
Extending RTOS Functionalities:
an Approach for Embedded Heterogeneous Multi-Core Systems

Shuichi Oikawa Gaku Nakagawa Naoto Ogawa Shougo Saito
Department of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

{shuioikawa,gakutarou,onaoto0707,shougosaitoh}@gmail.com

Abstract—This paper proposes an approach to extend real-
time operating system (RTOS) architecture for embedded
heterogeneous muti-core processors, which consist of proces-
sors with different processing power and functionalities. The
architecture splits the RTOS kernel into the two components,
the proxy kernel (PK) and user-level kernel (UK). The PK
runs on a less powerful core, and delegate its functions to
the UK that runs on a powerful core as a user process. The
experiment results running micro benchmark programs show
that a communication cost between the UK and its user process
is negligible and that there are cases where UK outperforms
the monolithic kernel. These results confirm that the proposed
approach is practically useful.

Keywords- Real-Time Operating Systems; Heterogeneous
Multi-Core Systems; Embedded Systems.

I. INTRODUCTION

As embedded devices, such as mobile smart phones,
tablets, Internet TV sets, and so on, require more functions
to respond to consumers’ needs, their processors have been
becoming more powerful. Since it is important for embedded
processors to maintain their power consumption as low as
possible, they cannot simply make their clock frequencies
higher to increase their performance; thus, they nowadays
consist of multiple processor cores and provide symmetric
multi-processor (SMP) environments.

Some processors even go further and include different
kinds of processor cores. The Texas Instruments OMAP4
processor [1] and the Renesas Electronics R-Mobile proces-
sor [2] are such examples. The OMAP4 processor consists
of dual ARM Cortex-A9 cores and dual Cortex-M3 cores,
and the R-Mobile processor consists of a Cortex-A9 core
and a Renesas SH core. The OMAP4 processor incorporates
Cortex-M3 cores, which are designed as microcontrollers
and much smaller than but incompatible with A9 cores, to
offload multimedia processing and to achieve faster real-
time response. The R-Mobile processor incorporates an
SH core also to offload multimedia processing. Therefore,
incorporating more smaller cores to offload the specific types
of processing can be a trend for future embedded processors.

Systems software, especially the operating system (OS)
kernel, is, however, rather slow to respond to such an archi-
tectural change. While there have been researches conducted

to support muti-core systems [3], [4], [5], they targeted
server class systems with highly functional processors and
their approaches do not fit into embedded processors. Since
there has been no support for such embedded heterogeneous
muti-core processors, only approach currently available is to
execute independent OS kernels on different processors. A
typical configuration for the OMAP4 processor is to execute
the Linux SMP kernel on the dual Cortex-A9 and to execute
an real-time OS (RTOS) on the less powerful Cortex-M3.
The problems of such an architecture are 1) Linux and RTOS
run independently with few cooperations between them and
2) only static functions can be provided by the software
executed on the RTOS.

This paper proposes an extensible RTOS architecture
for embedded heterogeneous muti-core processors. The ar-
chitecture splits the RTOS kernel, which runs on a less
powerful core, such as Cortex-M3 for OMAP4, and delegate
its functions to the user-level kernel (UK) that runs on a
powerful core, such as Cortex-A9 for OMAP4. The kernel
on a less powerful core is called a proxy kernel (PK) since
the global decisions are made by the UK and it works as a
proxy of the UK. Figure 1 shows the overall architectures
of the existing and proposed systems on OMAP4. In the
figure, A9 and M3 stand for Cortex-A9 and Cortex-M3
cores of OMAP4, respectively. The architecture addresses
the problems of the existing systems that consist of the
independent OS kernels by making the PK closely coupled
with Linux and controlled flexibly via the UK.

The rest of this paper is organized as follows. Section II
describes the related work. Section III present the proposed
system architecture. Section IV describes the current status
and shows experiment results. Finally, Section V concludes
this paper and describes our future work.

