
An Eclipse Plug-in for Aspect-Oriented Bidirectional Engineering

Oscar Pulido-Prieto, Ulises Juárez-Martínez

Division of Postgraduate and Research Studies

Instituto Tecnológico de Orizaba

Orizaba, Veracruz, México

Email: opp026@gmail.com, ujuarez@ito-depi.edu.mx

Abstract—This paper describes a plug-in for the IDE Eclipse,

which enables the generation of AspectJ and CaesarJ code

from a UML class diagram, as well the capability to perform

reverse engineering from these languages to obtain a system

model in a UML class diagram representation. In addition, the
capability of generating an XML representation for

visualization and understanding of AspectJ and CaesarJ code

is provided. This plug-in also provides a graphical interface for

system design through UML.

Keywords-AspectJ; CaesarJ; UML; Software Engineering;

Reverse Engineering.

I. INTRODUCTION

Aspect-oriented programming (AOP) [1] involves the
development of modular components , which simplifies their

reuse and maintenance. AOP solves encapsulation problems
in object-oriented programming (OOP) [1] and structured

programming [1]; such problems consist of an inability to

encapsulate elements whose functionality covers more than a
single object when these elements are not related through

inheritance, composition, or aggregation.
Nowadays, there are several commercial tools for code

generation; these cover the object-oriented paradigm and the
aspect-oriented paradigm, but only partially for the aspect-

oriented paradigm. This necessitates the use of extensions

that are difficult for novice developers to understand. The
inability to make equivalences between different aspect-

oriented languages is another problem; it decreases
interoperability and delays paradigm consolidation.

In this paper, a plug-in for the Integrated Development
Environment (IDE) Eclipse [2] is presented. This plug-in

adds the capability of generating code in AspectJ and

CaesarJ from a model generated with a Unified Modeling
Language (UML) extension through stereotypes, and

generates a model from both languages, which comprises
direct engineering. In addition, the plug-in generates an

eXtensible Markup Language (XML) representation of both
languages to improve the application design, which

comprises reverse engineering. The combination of both
direct and reverse engineering constitutes what is known as

bidirectional engineering.

This paper is organized as follows: In Section 2, previous
studies related to this work are presented. In Section 3, the

plug-in architecture is described. In Section 4, the plug-in
capabilities are analyzed. In Section 5, a discussion of the

scope of this work is presented. In Section 6, a code

generation example is provided. In Section 7, the conclusions
are discussed. Finally, in Section 8, future work is described.

II. RELATED WORK

In [3], a plugin for an Eclipse Integrated Development

Environment was presented. This plug-in generates AspectJ
and CaesarJ code from an XML Metadata Interchange

(XMI) document generated with a modeling tool. This plug-

in was developed using the Eclipse Modeling Framework
(EMF), a Model-View-Controller (MVC)-based architecture

and a meta-model for AspectJ and another for CaesarJ. Both
meta-models were defined through Java annotations, which

belong to the core of EMF (Ecore) and transform Java
interfaces into EClasses. This transformation occurs through

the XQuery query language to search for items that are

required in the XMI document. This plug-in is only focused
on code generation from UML class diagrams ; the system

modeling is carried out with an external tool and is exported
to the XML format, and the plug-in just generates code.

In [4], a tool that allows the representation of CaesarJ
source code in XML format, simplifying the design of code

generators and code analyzers , was presented. This tool

generates XML documents based on a Java file containing
CaesarJ code. The generated XML document is validated

using an XML Schema (XSD). As an XML management
Application Programming Interface (API), Java API for

XML Processing (JAXP) was also used because this API
supports several processing standards, allows

transformations of XML documents, and XML Schema
support is a standard part of JAXP. An analysis of the

different approaches for creating XML documents was

made, and one representing the elements as an abstract
syntax tree was selected. As a result, a minimal tool for the

generation of an XML document from CaesarJ source code
and for obtaining source code for an XML document was

developed.
In [5], BON-CASE, a Computer-Aided Software

Engineering (CASE) tool for generating Java code, was

presented. This was accomplished from a modeling diagram
Business Object Notation (BON) language. This tool was

developed to solve the need for a system that allows the
generation of source code efficiently from a system abstract

model, and also to generate robust and accurate
implementations. The authors highlighted the existing CASE

tool features, which allow tests to be carried out and code to

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

be generated, but with limitations in terms of robustness and

analysis of the correctness of a model. BON-CASE is an
extensible CASE tool for the BON modeling language

focused on contracts and frame specifications ; it generates
Java source code. BON-CASE generates low coupling

components to integrate these components in other
platforms. BON-CASE offers a formal specification backup,

code generation extensible templates , and a partially

validated meta-model. The authors mentioned that UML is a
modeling language that generates system-independent views.

