ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Trial Testing Efficiency of Algorithms for Task Execution in Multi-Processor Systems
Experimentation System for Priority Scheduling &ykn Pool of Tasks

Magdalena Respondek, Leszek Koszalka, Iwona Po#uakalka, and Andrzej Kasprzak

Department of Systems and Computer Networks
Wroclaw University of Technology,
Wroclaw, Poland
170966@student.pwr.wroc.pl,{leszek.koszalka, iwpnaniak-koszalka, andrzej.kasprzak}@pwr.wroc.pl

Abstract—The need of an increased throughput has led to aew
approach in the computer system design. In order tdace the
growing demands of a potential user, focus on mutasking and

maximally enhance the capabilities- multiprocessosystems have
been introduced. In such systems, two or more Ceral Processing
Units (CPU) are working in parallel, sharing compuer bus and
communicating through shared memory. In this paper, the

homogenous system, with three identical processordiaving a
common ready tasks’ queue, is considered. It is meted with the
use of the adequate simulator. The challenge is tpply the best
possible scheduling algorithms, as to provide an ¢imal system,
which meets all the quality of service requirementsThe conducted
research on both- open and closed pool of tasksfigly described.

The results are presented and thoroughly analyzedni order to

choose the best possible algorithms for the disceskcases.

Keywords-multiprocessor system; tasks scheduling; algorithm;
time efficiency; simulation

|. INTRODUCTION AND MOTIVATION

The objective of this paper is to plan and, by $ating the
multiprocessing system, to conduct such a reseaghto
maximally optimize it in terms of time efficiency.

According to [1], there are usually considered Hedent
criteria of system optimization from efficiency poof view:

The research was a continuation of the studiesadre
conducted on this matter — described in technigabnts [2] and
[3]. Additionally, besides examining, how basic @ithms
behave in the controlled, closed pool of tasks, nesearch was
made to analyze the topic under conditions clogeadbsystems.
Closer look was taken at the priority schedulingoathm and
the open pool of tasks.

The rest of the paper is organized as follows. iSecH
focusses on the experimentation system used imetfearch. In
Section Ill, each of the used scheduling algorithisisfully
described, along with its manner of working. Sect¥ is the
main part containing the full studies, with the haets, research
descriptions and exemplary results analyzed for weses:
Priority Scheduling and Open Pool of Tasks. Thalfiemarks
and plans for further research appear in Section V.

Il. EXPERIMENTATION SYSTEM

In order to investigate the properties of the salieg
algorithms for the multiprocessor’s system, a prdpel had to
be utilized. For this research the created andemphted three-
processor experimentation system, called ‘SimulBtar 3’, has
been used. The basic scheme of the input — outmiém, is
presented in Fig.1.

. Maximum CPU utilization- each processor should e a | Number of processors 1-3))

busy as possible;

. Maximum throughput- number of processes finished in|

one CPU cycle- there should be more work doness tiene;

. Minimum turnaround time- the time needed for the

process to be executed (since its arrival to aesystill
completion);

. Minimum waiting time- time spent by the process in

ready queue;

. Minimum response time- time between CPU request‘

and the first answer.

In order to fulfill all of the above requirementsach of
parallel processors has to have
implemented. With the use of such algorithm, eaBtuGs able
to schedule the execution of system processes amdoperly
manage the workload.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

scheduling algorith

‘ Average tasks delay

Scheduling algorithms ‘

‘ Min waiting time

‘ Number of tasks ‘

Simulator ‘ Max waiting time

‘ Burst time ‘

‘ Overall waiting time

‘ Open/closed pool ‘

‘ Graphs

CPU frequency ‘

Figure. 1. Scheme of the simulator as input - digyatem.

The core of the system was the program described]in
‘Simulator Pro 3‘ was designed using C++ and meslaoinched
on the MS Windows operating system. The system igesv
multiple options to a user, with a reasonable usdgehich, the

253

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

complex research can be conducted. It can be niotibat there
are many options that can be modified in order wdeh the
environment as specifically as it is possible. Hgnthe
constraints of the problem are those of a real-Bfstem,
including the number of processors along with tlfigiquencies
and pool of tasks, which system has to deal witlmimer of
tasks, burst time, open/closed pool).

A. Input parameters

Number of processer 1-3;
Scheduling algorithms different to choose from;
Number of tasksandomly or arbitrary chosen;

determined by the user;

Openlclosed pool of task$or the open pool additional
number of processes can be entered into a queue;

integer values;
CPU clock ratel - 4000MHz.

