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Abstract—DNA signatures provide valuable information that Unique signature discovery is to find all unique signatumes i
can be used in various applications in bioinformatics, for #&ample 3 DNA database. The methods of unique signature discovery
the identification of different species. Rapid signature dicovery have been widely studied, and many related algorithmsstool

algorithms are required by biologists to discover signatues. L
Since more and more computers are equipped with a CPU of and applications have been developed [2]-[14]. For exam-

many processing cores, parallelism becomes a feasible sitm to ~ Ple, insignia [6] is a web application for rapidly identifyg
accelerate the discovery. However, most of the existing sigture  unique DNA signatures. Zheng’s algorithm [12] is a hamming-
discovery algorithms are sequential algorithms. Paralleignature  distance-based unique signature discovery algorithm. &he
discovery algorithms are rare. In this paper, a parallel siga-  4qithm deals with DNA databases, and discovers unique
ture discovery algorithm is proposed. The algorithm discoers . . .
hamming-distance-based signatures from DNA databases. Eh s!gnatures from the dgtab_a_ses_. CMD [13] is an algorithm de-
proposed algorithm is a parallel enhancement of an existing Signed to discover all implicit signatures from DNA datad@s
discovery algorithm. Through parallel computing, the algaithm  under a discovery condition, where the implicit signatuaess
accelerates the process of signature discovery. In the exjreent  the patterns that satisfy the discovery conditions lookant

on a human chromosome EST database of 88M bases, thethe given discovery condition.

proposed algorithm has up to 73.28% less processing time tha The int | based . . t Di
the existing discovery algorithm when 4 processors are used € Internal-memory-based unique signature LDiscovery

Index Terms—DNA signature, human chromosome EST (IMUS) algorithm [14] improve_s upon the Zheng’s algorithm.
database, parallel algorithm, unique signature discovery The IMUS algorithm deals with DNA databases. The algo-

rithm discovers hamming-distance-based unique sigrature
Let/ andd be two positive integers, where< [. An [-pattern
is a string ofl characters in the alphabet d&%, C, G T}.
Based on the assumptions of the theories of evolution aadatternP is (I, d)-mismatched to a patte@ if the length of
natural selection, almost all species shared a commontance® and( is ! and the hamming distance, which is the number of
at a point in time. Random mutations in DNAs sometimes leadismatches, betweeR and Q does not exceed. A pattern
to differently structured proteins. If such changes giwerio P is referred to as a unique signature under the discovery
advantages in survival, the DNAs is prevailed in the gend.pogondition (, d) if and only if no other patterid) exists in the
The advantageous mutations are one of the ways that genogigen DNA database such th&and( are (, d)-mismatched.
diverge from one another. The result of the evolution isthat The IMUS algorithm is designed for efficiently discoverimgt
different species might own some unique patterns in theiADNunique signatures under the discovery conditions of sigeat
sequences, and the species can be identified by the unitgrgyth! and mismatch toleranaé
patterns. For example, specific oligonucleotides haveadire The underlying idea of the IMUS algorithm is that the
been used in a polymerase chain reaction (PCR) method fmique signatures appear after all of the patterns that are
the identification of 14 human pathogenic yeast species [1jnot unique are discarded. Instead of finding unique patterns
DNA patterns are referred to as unique signatures if thédye IMUS algorithm focuses on finding non-unique patterns.
appear in a DNA database only once, and have some minimiiime IMUS algorithm is based on the observation that if two
mutation distance from all other patterns in the databagmtternsP and @ are (,d)-mismatched, then at least one
The unique signatures are used in several bioinformatiok the two halves ofP is (I/2,|d/2])-mismatched to the
researches. For example, unique signatures are used tdyiderorresponding part of). The IMUS algorithm is a two-
HIV-1 subtypes and 28S rDNA sequences from more than 4pbase algorithm. In the first phase, the algorithm divideADN
organisms [2]; the selected signature probes with micayarrsequences into patterns of lendtfEachi-pattern consists of
analysis are used to identify bacteria [3]. two consecutive /2-patterns. An index system is built based