UML allows the use of formal techniques through Object
Constraint Language (OCL). BON, on the other hand, is

based on formal techniques that allow an inherent design by
contracts. BON-CASE generates code in the Java Modeling

Language (JML).
In [6], meta-programming was defined as the act of

writing programs that generate other programs ; this approach

is essential for automated software development. On this
basis, the authors developed Meta-AspectJ, a meta-language

that extends Java code to generate AspectJ code. Meta-
AspectJ is based on generative programming and aspect-

oriented programming to design a specific domain aspect-
oriented code generator, which generates efficient code to

solve AspectJ limitations in general purpose code generators.

The authors mentioned the disadvantages of domain-specific
APIs: compatibility regressive problems when libraries are

updated and bad interaction when these are independently
modified. Meta-AspectJ solves these problems through the

use of annotation that does not interfere with code execution
and syntax.

In [7], an analysis of aspect-oriented framework

architecture was performed. The authors proposed that there
is a problem that results from the inability to encapsulate

nonfunctional requirements as these are scattered throughout
the system; they mentioned that the main problems of aspect-

oriented architecture are the language type used and source
transformations.

In [8], Aspectra, a framework designed to carry out test
entry in previously generated aspects to measure reliability ,

was developed. The authors mentioned that the development

of aspect-oriented software improves the software quality,
but does not provide the desired accuracy owing to

programmer mistakes, difficulty in verify ing the appearance
of an error during unit tests , or these aspects not being

implemented directly.
In [9], the specifications of a meta-model for aspect-

oriented modeling based on extension mechanisms using

UML 2.0 and XMI, software implementation to facilitate use
in other software tools , were presented.

In [10], methods of automatic code generation of aspect-
oriented models by Theme/UML were defined. Additional

requirements to develop a code generator were cited as
follows: a meta-build system model and generator

specification, which in turn is made up of snippets and

production rules.
In [11], problems resulting from the use of frameworks in

the design of an application due to the difficulty of

demonstrating the design using UML were highlighted. To

solve this problem; the authors proposed the creation of a
framework called Aspect-Oriented Crosscutting Framework.

In [12], a method of aspect-oriented modeling, using the
model-driven process that focuses on business applications ,

was described. The authors mentioned that there are no
means of modeling crosscutting concerns in UML; this

generates system designs with scattered artifacts ; against this

background, they proposed modeling crosscutting concerns
in UML diagrams representing aspects, advice, and crosscuts

as first-class models to produce an aspect-oriented model.
Table 1 shows a comparison of the contributions of each

study described above. The target language and modeling
language are shown, as well as the restrictions in terms of

both design and programming. Among these studies, only
the BON-CASE tool provides mechanisms for both direct

and reverse engineering, but is limited to the Java language

and the BON modeling language; the other works shown in
Table 1 are design specifications. In the last row, our work is

shown in order to highlight the current contribution with
respect to previous studies.

III. PLUG-IN ARCHITECTURE

Eclipse is an IDE based on plug-ins that encourages the

use of the Model-View-Controller architectural pattern.
In the Model layer, a meta-model through EMF is

defined, as well as an XSD template and an eXtensible
Stylesheet Language Transformations (XSLT) template for

transformations between aspect source code and its XML

representation. With EMF, a set of interfaces was generated
to obtain a general meta-model and two specific meta-

models for AspectJ and CaesarJ, as is shown in Figure 1(1).
In the Controller layer, the behavioral mechanism for the

plug-in is defined. The controller has two parsers , which
transform source code into an XML representation: one for