B. Output parameters

Average tasks delayfotal waiting time divided by the
number of tasks;

waiting time of the earliest executed task;

wait for to be executed;
Overall waiting timewaiting time obtained by all tasks;

Graphs: bar charts
consecutive processes.

I1l. IMPLEMENTED ALGORITHMS

In this research, the following requirements atdeemainto
consideration. The access to CPUs is solved witad sharing
methodology, i.e., tasks are waiting in a readyuguevhich is
common for all three processors. Each CPU chodmeprbcess
from the queue to execute it according to a patteailed
scheduling algorithm.

In the modeled system, maximum of three tasks can
executed at the time. Each processor can have rafiffe
scheduling algorithm implemented.

All the algorithms are described, e.g., in [5] d6Hand are
depicted below:

A. First Come First Served

It is later referred to as FCFS. In this algorittira tasks are
executed in an order they request a CPU. That méasats
importance of a process is measured only by the thits
arrival. It can be managed by a FIFO (First intF@sat) queue.

This type of algorithm is associated with the rigkconvoy
effect, where small tasks have to wait for the biggne to be
executed and get off of the processor.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

representing waiting times of

B. Shortest Job First

Shortest Job First, later referred to as SJFeisathorithm, in
which the importance of the process is meant byehgth of its
next CPU burst. Hence, the processor chooses skenith the
shortest duration time to be executed. When theee tao
processes with the same CPU burst length in a qUEQES
scheduling is used.

Shortest Job First scheduling is hard to be impteat:
because it is not possible to know the length ef lext CPU
burst, it can be only predicted.

There are two types of SJF algorithm: preemptiveé aon-
preemptive. They are distinguishable only on thenopool of

Burst time:randomly chosen from 1-X range, where X is processes where the new task arrives to a quele thkiother is

being executed. If the duration of a new task @rt&hn than what
is left of the currently executed one, the preeweptlgorithm
preempts the “old” process. That is why it can s aalled

Processes’ prioritiesimportance of tasks represented by Shortest Remaining Time First. In the same situatimn-

preemptive algorithm finishes the “old” task’s extion and then
can start the new one.

C. Round Robin

In Round-Robin (RR) type of scheduling there isoastant
time quantum, after which the process is being mpted.
Round-Robin works like FCFS scheduling, except,thfter a

Min waiting time: numbers of cycles representing the time slice, CPU interrupts the execution of thecess and takes

on the new task from the queue. The “old” procssadided to a

Max waiting time:the longest time that the task had todueéue’s tail. Therefore in this algorithm, processge not

waiting long to be started, but because they aitclsed by the
CPU, their delay time is long.

D. Priority Scheduling

In the Priority Scheduling, each process has ariprio
associated with it. Task with the biggest impor&aig the first
one to be executed. Processes with equal prioatescheduled
according to a FCFS algorithm. SJF can be treated special
case of Priority Scheduling, where priorities acgresponding
with the tasks’ lengths.

Priority algorithm can be either preemptive or non-
preemptive. The main problem associated with thisd kof
scheduling is the starvation. On the open poohsktwhen the
new high-priority tasks are entering the systers,fghocess with
the lower significance may never be executed. Thetisn for
this issue is aging where, after defined numbersyafes, the
priorities of long waiting tasks are increased.

IV. INVESTIGATION

The research was mainly focused on two areasngjg the
best Priority Scheduling algorithm’s parameterg] éi) finding
the best combination of algorithms in the open pwobtasks.
After doing preliminary research, two complex exmpents were
conducted.

A Experiment #1 - Priority Scheduling

The first area of research was the Priority Schiegul
algorithm. In this experiment not only the lengthaonumber of

254

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

processes can be changed, but also the rangeodtips and the
aging step for algorithm.

1) Experiment Design

In this research there were taken three basiméelata, each
with 20 tasks. These processes’ length was rarfgimg 1 to 10.
First two sets had randomly chosen burst time. [Bisé one’s
halves were sorted in ascending order.

e Average delay

In Fig. 2 and Fig. 3, the averaged delay of akdda relation
to aging step parameter is shown. Graphs are daeerand do
not present the most essential data- for how longsdthe
important tasks (with the high priority) have to itvéor the
execution.

What is more, when analyzing the graphs one caerebs

Research was conducted on one processor only, hior tthat the bigger number of tasks determines theeorgyerage

clearer picture of Priority Scheduling manner ofrking. Once
the best parameters were found, they could be expptir the
further examination.

delay in the system. However, there is no clearsistency
between the results for different length of proessdVhile the
results are quite static for SET 1, for the secesidof data delay

The experiments were conducted on every combinaifon time clearly rises gradually along with the agiteps

sets and priorites range. For each composition irgfut
parameters aging step had been changed gradualhstve the
improvement.

