
Rapid DNA Signature Discovery Using A Novel
Parallel Algorithm

Hsiao Ping Lee∗†, Yen-Hsuan Huang‡ and Tzu-Fang Sheu§
∗Department of Applied Information Sciences, Chung Shan Medical University, Taichung, Taiwan, 40201 ROC

Email: ping@csmu.edu.tw
†Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, 40201 ROC

‡Department of Applied Information Sciences, Chung Shan Medical University, Taichung, Taiwan, 40201 ROC
Email: kevin656504@hotmail.com

§Department of Computer Science and Communication Engineering, Providence University, Taichung, Taiwan, 43301 ROC
Email: fang@pu.edu.tw (corresponding author)

Abstract—DNA signatures provide valuable information that
can be used in various applications in bioinformatics, for example
the identification of different species. Rapid signature discovery
algorithms are required by biologists to discover signatures.
Since more and more computers are equipped with a CPU of
many processing cores, parallelism becomes a feasible solution to
accelerate the discovery. However, most of the existing signature
discovery algorithms are sequential algorithms. Parallelsignature
discovery algorithms are rare. In this paper, a parallel signa-
ture discovery algorithm is proposed. The algorithm discovers
hamming-distance-based signatures from DNA databases. The
proposed algorithm is a parallel enhancement of an existing
discovery algorithm. Through parallel computing, the algorithm
accelerates the process of signature discovery. In the experiment
on a human chromosome EST database of 88M bases, the
proposed algorithm has up to 73.28% less processing time than
the existing discovery algorithm when 4 processors are used.

Index Terms—DNA signature, human chromosome EST
database, parallel algorithm, unique signature discovery.

I. I NTRODUCTION

Based on the assumptions of the theories of evolution and
natural selection, almost all species shared a common ancestor
at a point in time. Random mutations in DNAs sometimes lead
to differently structured proteins. If such changes give rise to
advantages in survival, the DNAs is prevailed in the gene pool.
The advantageous mutations are one of the ways that genomes
diverge from one another. The result of the evolution is thatthe
different species might own some unique patterns in their DNA
sequences, and the species can be identified by the unique
patterns. For example, specific oligonucleotides have already
been used in a polymerase chain reaction (PCR) method for
the identification of 14 human pathogenic yeast species [1].

DNA patterns are referred to as unique signatures if they
appear in a DNA database only once, and have some minimum
mutation distance from all other patterns in the database.
The unique signatures are used in several bioinformatics
researches. For example, unique signatures are used to identify
HIV-1 subtypes and 28S rDNA sequences from more than 400
organisms [2]; the selected signature probes with microarray
analysis are used to identify bacteria [3].

Unique signature discovery is to find all unique signatures in
a DNA database. The methods of unique signature discovery
have been widely studied, and many related algorithms, tools
and applications have been developed [2]–[14]. For exam-
ple, insignia [6] is a web application for rapidly identifying
unique DNA signatures. Zheng’s algorithm [12] is a hamming-
distance-based unique signature discovery algorithm. Theal-
gorithm deals with DNA databases, and discovers unique
signatures from the databases. CMD [13] is an algorithm de-
signed to discover all implicit signatures from DNA databases
under a discovery condition, where the implicit signaturesare
the patterns that satisfy the discovery conditions looser than
the given discovery condition.

The internal-memory-based unique signature Discovery
(IMUS) algorithm [14] improves upon the Zheng’s algorithm.
The IMUS algorithm deals with DNA databases. The algo-
rithm discovers hamming-distance-based unique signatures.
Let l andd be two positive integers, whered ≤ l. An l-pattern
is a string ofl characters in the alphabet set{A, C, G, T}.
A patternP is (l, d)-mismatched to a patternQ if the length of
P andQ is l and the hamming distance, which is the number of
mismatches, betweenP andQ does not exceedd. A pattern
P is referred to as a unique signature under the discovery
condition (l, d) if and only if no other patternQ exists in the
given DNA database such thatP andQ are (l, d)-mismatched.
The IMUS algorithm is designed for efficiently discovering the
unique signatures under the discovery conditions of signature
length l and mismatch toleranced.