I. INTRODUCTION
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S « divide all of the DNA sequences in the input database TABLE |
into l-patterns which Comprise two consecutNé-patterns A LIST OF 6 PATTERN ENTRIES AND THEIR PROCESSING TIME
o « construct an index o#!/? entries, which is based on D ATBTC DT ETE
the [ /2-patterns as index keys Tme | 5|8 [36| 4|13 4
for an entryE in o do
for a patternP in £ do
for an entry E' in o, whose key is [(/2,|d/2])- platform. Based on the results from the experiments on human

mismatched tak’s key do chromosome EST databases of 88.0 and 36.4M bases, the
compareP to all patterns inE’ PIMUS algorithm respectively spent about 3.5 hours and 0.62
if P is (I,d)-mismatched to any of the comparechours to discover signatures from the EST databases under
patternsthen the discovery condition (24,4) when four processing cores a
discard P used. the PIMUS algorithm has up to 71.35% and 72.06%
end if less processing time than the typical IMUS algorithm in the
end for signature discoveries.
end for The rest of the paper is organized as follows. The PIMUS
end for algorithm is presented in Section Il. The time complexity
the remaining patterns is the unique signatured af)( of the algorithm is analysed in Section Ill. The results of

the performance evaluation about the proposed algorittem ar
presented in Section IV. Finally, the conclusions of thigkvo
are given in Section V.

Fig. 1. The IMUS algorithm.

on the l/2-patterns as index keys, in whichpatterns that IIl. METHODS

contain same index keys are gathered in a single index entryne proposed parallel internal-memory-based unique signa
Assume that is an entry and its key i&p. P is anl-pattern yre giscovery (PIMUS) algorithm discovers signatures- effi
in . Based on the IMUS observation, all of theatterns that cjently from a DNA database that can be entirely loaded into
are (, d)-mismaiched ta” are in the entries whose keys arénain memory under a certain discovery condition. The PIMUS
(1/2,]d/2])-mismatched toK . In the second phase? is  4igorithm improves upon the IMUS algorithm, and accelerate
compared to the patterns that are possillylmismatched signature discovery by using parallel computing.

to it. P is discarded if it is [ d)-mismatched to any of an inwitive way to apply parallel computing to the IMUS
the compared patterns. The IMUS algorithm is presented ifyqrithm is to assign randomly an available processor to
Figure 1. process a pattern entries in sequential order. For example,
Nowadays, CPUs of many processing cores are commencomputer withm processors is used to handlepattern
place, and the prices of the CPUs are in an acceptable rangries. Initially, processor 1 can be assigned to entry 1,
For example, the price of an Intel Core i7 870 quad-core. and processorn can be assigned to entmy. Assume
CPU is around 300 US dollars in November, 2011. Parallf{at processor 3 is the first to complete its task; the process
computing technology has been used in several bioinfoo®atis immediately assigned to the next entry, entey+ 1. The
research areas, such as sequence alignment and analyles it available processor is similarly assigned to the nettye
protein structure prediction [16], [17], and motif findin®8]. until all of the n pattern entries are completed. The optimal
Based on our experiments made on a computer with an Ing@bcessing time whem processors are used Igm of the
2.93GHz CPU, the IMUS algorithm spent about 12.5 hourﬁocessing time of a single-processor computer.
to discover unique signatures from a database of 88M basesable | shows the processing time of six pattern entries. The
under the discovery condition of signature length 24 anghtries can be treated in 70 time units by a single-processor
mismatch tolerance 4. However, the IMUS algorithm is a seomputer. The optimal processing time is therefore 70/2=35
quential algorithm. The increasing number of processimg<o time units for a two-processor computer. However, in thecas
in a CPU would not increase the discovery efficiency of thef the assignment in sequential order, processor 1 is asdign
IMUS algorithm. Therefore, upgrading the IMUS algorithmo entries A and C, and processor 2 is assigned to entries
to a parallel algorithm would further accelerate the sigr@t B, D, E and F. The assignment of the entries is presented
discovery processes. in Figure 2. The processing time is 41 and 29 time units
In this work, an algorithm that is called parallel internalrespectively. Since the processor that takes longest dgiesn
memory-based unique signature discovery (PIMUS) algariththe overall processing time, the overall processing timélis
is proposed. The PIMUS algorithm is a parallel enhancéme units in this case, which exceeds the optimal procgssin
ment of the typical IMUS algorithm. To improve discovertime.
efficiency, the PIMUS algorithm uses an efficient scheduling The order of pattern entries in the processing list influsnce
heuristic proposed in [13] to generate a reordered prawgssthe overall processing time for parallel discovery. An édiit
list. The processing list helps to reduce discovery time sxheduling heuristic, called the parallel entry list (PELS)
approaching the optimal discovery time for a multi-processused in the CMD algorithm [13]. Figure 3 presents the PEL