AspectJ and the other for CaesarJ. This is possible by using

an Abstract Syntax Tree, which decomposes the source code
into nodes and then generates the XML representation, as is

shown in Figure 1(2). On the other hand, an XSLT is used to
parse the XML representation into source code. The

controller also has an XMI analyzer to generate a Java model
from the XMI document, as is shown in Figure 1(3); every

class is tailored with one meta-model interface. Later, a

template of Java Emitter Templates (JET) is used in order to
generate source code from meta-model instances, either

AspectJ or CaesarJ, as is shown in Figure 1(4).
In the View layer, a graphical interface to allow system

modeling is defined, and then this interface is exported into
source code or an XML representation through the XMI

standard. The use of XMI furthermore provides an export
and import mechanism to facilitate work with other tools.

For generating a model representation, the plug-in takes

source code in AspectJ and CaesarJ, and parses it for
generating the XML representation. Then, an XMI document

is generated with an XSLT and, finally, the model is loaded
in the main window.

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

In Figure 2, the plug-in’s physical architecture is shown.

The plug-in consists of five components, two of which are
parsers, one for AspectJ and the other for CaesarJ; another

one is the view, which allows the design of a system class
diagram and generates the XMI representation or takes an

XMI document and generates a class diagram; another is the

javamodel, which allows an XMI document to be read,
validated, and for source code to be generated through JET

templates; and last, there is the controller, which allows
communication among the other components.

IV. PLUG-IN CAPABILITIES

This plug-in allows the generation of aspect-oriented

source code from UML class diagrams, to achieve a reverse
engineering process in order to obtain the model from source

code and generate an XML representation of it. Figure 3
shows how the graphic interface is implemented.

This project extends the previous work support [4]; in

these work, a prototype for CaesarJ source code

transformation into XML was developed. The support for bit

operations has been added, as well as full support for
signature patterns, support for more than two mixins, class

element access was restructured, and anonymous class
definition and class definition inside of blocks, such as

classes, initializers, methods, iterations , or bifurcations, were

added.
On the other hand, an AspectJ parser was developed,

which works similarly to the project described in [4].
Besides, full support for signature patterns, bit operations,

static crosscutting support, and error and warning
declarations such as superclasses, interfaces, methods, and

field inter-type declarations were added.

Additional work from a prev ious study was also
incorporated [5]; it includes source code generation from a

model. In addition, a graphical interface was implemented to
avoid the external tool requirement for model generation;

thus, the reverse engineering capability was also added,
whereby the model is obtained from source code.

Figure 1. Plug-in logical architecture

TABLE I. COMPARISON OF RELATED WORK

Author Output Language Modeling Language Implementation Independent Tool Reverse and Direct Engineering

Rosas-Sánchez Java, AspectJ, CaesarJ UML Yes No Direct

Salinas-Mendoza Java, CaesarJ, XML Not apply Yes Yes Not applicable

Paige Java BON Yes Yes Both
Huang AspectJ Java Annotations No No Direct

Constantinides Not apply Not apply No No Not applicable

Xie Not apply Not apply Yes Yes Not applicable

Evermann AspectJ UML No Not apply Not applicable

Hetch Not apply Theme/UML No Not apply Not applicable

Júnior AspectJ UML No Not apply Not applicable

Mosconi Not specified UML No Not apply Not applicable

Pulido-Prieto Java, AspectJ, CaesarJ UML Yes No Both

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Figure 2. Plug-in physical architecture

Figure 3. Plug-in graphical interface

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

1 package aspects;

2 import classes.House;
3 public aspect Security {

4 public void House.alarmSwitch() {

5 //TODO Auto-generate code

6 }}

01 <aspect-source-program>
02 <aspect-class-file name="Security.aj">

03 <package-decl name="aspects"/>

04 <import module="classes.House"/>

05 <aspect name="Security" visibility="public">

06 <intertype-declaration target="House"
07 kind="method">

08 <method name=" alarmSwitch"

09 visibility="public">

10 <type name="void" primitive="true"/>

11 <formal-arguments/>
12 <block/>

13 </method>

14 </intertype-declaration>

15 </aspect>

16 </aspect-class-file>
17 </aspect-source-program>

1 package aspects;
2 import classes.House;