The underlying idea of the IMUS algorithm is that the
unique signatures appear after all of the patterns that are
not unique are discarded. Instead of finding unique patterns,
the IMUS algorithm focuses on finding non-unique patterns.
The IMUS algorithm is based on the observation that if two
patternsP and Q are (l, d)-mismatched, then at least one
of the two halves ofP is (l/2, bd/2c)-mismatched to the
corresponding part ofQ. The IMUS algorithm is a two-
phase algorithm. In the first phase, the algorithm divides DNA
sequences into patterns of lengthl. Eachl-pattern consists of
two consecutivel/2-patterns. An index system is built based

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

S ← divide all of the DNA sequences in the input database
into l-patterns which comprise two consecutivel/2-patterns
σ ← construct an index of4l/2 entries, which is based on
the l/2-patterns as index keys
for an entryE in σ do

for a patternP in E do
for an entry E′ in σ, whose key is (l/2, bd/2c)-
mismatched toE’s key do

compareP to all patterns inE′

if P is (l, d)-mismatched to any of the compared
patternsthen

discardP
end if

end for
end for

end for
the remaining patterns is the unique signatures of (l, d)

Fig. 1. The IMUS algorithm.

on the l/2-patterns as index keys, in whichl-patterns that
contain same index keys are gathered in a single index entry.
Assume thatE is an entry and its key isKE . P is anl-pattern
in E. Based on the IMUS observation, all of thel-patterns that
are (l, d)-mismatched toP are in the entries whose keys are
(l/2, bd/2c)-mismatched toKE. In the second phase,P is
compared to the patterns that are possibly (l, d)-mismatched
to it. P is discarded if it is (l, d)-mismatched to any of
the compared patterns. The IMUS algorithm is presented in
Figure 1.

Nowadays, CPUs of many processing cores are common-
place, and the prices of the CPUs are in an acceptable range.
For example, the price of an Intel Core i7 870 quad-core
CPU is around 300 US dollars in November, 2011. Parallel
computing technology has been used in several bioinformatics
research areas, such as sequence alignment and analyses [15],
protein structure prediction [16], [17], and motif finding [18].
Based on our experiments made on a computer with an Intel
2.93GHz CPU, the IMUS algorithm spent about 12.5 hours
to discover unique signatures from a database of 88M bases
under the discovery condition of signature length 24 and
mismatch tolerance 4. However, the IMUS algorithm is a se-
quential algorithm. The increasing number of processing cores
in a CPU would not increase the discovery efficiency of the
IMUS algorithm. Therefore, upgrading the IMUS algorithm
to a parallel algorithm would further accelerate the signature
discovery processes.

In this work, an algorithm that is called parallel internal-
memory-based unique signature discovery (PIMUS) algorithm
is proposed. The PIMUS algorithm is a parallel enhance-
ment of the typical IMUS algorithm. To improve discovery
efficiency, the PIMUS algorithm uses an efficient scheduling
heuristic proposed in [13] to generate a reordered processing
list. The processing list helps to reduce discovery time to
approaching the optimal discovery time for a multi-processor

TABLE I
A LIST OF 6 PATTERN ENTRIES AND THEIR PROCESSING TIME.

ID A B C D E F
Time 5 8 36 4 13 4

platform. Based on the results from the experiments on human
chromosome EST databases of 88.0 and 36.4M bases, the
PIMUS algorithm respectively spent about 3.5 hours and 0.62
hours to discover signatures from the EST databases under
the discovery condition (24,4) when four processing cores are
used. the PIMUS algorithm has up to 71.35% and 72.06%
less processing time than the typical IMUS algorithm in the
signature discoveries.

The rest of the paper is organized as follows. The PIMUS
algorithm is presented in Section II. The time complexity
of the algorithm is analysed in Section III. The results of
the performance evaluation about the proposed algorithm are
presented in Section IV. Finally, the conclusions of this work
are given in Section V.