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8 84



ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

L «— generate a processing order list that consists of all
pattern entries in arbitrary order

Pil A c m «— the number of available processors

n « the number of entries i

g, h «— the average number of patterns in each entry.in
Py B D E F while g < mh do
s+0, k<1
while n > k do
Fig. 2. The assignment of the entries in Table | in sequemtider for a while |L,,| < g do
two-processor computer. ne—n-—1
TABLE I end while
THE PROCESSING LIST GENERATED BY THPEL HEURISTIC FOR while L[ > g do
PROCESSING THE ENTRIES IN'ABLE |. s« s+ |Lg|
k—k+1
D J[C |[CG|E|[B|[DJA]F .
Time | 18 [ 18 [ 13| 8 | 4 [ 5 | 4 end while
if n > k then
exchangel; and L,
heuristic. The PEL heuristic yields a processing order list § = 5+ |Ly]
for pattern entries in which the entries that involve more end 'f
patterns are before those that involve fewer. The PEL higuris end while
is similar to a partial quicksort. Unlike quicksort, the PEL 9 s/n
heuristic is iterative, and only operates on the left paraof €nd while
list in each iteration. The PEL heuristic focuses on all iestr foryz ‘_}J ton do
— Ly

in the entry list initially. Assumeg is the average number
of patterns in each entry within the focused part. The PE
heuristic moves the entries that contain more thgmatterns
forward to the left part of the entry list in each iteration. |
the next iteration, the heuristic focuses on the left parhef
entry list, that consists of the entries that contain moemth
pattems'_ The time complexity of the_ PE_L heurlst|00§n), Fig. 3. The PEL heuristicL; is thei-th entry in L. |L;| is the number of
wheren is the number of pattern entries in the entry list. Theatterns inL;.

processing list generated by the PEL heuristic for proogssi
the entries in Table | is presented in Table Il. Figure 4 prese
the assignment of the entries in the processing list in sttale
order for a two-processor computer. The overall processifig C E F
time is 35 time units in this case, which equals the optimal
processing time.

Figure 5 presents the PIMUS algorithm. Llete the desired P2 C B D| A
signature length and be the mismatch tolerance. The PIMUS
algorithm uses a DNA database as an input, and discovers all
unigue patterns from the database under the discovery cei: 4. The assignment of the entries in the processingtistable Il in
dition (/,d). The PIMUS algorithm uses the PEL heuristic tgequential order for a two-processor computer.
generate a processing order list, and applies parallel atngp
techniques to process multiple pattern entries simultasigo
to accelerate signature discovery processes. when parallel computing is used.

The PIMUS algorithm divides all of the DNA sequence®bservation 1 (IMUS Observation). If two patternsP and
in the input database intb-patterns. Each of thépatterns @ are (,d)-mismatched, then at least one of the two halves
comprises two consecutivg/2-patterns. An index of4/? of P is (I/2,[d/2])-mismatched to the corresponding part of
entries is built based on th&/2-patterns as entry keys. AQ.
multi-level index can be adopted if the index is too large to An available processor is assigned to handle the next
be fit in main memory. Thé-patterns that contain one sameauntreated entry in the processing order list. Two indexiesitr
key are collected in a single entry. A processing order lisre called similar entries if the number of mismatches betwe
of the entries in the index is generated by the PEL heuristite keys of the two entries is less than or equalldg2].