3 public cclass Security {

4 public cclass SecurityWrappsHouse wraps House {

5 public void alarmSwitch() {

6 //TODO Auto-generate code
7 }}}

01 <java-source-program>

02 <java-class-file name="Security.java">

03 <package-decl name="aspects"/>

04 <import module="classes.House"/>
05 <cclass name="Security" visibility="public">

06 <cclass name="SecurityWrappsHouse"

07 visibility="public">

08 <wraps name="House"/>

09 <method name="alarmSwitch"
10 visibility="public">

11 <type name="void"

12 primitive="true"/>

13 <formal-arguments/>

14 <block/>
15 </method>

16 </cclass>

17 </cclass>

18 </java-class-file>

19 </java-source-program>

Since a reverse engineering process is performed, this

plug-in allows equivalences to be made between AspectJ and
CaesarJ when source code is generated from a model. This is

achieved with limitations in implementation in both
languages, where CaesarJ lacks static crosscuttings and

AspectJ lacks wrappers and mixins. If a model obtained from
AspectJ implementation with static crosscuttings is used to

generate CaesarJ source code, a wrapper is used to generate

classes that have these static crosscuttings. When a model is
obtained from CaesarJ implementation with wrappers and

mixins, it uses an inner subclass of wrapper class for the
wrapper. If a class has more than one superclass indicating a

mixin composition, a warning message is shown, indicating
modeling inconsistency.

V. DISCUSSION

With this plug-in, an XML representation of Java,

AspectJ and CaesarJ is generated. In the cases of Java and
AspectJ, this plug-in lacks support for generics, but uses

enhanced for and multi-catch exceptions to improve the

equivalences between AspectJ and CaesarJ. Another
limitation is a lack of support to store and represent methods

and initializer implementation; thus, when the reverse
engineering process is realized, a code loss occurs since the

abstraction level is higher. Method, constructor, and
initializer implementation through activity diagrams is

proposed, where the flux for each method, constructor, and
initializer is modeled.

VI. EXAMPLE

In this section, a code generation example is presented,

where the class House, with one field and without methods ,
is extended through a Security aspect, which provides one

method for the alarm turn-on and turn-off, while another

aspect called StateCheck provides a pointcut, which applies
over the alarmSwitch() method. Modeling of this is shown in

Figure 3.
For AspectJ, the Extension stereotype indicates that static

crosscuttings will be added. The resulting source code is
shown in Figure 4.

Figure 4. AspectJ source code for aspect Security.

An XML representation for the AspectJ code is shown in
Figure 5, where line 3 is equivalent to line 1 in Figure 4, line

4 is equivalent to line 2 in Figure 4, line 5 is equivalent to
line 3 in Figure 4, and lines 6 to 9 are equivalent to line 4 in

Figure 4.

For CaesarJ, the Extension stereotype indicates a wrapper
declaration. The resulting source code is shown in Figure 6.

An XML representation for the CaesarJ source code is
shown in Figure 7, where line 3 is equivalent to line 1 in

Figure 6, line 4 is equivalent to line 2 in Figure 6, line 5 is

equivalent to line 3 in Figure 6, lines 6 to 8 are equivalent to
line 4 in Figure 6, and lines 9 to 13 are equivalent to line 4 in

Figure 6.

Figure 5. XML representation for Security AspectJ code.

Figure 6. CaesarJ source code for aspect Security.

Figure 7. XML representation for Security CaesarJ code.

For AspectJ, the Concern stereotype indicates an aspect,

if a class with that stereotype contains a String field with a

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

01 package aspects;

02 public aspect StateCheck {

03 public pointcut checker() :

04 call(public void alarmSwitch());

05 before() : checker() {
06 //TODO Auto-generate code

07 }

08 void around() : checker() {

09 //TODO Auto-generate code

10 }
11 after() : checker() {

12 //TODO Auto-generate code

13 }}

01 package aspects;

02 public cclass StateCheck {

03 public pointcut checker() :
04 call(public void alarmSwitch());

05 before() : checker() {

06 //TODO Auto-generate code

07 }

08 void around() : checker() {
09 //TODO Auto-generate code

10 }

11 after() : checker() {

12 //TODO Auto-generate code

13 }}

crosscutting primitive, a pointcut is generated in the source

code; if a method name is equal to this field, three definit ion
of advice are generated to this pointcut, as is shown in

Figure 8. For CaesarJ, the Concern stereotype indicates a
cclass, as is shown in Figure 9. As is shown in Figure 9 and

Figure 10, the only differences between the two languages
are in line 2: the aspect keyword for AspectJ and the cclass

keyword for CaesarJ are placed there.