The features of experiment design were taken é&siisl

e 1 active processor;
* Non-preemptive Priority Scheduling applied;

* Three basic sets of tasks: SET 1 = 107, SET 2 = 134

tasks, and SET 3 = 110 tasks (see Table 1);
e Three ranges of priorities: 1-5,1-10 and 1-20;
« Changing aging step (max value depending on the set

TABLE 1.BASIC SET OF TASKS

No. | SET1 | SET2 | SET3
1 9 6 1
2 2 10 2
3 6 3 3
4 8 8 4
5 2 5 5
6 4 8 6
7 7 10 7
8 9 7 8
9 9 5 9
10 4 8 10
11 5 5 1
12 6 5 2
13 4 9 3
14 9 3 4
15 8 8 5
16 3 10 6
17 7 5 7
18 2 2 8
19 1 10 9
20 2 7 10

2) Results

As the research was extensive, the results for dets are
presented in details: SET 1 of 107 tasks and SBfT134 tasks
- both for priority range of 1-5. Two cases are lgs®gd in
details (the average delay, the delay for conseettisks).

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

SET 1: Priority range: 1-5
Overall time of tasks- 107
54
E‘ 56
v
T 54
@
[=1)
© 52
g
< 50
ds T T T
0 5 10 15 20 25
Aging step
Figure 2. Average delay, SET 1, priorities 1-5.
SET 2: Priority range: 1-5
Overall time of tasks- 134
72
Z 70 \
1]
]
T 68
L]
[-11]
® 66
g
a 64
bz T T T
0 5 10 15 20 25 30
Aging step

Figure 3. Average delay, SET 2, prioritie--5.

Observing results presented in Fig.2 it can becadtthat the
aging step of 20 has the same average delay ttia¢ atep of 0.
It can be explained by reminding that no aging i@gphctually
means that the value of aging step equals to a euofliasks in
the system.

At the same time the best results are achieveddpyls and
equal to 14.1 cycles.

255

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

The shortest delay is observed for Fig.3 is theggtep of 7
and equals to approximately 64 cycles.

As no further conclusions can be drawn, more dateéeded
to analyse the priority problem. The outcome o$ tigist can be
fully reliable only when juxtaposed with the graphdelays for
single tasks.

. Delay for consecutive tasks

B Experiment #2 - Open pool of tasks

The second experiment was focused on open poastiit
Usually, in the real-life system, the new tasks eo@stantly
coming to the processor, requiring its time. Therefthe closed
pool system is not accurate enough for modelling thasks
execution. It can only show the overall view of tireblem. The
cases considered in this research are the rouglmapmtion of
a real-life dynamic system, which is hard to bedpted and

The delay of consecutive tasks is a more compled anrequires an on-line tasks management [9].

accurate way to present the results. The execofianparticular
task can be observed and juxtaposed with the defagther
processes.

When analysing results (Fig.4) it appears thatbilyger the
aging step, the more rapid and uneven the graph.nfdximum
delay time is obviously the biggest for no aginglaga, when
the aging step is equal to a number of tasks (apd®0 cycles
for the task no. 11). The lower the aging step,ntioee the same
task's delay decreases (by about 60 cycles in themum
point).

When the aging step is big, the tasks are exedutad order
of their priorities, no matter the size. It can sahe starving of
the remaining processes (with lower importance).

On the other hand, small value of aging parametause that
tasks are executed in the order of parameters Ibotcauses a
uniform distribution of processor’s time. This sadm may not
be accepted, due to significant lowering the imgoee of the
tasks.

3) Conclusion

To sum up the problem of choosing the optimal valoé
aging parameters, it can be said that the systest bei well
known, to model it properly. As it was observedtbe above
examination, both - set parameters and the lenfgthsés in the
queue - have a high influence on the average timéasks
execution.

It appeared that the average delay of tasks féerdifit aging
parameters may not be accurate enough. On sucésesytation,
the data about the most important tasks is losthabthe user
may not have the good overall view of the systentah help,
however, when the large system is modelled argdriot possible
to display characteristics of every task.

The more accurate and the more complicated atiine $me
is the graph representation of delay for every lsirigsk. It
showed the remarkable influence of aging parameterthe
system’s time of processes execution. Due to #gsasentation a
connection between aging parameter andait®iracy of result
(meant by the emphasis placed on priorities) wsibhei.

All in all, the means of choosing the best algontharameter
is to find the best ratio between the aging paramatd pool of
tasks’ size, best fitted for the given requirements

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

One point has to be remembered when it comes tolaion
of an open loop system - the data randomness. ®ilést“issue”
each experiment has to be repeated and the data lmus
averaged for more reliability of results.