II. RELATED WORK

Recent researches conducted to support muti- or many-
core systems all take basically the same approach. They
consider a single system as a distributed system in order to
amortize different characteristics. Multikernel [3] and Corey
[4] target symmetrical processor systems with non-uniform
memory access (NUMA) characteristic. By considering such

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

A9� A9� M3� M3�

Linux� RT
OS�

RT
OS�

A9� A9� M3� M3�

Linux� PK�

UK�

PK�

(a)4The4exis8ng4architecture� (b)4The4proposed4architecture�

Figure 1. Overall architectures of the existing and proposed systems.

systems as distributed systems, they can partition systems
into clusters of processors with the same characteristic,
and can hide NUMA characteristic. On the other hand, the
architecture proposed in this paper targets heterogeneous
multi-core systems, of which processors have different func-
tionalities.

Helios [5] targets heterogeneous multiprocessor systems
and supports different kinds of processors by employing a
satellite kernel, which is a microkernel [6]. Each satellite
kernel on a different processor exports the same API, so
that programs can be executed on a processor that fit the pro-
grams’ requirements. Although the architecture proposed in
this paper targets heterogeneous multi-core systems, which
is similar to the target of Helios, the kernels on different
kinds of processors are not the same. It aims to make
programs on a less powerful core closely coupled with Linux
on a powerful core by complementing the functionalities of
the small kernel on a less powerful core.

III. PROPOSED SYSTEM ARCHITECTURE

This section describes the proposed RTOS architecture
and its components in detail. As depicted in Figure 1, the
proposed architecture consists of three major components,
the PK (Proxy Kernel), the UK (User-Level Kernel), and
Linux. The PK and the UK constitutes the RTOS kernel. The
PK is executed on a less powerful core, and its functionality
is supported by the UK that is executed on a powerful core
as a user process of Linux.

A. PK: Proxy Kernel

The PK is a simplified RTOS kernel. It is a standalone
kernel; thus, it consists of basic RTOS components, such
as interrupt and exception handlers, a scheduler, and syn-
chronization mechanisms. It works with the UK so that its
functions are complemented by the UK. It does not perform
dynamic resource management except for task scheduling.
It simply picks up the highest priority task and dispatch it. It
processes interrupts, and unblocks tasks when needed. When

a fixed task set is executed on it, it works the same way as
an ordinary RTOS.

The PK works in different ways from an ordinary RTOS
when dynamic management features are involved. It out-
sources such features to the UK, so that it can keep itself as
simple as possible while its functionality can be extensible.
When a task on the PK invokes a system call the PK itself
cannot handle, the system call is transferred to and processed
by the UK on behalf of the PK. Some exceptions are
processed in the same way. By outsourcing the functions to
the UK, the OS functionalities provided for tasks on the PK
become flexible and extensible. For example, file access and
networking features can be easily provided through the UK
since it is executed on Linux. Moreover, the PK outsources
its memory management to the UK since it is unnecessary
to execute a fixed task set. It is possible because the physical
memory of the PK is mapped into the UK’s address space.
The task management, especially the creation and deletion
of tasks, uses the memory management functions. Thus,
creating a new task is a function of the UK, and the PK
simply dispatches it when it becomes ready to run. When a
task exits, such an event is transferred to the UK, and the
memory used by the existed task is reclaimed by the UK.

B. UK: User-Level Kernel

The UK processes the requests issued by the PK’s tasks
on behalf of the PK as described above. The UK is executed
as a user process of Linux; thus, it can utilize the full
functionalities of Linux. It can access files on Linux’s
file systems and operate on networks just as Linux’s user
processes can. It can provide the PK with such Linux’s
functionalities without increasing the complexity of the PK,
and can easily introduce dynamic features to the PK.

The other benefit for the UK to be a user process of
Linux is that it is free from maintaining its own execution
environment, and can focus on managing the execution envi-
ronments of the PK. Such delegation of functions makes the
implementation of each components as simple as possible.

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Finally, there must be a communication means between
the PK and the UK. As a user process of Linux, the
UK cannot directly communicate with the PK without the
support from Linux. There are two ways for the UK to
communicate with the PK. One is through the read and write
system calls, and the other is through the shared memory.
The first method is simpler while it involves overheads of
using system calls. The latter is faster while it complicates
the interactions between the UK and the PK. Both methods
need to be considered for the better implementation.