Figure 8. AspectJ source code for aspect StateCheck.

Figure 9. CaesarJ source code for aspect StateCheckAspect.

An XML representation of an aspect with pointcuts is

shown in Figure 10 for AspectJ and Figure 11 for CaesarJ.
The only differences between the two XML documents is in

line 4: a node aspect is placed there for AspectJ and a cclass
node is placed there fo r CaesarJ. For Figure 10 and Figure

11, lines 5 to 13 are equivalent to lines 3 and 4 for Figure 8
and Figure 9, lines 14 to 21 in Figure 10 and Figure 11 are

equivalent to line 5 in Figure 8 and Figure 9, lines 25 to 33

in Figure 10 and Figure 11 are equivalent to line 8 in Figure
8 and Figure 9, and lines 35 to 43 in Figure 10 and Figure

11 are equivalent to line 11 in Figure 8 and Figure 9.

VII. CONCLUSIONS

This paper presented a plug-in for AspectJ and CaesarJ
code generation from a UML class diagram through their

XMI specification. This plug-in applies reverse engineering
to obtain a UML class diagram from source code, obtain an

XML source code representation, or make equivalence

between the two aspect-oriented languages. In addition, two
previous studies were integrated and extended in order to

obtain a functional tool for bidirectional software
engineering; furthermore, the plug-in capabilities and

limitations were presented.

Figure 10. XML representation for StateCheck AspectJ source code.

VIII. FUTURE WORK

As future work, method and initializer body definition

will be implemented through activity diagrams, and AspectJ

01 <aspectj-source-program>

02 <aspectj-class-file name="C:\StateCheck.aj">

03 <package-decl name="aspects"/>

04 <aspect name="StateCheck" visibility="public">

05 <pointcut name="checker"
06 visibility="public">

07 <pointcut-arguments/>

08 <pointcut-expressions>

09 <pointcut-expression designator="call"

10 signature="public void
11 alarmSwitch()"/>

12 </pointcut-expressions>

13 </pointcut>

14 <advice spec="before">

15 <formal-arguments/>
17 <pointcut-expressions>

18 <pointcut-expression

19 reference="checker">

20 <arguments/>

21 </pointcut-expression>
22 </pointcut-expressions>

23 <block/>

24 </advice>

25 <advice spec="around">

26 <type name="void" primitive="true"/>
27 <formal-arguments/>

28 <pointcut-expressions>

29 <pointcut-expression

30 reference="checker">

31 <arguments/>
32 </pointcut-expression>

33 </pointcut-expressions>

34 <block/>

35 </advice>

36 <advice spec="after">
37 <formal-arguments/>

38 <pointcut-expressions>

39 <pointcut-expression

40 reference="checker">

41 <arguments/>
42 </pointcut-expression>

43 </pointcut-expressions>

44 <block/>

45 </advice>

46 </aspect>
47 </aspectj-class-file>

48 </aspectj-source-program>

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

annotations and inclusion of generics for this language will

be analyzed.

Figure 11. XML representation for StateCheck AspectJ source code.

ACKNOWLEDGMENT

The authors thank CONACyT (Consejo Nacional de

Ciencia y Tecnología) and DGEST (Dirección Nacional de
Educación Superior Tecnológica) for the support granted for

the completion of graduate study.

REFERENCES

[1] G. Kiczales, et al, “Aspect-oriented programming,” in

European Conference on Object-Oriented Programming
(ECOOP’97), vol. 1241, June. 1997. pp. 220-242. doi:
10.1007/BFb0053381

[2] L. Vogel, “Eclipse IDE,” vogella.com, 3rd edition, pp. 492.