The reordered entry list makes the number of patterns tteatessume thatF is an index entry, and is an/-pattern listed
by each of the processors approximately equal. It reduaes th £. Based on the IMUS Observation, if a patteth is
overall discovery time to approaching optimal processimgt (I, d)-mismatched taP, then@ must be in one of the entries

L divide Y into m partitionsYy, Ya, ..., Y,,
removelL,; from L
putYy,Ys, ..., Y, into L
end for
return L
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S « divide all of the DNA sequences in the database in
[-patterns
I' — construct the index oi!/? entries based oS
L < generate a processing order list of the entrieF iny
using the PEL heuristic
for an entryE in L do

assign an available processor to hanfle

Qe compared in each of the string comparisons, yielding
Il — a = [/2 character comparisons. Therefore, the number
of character comparisons that is used to process all pattern
The total amount of character comparisons used in the
discovery under the discovery conditioh, ), denoted as

) M, 4, is:
for a patternP in E do Las |
for an entryE’ in T', which is similar toE do o
compareP to all @s, whereQ € E’ - _ _
if P is (I, d)-mismatched to any of the comparés Mia = ;(1/2)|FZ| Z IL'51
then = J
set the duplication flag oP to true wherea = 1/2 andl'; € I' such that HD[;, T';)< |d/2].
end if Assume the input databage is in uniform distribution. In
end for this case, each entrly; € I" should containl’;| ~ 2|D|/4*
end for patterns because of the assumption of uniform distribution
end for the amount of character comparisons used in the discovery
discard all of the non-uniquepatterns under the discovery conditior, (), denoted as\/; 4, is:
return the remaining/-patterns, which are the unique
signatures of( d) in the database o 4
Mg = 1/2)|1; r;
Fig. 5. The PIMUS algorithm. ;( /2) |Xj:| il

40&
= 1/2)(2|D|/4%)k(2|D| /4%
similar to E. To check the uniqueness &f, P is compared ;( /2)C2IDI/4%)R2IDI/47)
to all patterns in the entries which are similar £ In each —  4°(1/2)r(2| D|/4%)?
of the comparisongd,/2 characters, excluding the key region, 2 e
are comparedP is not unique if it is {, d)-mismatched to = 2x|D"/4

any of the compared patterns. After all of the entries herea = 1/2.T; € T such that HD[;,T';)< |d/2]. k =
the index are treated, the non-unique patterns are distar Ld_/O2J 3(%) is the number of all possible permutations that

The remaining patterns are the unique signatures under {ig number of changes does not exceé® | bases in a string
discovery condition/( d) in the input database. of lengtha.
The time complexity of the PIMUS algorithm whem
1. M ATHEMATICAL ANALYSIS o
processors are used, denoted\ds,, is:
Let I be the signature length and be the mismatch
tolerance. The time complexity of the PIMUS algorithm under T~ T
the discovery condition/(d) whenm processors are used is Ld = La/m
analyzed. = 2lk|D|*/(4%m)
AssumeD is the input databas_e, and| denptes the size IV. EXPERIMENTAL RESULTS
of the databasel’ denotes the index used in the PIMUS

algorithm.I" consists oft“ pattern entries under the discovery The platform that was adopted in the gxperiments was
condition (,d), where = 1/2 is the length of the entry a personal computer with an Intel Core i7 870 2.93GHz

keys. LetT’; denote thei-th entry inT, wherel < i < 4. qguad-core CPU, 16GB RAM and 1.5TB disk space. The

IT;| denotes the number of patterns ip. The relationship operating system was CentOS release 5.5. The algorithms
between|D| and|T;| is: were implemented in JAVA language, and the programs were