1) Experiment Design:

The research was very exhaustive. As there weréegaht
algorithms and 216 unique combinations for threecessors
should be considered. For each experimentationt pdiasic
tasks plus new tasks introduced to the system) tladlse
combinations had to be computed three times. Atethé the
mean and the standard deviation had been calcufatethe
average delay of the system.

The overall results for every combination had beampared
and 20 - best and worst (in terms of tasks’ delaghemes of
algorithms had been found.

The features of experiment design were taken sl

e 6 algorithms- along with preemptive ones

* 2 sets: 10 and 20 basic tasks;

e Open pool of 10 or 20 tasks;

e Basic parameters of a system;

« 3 repetitions of each experimentation point;
* Clock rates of CPUs- 2000Hz.

2) Results

The outcome is displayed on the bar graphs reptiagetie
average value of processes’ delay in the modelstkisyalong
with the standard deviation of results. The considalgorithms
are symbolized by:

« FC - concerns FCFS;

PN - non-preemptive priority scheduling;
e PW - preemptive priority scheduling;

* SN - non-preemptive SJF;

e SW - preemptive SJF;

* RR - Round-Robin.

The exemplary results will be shown for the two exas
analyzed in details:
Case 1 : 10 basic tasks plus 10 new tasks,
Case 2 : 10 basic tasks plus 20 new tasks.
256

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Priority range: 1-5, Overall tasks time: 134

Delay

2=1 —% —a=7

cedee- @=12 — i —a=16

11 1z 1z 14 is 15 17 is EE-] 20
Mumber of task

2=21

Figure 4. Delay for consecutive tasks; SET 2, piies: 1-5.

. Case 1: 10 basic tasks + 10 new tasks

The outcome is shown in Fig.5. It can be obserhed the
best results for pool of 10 new tasks are achidwedmixed
scheme of non-preemptive and preemptive SJF ahgorénd
equals to 2.65 cycles. The part of each best caatibm is the
best SJF algorithm (either preemptive or non-preemip What
can be surprising it is usually combined with tlemsidered as
not-so-good Priority and FCFS algorithms ([2] anfl]).[
Preemptive algorithm seems to be slightly betteantmon-
preemptive one.

What more can be noticed, is that there is a vegh h
variation of results, even for such a small pooltagks. The
deviation for best results shows that they aresnaogtable. So, it
would be wiser to choose one of the 10 best cortibima of
algorithms, which have the lowest standard dewviatio

The worst for this experimentation point is the bamation
of 2 Round- Robin algorithms with a preemptive ptyo
scheduling and equals to 9.75 cycles. The resuthdse than
three times worse that the best result. The |effisteat of the
bunch seems to be the Round-Robin algorithm, beipgrt of
each combination with the biggest delays.

The variation of the bad result is not as highasttie good
ones. It can be explained by the fact that the tweotutions
usually give constant average delays while at tmestime
“good” combinations are similarly efficient.

. Case 2: 10 basic tasks +20 new tasks

The bigger the number of new tasks introduced écsifstem,
the more consistent the outcome. It can be esteddlisby
observing the standard deviation of results. Thesdso a bigger
difference between the outcomes.
combination’s average delay equals to 1.77 cyclé®e worst
outcome reaches 7.53 cycles, which is more thaméstlonger.
When looking at the results for the best algorittembination

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

The more efficient

(Fig.6.), same tendencies as before can be obsefhediowest
delays are obtained by the same algorithms. Thereslkght
differences for the worst outcome. The main partwafrst
combination is the FCFS algorithm along with thdoky
Scheduling. It is not possible to differentiate @vhiis worse-
preemptive or non-preemptive version of algorithm.

3) Conclusion

Because of the randomness of data introduced teytstem,
it is hard to find the one optimal solution for thien problem.
The best or the worst outcome can only be apprdridhto a
smaller group of possible algorithms. Because efdkhaustive
research, it was hard to truly examine the problEnis part of a
research could be an introduction for the furthtedy It gives
the overall view of the best and worst algorithms.

V. CONCLUSION

The research presented in this paper allowed fby ‘tocal’
conclusions. At this stage of investigation, we aomclude
about the remarkable influence of aging parameter tiee
system’s time of processes execution and initisdlgommend
combinations with SW for open pool of tasks, andt no
recommend combinations with RR from the minimizangrage
delay point of view.