[3] E. Y. Rosas-Sánchez, “Desarrollo de un plug-in para el ide
eclipse para la generación de código de aspectj y caesarj
basado en xmi y perfiles de uml,” Master’s thesis, Instituto
Tecnológico de Orizaba, 2011.

[4] A. Salinas-Mendoza, “Caesarml: una representación basada
en xml para código fuente de caesarj,” Master’s thesis,
Instituto Tecnológico de Orizaba, 2011.

[5] R. Paige, L. Kaminskaya, J. Ostroff, and J. Lancaric,
“Boncase: an extensible case tool for formal specification and
reasoning,” Journal of Object Technology, vol. 1, no. 3, Aug.
2002, pp. 77-96.

[6] S. Huang, D. Zook, and Y. Smaragdakis, “Domain-specific
languages and program generation with meta-aspectj,” ACM
Transactions on Software Engineering and Methodology
(TOSEM), vol. 18, no. 2, Nov. 2008, article no. 6, pp. 1-32,
doi:10.1145/1416563.1416566.

[7] C. Constantinides, A. Bader, T. Elrad, P. Netinant, and M.
Fayad, “Designing an aspect-oriented framework in an object
oriented environment,” ACM Computing Surveys (CSUR),
vol. 32, no. 1es, p. 41, Mar. 2000, pp. 1-12,
doi:10.1145/351936.351978.

[8] T. Xie and J. Zhao, “A framework and tool supports for
generating test inputs of aspectj programs,” in Proceedings of
the 5th International Conference on Aspect-oriented Software
Development, Mar. 2006, pp. 190-201,
doi:10.1145/1119655.1119681.

[9] J. Evermann, “A meta-level specification and profile for
aspectj in uml,” in Proceedings of the 10th International
Workshop on Aspect-oriented Modeling, Mar. 2007, pp. 21-
27, doi:10.1145/1229375.1229379.

[10] M. Hecht, E. Piveta, M. Pimenta, and R. Price, “Aspect
oriented code generation,” 20. Simpsio Brasileiro de
Engenharia de Software (SBES’06), Florianpolis, SC, Brazil,
2006, pp. 209-223.

[11] J. Júnior, V. Camargo, and C. Chavez, “Uml-aof: a profile for
modeling aspect oriented frameworks,” in Proceedings of the
13th Workshop on Aspect-oriented Modeling, 2009, pp. 1-6,
doi:10.1145/1509297.1509299.

[12] M. Mosconi, A. Charfi, J. Svacina, and J. Wloka, “Applying
and evaluating aom for platform independent behavioral uml
models,” in Proceedings of the 2008 AOSD Workshop on
Aspect-oriented Modeling, 2008, pp. 19-24,
doi:10.1145/1404920.1404924.

01 <java-source-program>

02 <java-class-file name="C:\StateCheck.java">

03 <package-decl name="aspects"/>

04 <cclass name="StateCheck" visibility="public">

05 <pointcut name="checker"
06 visibility="public">

07 <pointcut-arguments/>

08 <pointcut-expressions>

09 <pointcut-expression designator="call"

10 signature="public void
11 alarmSwitch()"/>

12 </pointcut-expressions>

13 </pointcut>

14 <advice spec="before">

15 <formal-arguments/>
17 <pointcut-expressions>

18 <pointcut-expression

19 reference="checker">

20 <arguments/>

21 </pointcut-expression>
22 </pointcut-expressions>

23 <block/>

24 </advice>

25 <advice spec="around">

26 <type name="void" primitive="true"/>
27 <formal-arguments/>

28 <pointcut-expressions>

29 <pointcut-expression

30 reference="checker">
31 <arguments/>

32 </pointcut-expression>

33 </pointcut-expressions>

34 <block/>

35 </advice>
36 <advice spec="after">

37 <formal-arguments/>

38 <pointcut-expressions>

39 <pointcut-expression

40 reference="checker">
41 <arguments/>

42 </pointcut-expression>

43 </pointcut-expressions>

44 <block/>

45 </advice>
46 </cclass>

47 </java-class-file>

48 </java-source-program>

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