II. M ETHODS

The proposed parallel internal-memory-based unique signa-
ture discovery (PIMUS) algorithm discovers signatures effi-
ciently from a DNA database that can be entirely loaded into
main memory under a certain discovery condition. The PIMUS
algorithm improves upon the IMUS algorithm, and accelerates
signature discovery by using parallel computing.

An intuitive way to apply parallel computing to the IMUS
algorithm is to assign randomly an available processor to
process a pattern entries in sequential order. For example,
a computer withm processors is used to handlen pattern
entries. Initially, processor 1 can be assigned to entry 1,
. . .,and processorm can be assigned to entrym. Assume
that processor 3 is the first to complete its task; the processor
is immediately assigned to the next entry, entrym + 1. The
next available processor is similarly assigned to the next entry
until all of the n pattern entries are completed. The optimal
processing time whenm processors are used is1/m of the
processing time of a single-processor computer.

Table I shows the processing time of six pattern entries. The
entries can be treated in 70 time units by a single-processor
computer. The optimal processing time is therefore 70/2=35
time units for a two-processor computer. However, in the case
of the assignment in sequential order, processor 1 is assigned
to entries A and C, and processor 2 is assigned to entries
B, D, E and F. The assignment of the entries is presented
in Figure 2. The processing time is 41 and 29 time units
respectively. Since the processor that takes longest dominates
the overall processing time, the overall processing time is41
time units in this case, which exceeds the optimal processing
time.

The order of pattern entries in the processing list influences
the overall processing time for parallel discovery. An efficient
scheduling heuristic, called the parallel entry list (PEL), is
used in the CMD algorithm [13]. Figure 3 presents the PEL

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

AP1 C

BP2 D E F

Fig. 2. The assignment of the entries in Table I in sequentialorder for a
two-processor computer.

TABLE II
THE PROCESSING LIST GENERATED BY THEPEL HEURISTIC FOR

PROCESSING THE ENTRIES INTABLE I.

ID C1 C2 E B D A F
Time 18 18 13 8 4 5 4

heuristic. The PEL heuristic yields a processing order list
for pattern entries in which the entries that involve more
patterns are before those that involve fewer. The PEL heuristic
is similar to a partial quicksort. Unlike quicksort, the PEL
heuristic is iterative, and only operates on the left part ofa
list in each iteration. The PEL heuristic focuses on all entries
in the entry list initially. Assumeg is the average number
of patterns in each entry within the focused part. The PEL
heuristic moves the entries that contain more thang patterns
forward to the left part of the entry list in each iteration. In
the next iteration, the heuristic focuses on the left part ofthe
entry list, that consists of the entries that contain more than g
patterns. The time complexity of the PEL heuristic isO(n),
wheren is the number of pattern entries in the entry list. The
processing list generated by the PEL heuristic for processing
the entries in Table I is presented in Table II. Figure 4 presents
the assignment of the entries in the processing list in sequential
order for a two-processor computer. The overall processing
time is 35 time units in this case, which equals the optimal
processing time.

Figure 5 presents the PIMUS algorithm. Letl be the desired
signature length andd be the mismatch tolerance. The PIMUS
algorithm uses a DNA database as an input, and discovers all
unique patterns from the database under the discovery con-
dition (l, d). The PIMUS algorithm uses the PEL heuristic to
generate a processing order list, and applies parallel computing
techniques to process multiple pattern entries simultaneously
to accelerate signature discovery processes.

The PIMUS algorithm divides all of the DNA sequences
in the input database intol-patterns. Each of thel-patterns
comprises two consecutivel/2-patterns. An index of4l/2

entries is built based on thel/2-patterns as entry keys. A
multi-level index can be adopted if the index is too large to
be fit in main memory. Thel-patterns that contain one same
key are collected in a single entry. A processing order list
of the entries in the index is generated by the PEL heuristic.
The reordered entry list makes the number of patterns treated
by each of the processors approximately equal. It reduces the
overall discovery time to approaching optimal processing time

L ← generate a processing order list that consists of all
pattern entries in arbitrary order
m ← the number of available processors
n ← the number of entries inL
g, h ← the average number of patterns in each entry inL
while g < mh do

s←0, k←1
while n > k do

while |Ln| ≤ g do
n ← n− 1

end while
while |Lk| > g do

s ← s + |Lk|
k ← k + 1

end while
if n > k then

exchangeLk andLn

s ← s + |Lk|
end if

end while
g ← s/n

end while
for i ← 1 to n do

Y ← Li

divide Y into m partitionsY1, Y2, . . . , Ym

removeLi from L
put Y1, Y2, . . . , Ym into L

end for
return L

Fig. 3. The PEL heuristic.Li is the i-th entry inL. |Li| is the number of
patterns inLi.

