 

avg. # of 
excessive effort 

segments 
avg. total no 
of segments 

avg. % type- I 
errors 

avg. % 
type- II 
errors 

avg. % of 
total errors 

avg. 
Inspection 

time 
avg. Inspection time 
as a % of total time 

# Fix 
17.2 95 28.4 3.3 31.7 2.7 62.1 

Avg. Fix Dur. 
18.2 95 29.5 9.9 39.4 1.6 37.4 

#Sacc 
32 95 21.8 10.5 32.2 2.9 64.1 

Sacc Amp. 
17.6 95 29.1 4.6 33.7 2.5 56.4 

Eye Path 
17.8 95 25.7 5.1 30.8 2.6 57.7 

 

TABLE II . AVERAGE VALUES OF EXPERIMENT 2 RESULTS 

Feature value 

avg. # of 
excessive 

effort 
segments 

avg. total 
no of 

segments 

avg. % 
type -I 
errors 

avg. % 
type -II 
errors 

avg. % of total 
errors 

avg. Inspection 
time 

avg. Inspection time 
as a % of total time 

#fix 29.1 95 27.2 6.6 33.9 2.4 56.2 

#sacc 23.5 95 17.8 8.9 26.7 2.0 45.1 

eye path 19.7 95 18.0 10.1 28.1 1.6 37.5 
#fix,  #sacc, eye 

path 23.2 95 18.3 8.6 26.9 1.9 44.5 
#fix, #sacc, eye 

path, avg. fix dur., 
avg. sacc amp. 29.2 95 32.6 5.4 38.0 2.5 56.3 

 
 

TABLE III.  AVERAGE VALUES OF EXPERIMENT 3 RESULTS 

Feature value 
avg. # of excessive effort 

segments 

avg. total 
no of 

segments 

avg. % 
type -I 
errors 

avg. % 
type- II 
errors 

avg. % of 
total 

errors 

avg. 
Inspection 

time 

avg. Inspection 
time as a % of 

total time 

1st principal 
components 16.6 95 27.5 4.1 31.6 2.7 61.2 

 

TABLE IV.  AVERAGE VALUES OF EXPERIMENT 4 RESULTS 

Feature value 
avg. # of excessive 

effort segments 
avg. total no 
of segments 

avg. % 
type- I 
errors 

avg. % 
type- II 
errors 

avg. % of 
total errors 

avg. 
Inspection 

time 
avg. Inspection time 
as a % of total time 

1st, 2nd & 3rd 
principal 

components 28.6 95 24.4 12.6 37.0 2.0 43.6 

. 
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