The created ‘Simulator Pro 3’ is being used ashiegcand
research tool in Electronics Faculty, Wroclaw Unsity of
Technology, Poland. It still gives an opportunityr ffurther
investigations. In the nearer future, the varioosnarios with
Priority Scheduling is planned to be applied. Wianore, as it
was described in Section IV, the problem of opeal pd tasks is
very complex and needs far more investigation iy &xplore it.
The authors of this paper are planning to perfdurdiss with
the several other scheduling algorithms, e.g., dass
evolutionary ideas, which were proven their effigg in [9] and
[10], and in own works [11] and [12].

257

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

The worst algorithms, 10 basis, 10 new tasks

Rverage delay
)

P e o)

e o B s A
i © R i Vs TR, T b, g R
Wy, »P,C*F,p,? Lupmdrﬁ_? 4,-,?.? R bp_,%’?pm o

= Aversge Standard deviation |

verage delay
OB N W bW oGdoBm oW
|

The best algorithms, 10 basis, 10 new tasks

5 S, A S T T Ky S
et o JZA‘;‘, ‘Ti"'h‘f;‘“' Rl hf,i:fm gﬂk/ e

| - Average Standard dewvistion |

Figure 5. The worst and the best outcome for 1@&tzasl 10 new tasks set.

The worst algorithms, 10 basis, 20 new tasks
14

12 =

I
=]

2]
|

Ruarage delay

By A P By o
M oy A o p: - CFZ””""C‘

-, ~ = r -
P L L P VN
T -'ay%? Vg o

= Aversze Standard devistion |

Ayerage dlay

The best algorithims, 10 basis, 20 new tasks

E]

2,5 =

3]

s
in

W

2
in

2,

[=]

.

Sy o e S, g Vs
T N L A

Ly ¥ 5
S e

| - Avarage Standard deviation

Figure 6. The worst and the best outcome for 1@&:tzasl 20 new tasks set.

ACKNOWLEDGEMENT

This work was supported by the statutory funds fué t

Department of Systems and Computer Networks, Racofit
Electronics, Wroclaw University of Technology, Na@®10W4.

(1]
(2]

(3]

(4]

(5]

REFERENCES

A. Silberschatz, J. L. Peterson, and P. B. Gal®jperating System
Concepts, WNT, Warsaw, 2006.

M. Respondek, "Trial testing efficiency of taskseeution in
three-processor system”, Technical Report, Faafitilectronics
W4K2, Wroclaw University of Technology, 2011.

M. Respondek, "Evaluation of algorithms for taskeaution in
three-processor system with priority schedulingResearch
Report, Faculty of Electronics W4K2, Wroclaw Unisity of
Technology, 2012.

B. Czajka, S. Zagorski, and L. Koszalka, “Threeegessor
computer simulation. The shortest tasks executjotmization’,
Research Report, Faculty of Electronics W4K2, Waacl
University of Technology, 2006.

B. Czajka and |. Pozniak-Koszalka,: “Evaluation tdsks
scheduling algorithms in multi-core and multi-queyi
environments using system MESMS2”, Proceedings ABIA
ICONS, IEEE CPS,20009, pp. 17-22.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

(6]

(7]

(8]

(9]

Process management, Multiprocessor systems. Alailam:
http://siber.cankaya.edu.tr [retrieved: Novembé, 1.

F. Ramming, “Real time operating systems”, Uniugrsi
Paderborn, Heinz Nixdorf Institute, SBCCI'01. Awdile on
http://www.inf.ufrgs.br/~flavio/ensino/cmp502/TutalRammig
[retrieved: August, 2012].

E .0. Oyetunji and A. E. Oluleye, “Performance ass@ent of
some CPU scheduling algorithms”, Research Journél
Information Technology, Vol. 1, August 2009, pp-22

V. Gaba and A. Prasha,, “Comparison of processhediding
algorithms using genetic approach”, Internationaurdal of
Advanced Research in Computer
Engineering, Vol. 2, Issue 8, August 2012, pp. 37-4

[10] D. M. Zydek and H. Selvaraj, “Fast and efficientogessors

allocation algorithm for torus-based chip multipessors,” Journal
of Computers & Electrical Engineering, Vol. 37,Ussl, January
2011, pp. 91-105.

[11] D. Krol, D. Zydek, and L. Koszalka, “Problem indedent

approach to multiprocessor dependent task scheguliournal of
Electronics and Telecommunications, Vol. 58, 1s4u012, pp.
369-381.

[12] I. Pazniak-Koszatka, W. Proma, L. Koszatka, M. Pol, and A

Kasprzak, “Task allocation in mesh structure: 2SidapFrog
Algorithm and Q-learning based Algorithm”, LectuMotes in
Computer Science, Springer, Vol. 7336, 2012, pp-537.

258

Science and Software