compiled by JDK 1.6. The DNA data that were used in the
. experiments were from the human chromosome 4 and 13 EST
- databases. The experimental data were denotdd,gbuman
Z il = 2|D| chromosome 4 EST database) abgs (human chromosome
=1 13 EST database) respectively, and their correspondimes siz
Assume thatE’ and £’ are two entries inl'. HD(E, E’) were approximately 88.0M and 36.4M bases. Before the
denotes the hamming distance betwderand E’, which is experiments, the remarks in the databases were removed; all
defined as the hamming distance between the entry keys obf the universal characters, such as ‘don't care’, wereacl
andE’. A patternP inan entryl’; € T requireszj IT;| string  with ‘A’, and DNA sequences that were shorter than 36 bases
comparisons to check if the patterns that dre)fmismatched were discarded. The experiments in this section focused on
to it exist, wherel'; € T" such that HD[;,T';)< |d/2]. All discovering signatures of length between 24 and 30 with
characters in thé-patternP, excluding the entry key region, mismatch tolerances of two and four.
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TABLE Il TABLE IV
THE PERFORMANCE OF THEPIMUS ALGORITHM WHEN USING 4 THE BENEFITS OF PARALLEL COMPUTING FOR SIGNATURE DISCOVERY
PROCESSING CORESTHE TIME UNIT IS A SECOND. THE TIME UNIT IS A SECOND.
(A) database =D, (A) database =D, (B) database 93
L, d) IMUS PIMUS | Saving(%) CPUs | Time Acceleration || CPUs | Time Acceleration
(30,2) | 4172.08 | 1150.29 72.43 1 8389.32 1.00 1 2333.16 1.00
(28,2) | 6305.20 | 1710.57 72.87 2 4239.86 1.98 2 1048.36 2.23
(26,2) | 7324.49 | 2054.43 71.95 3 3021.27 2.78 3 744.46 3.13
(24,2) | 9523.10 | 2627.35 72.41 4 2252.30 3.72 4 553.16 422
(30,4) | 8389.32 | 2252.30 73.15
(28,4) | 14113.54| 3941.78 72.07
(26,4) | 23998.85| 6413.65 73.28
(24,4) | 44951.49| 12878.85| 71.35 time normalized to the processing time when one processor
(B) database F13 is used. The acceleration values of the PIMUS algorithm
(,d) | IMUS | PIMUS | Saving(%) increase with the number of processing cores used in the
(30,2) | 104850 223.12 78.72 . X ;
(28.2) | 945.93 | 261.86 7535 experiment. For example, to discover signatures frbns,
(26,2) | 1184.62| 325.79 72.50 the discovery processes that use 2, 3 and 4 processing cores
(24,2) | 1753.88 | 458.23 73.87 are approximately 2.23, 3.13 and 4.22 times faster tharethos
(30,4) | 2333.16] 553.16 76.29 that use a single processing core respectively
(28,4) | 2532.26| 72057 71.54 X A _
(26,4) | 4046.71| 1139.96| 71.83 The PIMUS algorithm treats pattern entries based on their
(24,4) | 7959.96 | 2224.20 72.06 order in a processing list. The influence on discovery efiicye