IV. CURRENT STATUS AND EXPERIMENT RESULTS

This section describes the current status, experiment re-
sults, and a performance improvement based on profiling.
The PK and UK were implemented based on the XV6
operating system [7], which is a reimplementation of UNIX
V6 [8]. The current implementation is based on an Intel
IA-32 multi-core processor because we could not obtain
an OMAP4 based system when we started the work. It
statically considers some cores as powerful ones and some
as less powerful ones. Therefore, all experiments described
below were performed on a PC-AT compatible system,
which is equipped with an Intel Core i7-920 2.66GHz CPU.
The hyper threading and power management features were
disabled to perform all benchmarks. We used the Scientific
Linux 6.1 x86 64, which is based on the Linux kernel
2.6.32, to execute the UK. While the Linux kernel executes
in the 64-bit mode, the UK is a 32-bit program. The original
XV6, which is used for comparisons, executes in the 32-bit
mode.

A. Current Status

The implementation consists of 3 parts, the PK, the UK,
and the linux device driver to interact with the PK, as
described in Section III. The PK consists of total 1534 lines,
which are 1448 lines of the C program and 86 lines of
the assembly program. The linux device driver consists of
total 830 lines, which are 723 lines of the C program and
107 lines of the assembly program. As far as the UK is
concerned, 12 files, mostly for device drivers, were deleted,
5 files were added, and 13 files were modified from the
original XV6. The total number of lines of the added files
are 494 lines.

The current implementation is stable enough to perform
micro benchmark programs as follows.

B. Micro Benchmarks

We first executed several micro benchmark programs on
the UK and also on the original XV6 in order to investigate
the performance penalty to realize the proposed architecture.
We chose 4 programs, getpid, pipe, fork, and fork+exec to
measure the functions without and with dynamic resource
management. The getpid program invokes the getpid system
call to find the cost of calling the kernel. The pipe program

Table I
MICRO BENCHMARK RESULTS [IN µSEC]

Benchmark UK UK (mmap buf) Original XV6
getpid 1.06 0.68 0.20
pipe 10.47 8.98 2.77
fork 23.80 22.05 82.63
fork+exec 49.99 48.17 168.56

makes 2 processes communicate with each other through 2
pipes, so that it can measure the cost of context switches
between them. The fork program creates a copy of the cur-
rent process, and the fork+exec program executes a different
program in a newly created process. These programs can
measure the process management costs.

Table I shows the results of executing micro benchmark
programs. In the table, UK uses the linux device driver to
communicate with the PK. On the other hand, UK (mmap
buf) directly communicates with the PK through a buffer
that is mapped in the UK and the PK’s address spaces; thus,
it does not use the linux device driver to communicate with
the PK. The original XV6 was executed directly on a system.

The results from the getpid and pipe programs show the
overheads incurred by splitting the execution of the UK and
its user processes on different processors. Since the getpid
program only invokes the getpid system call, the difference
between the results of UK and XV6 is the communication
cost between them; thus, the communication cost is 0.86
µsec for UK and 0.48 µsec for UK (mmap buf). Direct
communication through the mapped buffer without the linux
device reduces the communication cost by 44%. While the
overall cost for UK (mmap buf) to invoke the getpid system
call increases as much as 3.4 times more than XV6, the cost
increases by only 0.48 µsec, which is negligible in the total
computing time of applications and other more complicated
system calls. Moreover, such simple system calls as getpid,
which obtains the state of in-kernel resources but does not
manipulate them, can be optimized by embedding them
within the PK. In this case, the communication costs are
eliminated, and the costs to invoke such simple system calls
becomes the same as XV6.