made by the processing list was examined. The PIMUS
algorithm that uses the processing list generated by the PEL
For reasons of performance and memory consumptionh@uristic is denoted as PIM@Sand that uses the processing
two-level index was used in the implementation of the IMU$#st of pattern entries in the original order in index is destb
and PIMUS algorithms. The first level of the index comprise@S PIMUS;. To evaluate the improvements in the discovery
410 direct-accessible entries, and a binary search was usedfiiciency of the PIMUS algorithm provided by the PEL
locate a specified entry in the second level. Since the parpd$uristic, PIMUS$ and PIMUS; were respectively used to
of our experiments was to evaluate the improvements prdviddiscover signatures fronD, and Di3 in this experiment.
by parallel computing, additional filters, such as the fesqpy Table V presents the improvements in the discovery effigienc
filter that was used in the IMUS algorithm, was excluded frodf the PIMUS algorithm delivered by the PEL heuristic when
the implementation of the algorithms. 4 processing cores were used. The percentage time saved is
The improvements in discovery performance delivered B{Fed to evaluate the benefits to the PIMUS algorithm made
the PIMUS algorithm were examined. For 4 processing cordd, the PEL heuristic. The time saving is defined as (1-
the performance of the PIMUS algorithm was evaluated frocessing time of the PIMUsalgorithm) / (processing time
using the algorithm to discover signatures from the expefll the PIMUSy algorithm))*100%. A larger ‘saving’ means
mental databases); and Di5. The percentage time saved® gregter improvement delivered by the PEL heunstlc. The
is used to evaluate the improvements in the processing tifpgP€rimental results reveal that the PIMUS algorithm tisatsu
of signature discovery. The time saving is defined as (i€ Processing list generated by the PEL heuristic saves up t
(processing time of the PIMUS algorithm)/(processing timaL-35% overall processing time than that uses the progessin
of the IMUS algorithm))*100%. A larger ‘saving' means"St_Of pattern entries in the orl_glr_wal order in index. Thecnmt _
a greater improvement by the PIMUS algorithm. Table ||pr time used py the PEL heuristic to reorder 'Fhe p.rocessmg li
presents the processing time that for the IMUS and PIMUS Presented in Table VI. All of the processing time used by
algorithms under various discovery conditions. The tatge a th® PEL heuristic to reorder the processing list are less tha
presents the time savings delivered by the PIMUS algorithrh03 S€conds in the experiment. Compared with the discovery
The experimental results reveal that the PIMUS algorithth wiiMme, the generation time of the reordered processing iists
4 processing cores requires up to 78.72% less processieg tiF9ligible.
to discover all signatures frofv,5 than the IMUS algorithm
under the discovery condition (30,2). Moreover, more than
71.35% of the processing time is saved under every diSCOVGI’yrhis work proposes a parallel unique signature discovery
condition in the experiment. Restated, the proposed PIMWgorithm called parallel internal-memory-based uniqgige s
algorithm performs at least 3.49 times faster than the IMUSature discovery (PIMUS) algorithm. The PIMUS algorithm
algorithm when 4 processing cores are used. is a parallel enhancement of the existing IMUS algorithm.
To elucidate the benefits of parallel computing for signatuiThe proposed PIMUS algorithm discovers hamming-distance-
discovery, various number of processing cores were used draded unique signatures under a certain discovery conditio
the PIMUS algorithm was used to discover the signaturefficiently. For example, when 4 processing cores are used,
of I = 30,d = 4) from Dy and D,3. Table IV shows the PIMUS algorithm can discover the unique signatures of
the experimental results. The acceleration is the proegssiength 30 and mismatch tolerance 2 in 1150 seconds from

V. CONCLUSIONS
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TABLE V
THE BENEFITS TO THEPIMUS ALGORITHM MADE BY THE PEL

HEURISTIC WHEN4 PROCESSING CORES WERE USEO HE TIME UNIT IS A

SECOND.
(A) database =D,
1, d) PIMUSN | PIMUSp | Saving(%)
(30,2) | 1359.70 | 1150.29 15.40
(28,2) | 2194.71 | 1710.57 22.06
(26,2) | 2585.03 | 2054.43 20.53
(24,2) | 3439.14 | 2627.35 23.60
(30,4) | 2523.20 | 2252.30 10.74
(28,4) | 4554.72 | 3941.78 13.46
(26,4) | 7331.77 | 6413.65 1252
(24,4) | 14253.49| 12878.85 9.64
(B) database 93
(,d) | PIMUSy | PIMUSp | Saving(%)
(30,2) 360.42 223.12 38.09
(28,2) 435.27 261.86 39.84
(26,2) 555.50 325.79 41.35
(24,2) 760.05 458.23 39.71
(30,4) 737.69 553.16 25.01
(28,4) 813.03 720.57 11.37
(26,4) | 1315.04 | 1139.96 13.31
(24,4) | 2987.61 | 2224.20 25.55
TABLE VI

THE PROCESSING TIME USED BY THEPELHEURISTIC TO GENERATE THE

REORDERED PROCESSING LISTTHE TIME UNIT IS A SECOND.

(A) database =D, (B) database #D13
1, d) Time t,d) Time
(30,2) 1.03 (30,2) 0.72
(28,2) 0.92 (28,2) 0.65
(26,2) 0.80 (26,2) 0.60
(24,2) 0.51 (24,2) 0.45
(30,4) 1.03 (30,4) 0.71
(28,4) 0.92 (28,4) 0.65
(26,4) 0.76 (26,4) 0.60
4.4 0.54 (24,4) 0.46
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