The results from the fork and fork+exec programs show
that UK performs better than XV6. This is an advantage
of the proposed architecture. The control flows to process
the fork and exec system calls currently remain the same
for UK and XV6 since no optimization, such as batching
multiple system calls and parallelizing the execution of the
kernel and user processes, has been applied to UK. We
consider the differences arise due to the effects of cache
and TLB. There is no need for the UK to flush TLB of the
processor it is running since actual process manipulation
is done on another processor user processes are running.
The PK runs on the processor that runs user processes.
It is however extremely small; thus, the effect to it is

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Table II
PROFILING RESULTS (TOP 5)

Function Name %
memmove 35.48
jpkwaitevent 11.93
memset 9.18
freevm 6.92
getcallerpcs 3.78

negligible. Moreover, having the UK and user processes
run on different processors increases the chances for them
to remain on cache. Therefore, the UK architecture can
decrease the number of cache and TLB flushes and increase
the performance.

C. Profiling Results and Improvement

In order to further improve the performance of UK, we
analyzed the hot spots in the UK. We used OProfile, which
is a system wide profiler for Linux systems. Profiling was
taken while running the fork and fork+exec programs. Table
II shows the results of profiling. The table only shows the
top 5 function names where the most of CPU cycles were
consumed. These top 5 functions consumes 67.29% of CPU
cycles in total.

The function that most consumes CPU cycles is mem-
move, which copies data from one place to the other. The
second one is jpkwaitevent, which busy waits the completion
of the user process side processing; thus, it does nothing.
The third one is memset, which sets a memory region to
a specified value. The two string functions, memmove and
memset, consumes 44.66% of CPU cycles in total; thus, their
performance should impact the overall performance.

Intel Core-i7 supports SSE4, which is a SIMD unit that
has 8 128-bit long registers. Since a SIMD unit similar
to Intel SSE is also available for the ARM architecture
as NEON, we decided to utilize it to accelerate memory
operations. A single SSE instruction can move 128-bit (16-
byte) data between a SSE register and memory. We utilized
a SIMD instruction to accelerate memmove and memset.
By using the SIMD versions of them, the performances of
the fork and fork+exec benchmark programs were improved
27% and 13%, respectively.

Figure 2 summarizes the results from the performed micro
benchmark programs.

V. SUMMARY AND FUTURE WORK

This paper proposed an extensible ROTS architecture
for embedded heterogeneous muti-core processors, which
consist of processors with different processing power and
functionalities. The architecture splits the RTOS kernel into
the two components, the PK and UK. The PK runs on a
less powerful core, and delegate its functions to the UK that
runs on a powerful core as a user process. The experiment

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

getpid" pipe" fork" fork+exec"

La
te
nc
y"
(m

ic
ro
"se

co
nd

s)
�

UK"
UK"(mmap"buf)"
UK"(SSE)"
XV6"

Figure 2. Summary of Micro Benchmark Results

results running micro benchmark programs show that a
communication cost between the UK and its user process
is negligible and that there are cases where UK outperforms
the monolithic kernel. We now obtained an OMAP4 based
evaluation board [9], and are currently porting the proposed
architecture on it.

REFERENCES

[1] D. Witt. OMAP4430 Architecture and Development. Hot
Chips Symposium, August 2009.

[2] M. Ito, et. al. SH-Mobile G1: A Single-Chip Application
and Dual-mode Baseband Processor. Hot Chips Symposium,
October 2006.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
Multikernel: a New OS Architecture for Scalable Multicore
Systems. In Proceedings of the 22nd ACM Symposium on
Operating System Principles, pp. 29-44, October 2009.

[4] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: an Operating System for Many Cores.
In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, pp. 43-57, December
2008.

[5] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt. Helios: Heterogeneous Multiprocessing with Satellite
Kernels. In Proceedings of the 22nd ACM Symposium on
Operating System Principles, pp. 221-234, October 2009.

[6] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an
Application Program. In Proceeding of the USENIX Summer
Conference, pp. 87-95, June 1990.

[7] Xv6, a Simple Unix-like Teaching Operating System.
http://pdos.csail.mit.edu/6.828/xv6/

[8] J. Lion. Lion’s Commentary on UNIX V6.

[9] Pandaboard. http://pandaboard.org/ (as of 3 April 2012).

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