C1P1 E F

C2P2 B D A

Fig. 4. The assignment of the entries in the processing list in Table II in
sequential order for a two-processor computer.

when parallel computing is used.
Observation 1 (IMUS Observation). If two patternsP and
Q are (l, d)-mismatched, then at least one of the two halves
of P is (l/2, bd/2c)-mismatched to the corresponding part of
Q.

An available processor is assigned to handle the next
untreated entry in the processing order list. Two index entries
are called similar entries if the number of mismatches between
the keys of the two entries is less than or equal tobd/2c.
Assume thatE is an index entry, andP is an l-pattern listed
in E. Based on the IMUS Observation, if a patternQ is
(l, d)-mismatched toP , thenQ must be in one of the entries

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

S ← divide all of the DNA sequences in the database into
l-patterns
Γ ← construct the index of4l/2 entries based onS
L ← generate a processing order list of the entries inΓ by
using the PEL heuristic
for an entryE in L do

assign an available processor to handleE
for a patternP in E do

for an entryE′ in Γ, which is similar toE do
compareP to all Qs, whereQ ∈ E′

if P is (l, d)-mismatched to any of the comparedQs
then

set the duplication flag ofP to true
end if

end for
end for

end for
discard all of the non-uniquel-patterns
return the remainingl-patterns, which are the unique
signatures of (l, d) in the database

Fig. 5. The PIMUS algorithm.

similar to E. To check the uniqueness ofP , P is compared
to all patterns in the entries which are similar toE. In each
of the comparisons,l/2 characters, excluding the key region,
are compared.P is not unique if it is (l, d)-mismatched to
any of the compared patterns. After all of the entries in
the index are treated, the non-unique patterns are discarded.
The remaining patterns are the unique signatures under the
discovery condition (l, d) in the input database.

III. M ATHEMATICAL ANALYSIS

Let l be the signature length andd be the mismatch
tolerance. The time complexity of the PIMUS algorithm under
the discovery condition (l, d) whenm processors are used is
analyzed.

AssumeD is the input database, and|D| denotes the size
of the database.Γ denotes the index used in the PIMUS
algorithm.Γ consists of4α pattern entries under the discovery
condition (l, d), where α = l/2 is the length of the entry
keys. LetΓi denote thei-th entry in Γ, where1 ≤ i ≤ 4α.
|Γi| denotes the number of patterns inΓi. The relationship
between|D| and |Γi| is:

4
α

∑

i=1

|Γi| = 2|D|

Assume thatE and E′ are two entries inΓ. HD(E, E′)
denotes the hamming distance betweenE and E′, which is
defined as the hamming distance between the entry keys ofE
andE′. A patternP in an entryΓi ∈ Γ requires

∑

j |Γj | string
comparisons to check if the patterns that are (l, d)-mismatched
to it exist, whereΓj ∈ Γ such that HD(Γi, Γj)≤ bd/2c. All
characters in thel-patternP , excluding the entry key region,

are compared in each of the string comparisons, yielding
l − α = l/2 character comparisons. Therefore, the number
of character comparisons that is used to process all patterns
in Γi is (l/2)|Γi|

∑

j |Γj |.
The total amount of character comparisons used in the

discovery under the discovery condition (l, d), denoted as
Ml,d, is:

Ml,d =

4
α

∑

i=1

(l/2)|Γi|
∑

j

|Γj |

whereα = l/2 andΓj ∈ Γ such that HD(Γi, Γj)≤ bd/2c.
Assume the input databaseD is in uniform distribution. In

this case, each entryΓi ∈ Γ should contain|Γi| ≈ 2|D|/4α

patterns because of the assumption of uniform distribution.
the amount of character comparisons used in the discovery
under the discovery condition (l, d), denoted asM l,d, is:

M l,d =

4
α

∑

i=1

(l/2)|Γi|
∑

j

|Γj|

=
4

α

∑

i=1

(l/2)(2|D|/4α)κ(2|D|/4α)

= 4α(l/2)κ(2|D|/4α)2

= 2lκ|D|2/4α

whereα = l/2. Γj ∈ Γ such that HD(Γi, Γj)≤ bd/2c. κ =
∑bd/2c

k=0
3k

(

α
k

)

is the number of all possible permutations that
the number of changes does not exceedbd/2c bases in a string
of lengthα.

The time complexity of the PIMUS algorithm whenm
processors are used, denoted asM

m

l,d, is:

M
m

l,d = M l,d/m

= 2lκ|D|2/(4αm)

IV. EXPERIMENTAL RESULTS

The platform that was adopted in the experiments was
a personal computer with an Intel Core i7 870 2.93GHz
quad-core CPU, 16GB RAM and 1.5TB disk space. The
operating system was CentOS release 5.5. The algorithms
were implemented in JAVA language, and the programs were
compiled by JDK 1.6. The DNA data that were used in the
experiments were from the human chromosome 4 and 13 EST
databases. The experimental data were denoted asD4 (human
chromosome 4 EST database) andD13 (human chromosome
13 EST database) respectively, and their corresponding sizes
were approximately 88.0M and 36.4M bases. Before the
experiments, the remarks in the databases were removed; all
of the universal characters, such as ‘don’t care‘, were replaced
with ‘A‘, and DNA sequences that were shorter than 36 bases
were discarded. The experiments in this section focused on
discovering signatures of length between 24 and 30 with
mismatch tolerances of two and four.

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

TABLE III
THE PERFORMANCE OF THEPIMUS ALGORITHM WHEN USING 4

PROCESSING CORES. THE TIME UNIT IS A SECOND.

(A) database =D4

(l, d) IMUS PIMUS Saving(%)
(30,2) 4172.08 1150.29 72.43
(28,2) 6305.20 1710.57 72.87
(26,2) 7324.49 2054.43 71.95
(24,2) 9523.10 2627.35 72.41
(30,4) 8389.32 2252.30 73.15
(28,4) 14113.54 3941.78 72.07
(26,4) 23998.85 6413.65 73.28
(24,4) 44951.49 12878.85 71.35

(B) database =D13

(l, d) IMUS PIMUS Saving(%)
(30,2) 1048.50 223.12 78.72
(28,2) 945.93 261.86 72.32
(26,2) 1184.62 325.79 72.50
(24,2) 1753.88 458.23 73.87
(30,4) 2333.16 553.16 76.29
(28,4) 2532.26 720.57 71.54
(26,4) 4046.71 1139.96 71.83
(24,4) 7959.96 2224.20 72.06

For reasons of performance and memory consumption, a
two-level index was used in the implementation of the IMUS
and PIMUS algorithms. The first level of the index comprised
410 direct-accessible entries, and a binary search was used to
locate a specified entry in the second level. Since the purpose
of our experiments was to evaluate the improvements provided
by parallel computing, additional filters, such as the frequency
filter that was used in the IMUS algorithm, was excluded from
the implementation of the algorithms.

The improvements in discovery performance delivered by
the PIMUS algorithm were examined. For 4 processing cores,
the performance of the PIMUS algorithm was evaluated by
using the algorithm to discover signatures from the experi-
mental databases,D4 and D13. The percentage time saved
is used to evaluate the improvements in the processing time
of signature discovery. The time saving is defined as (1-
(processing time of the PIMUS algorithm)/(processing time
of the IMUS algorithm))*100%. A larger ‘saving‘ means
a greater improvement by the PIMUS algorithm. Table III
presents the processing time that for the IMUS and PIMUS
algorithms under various discovery conditions. The table also
presents the time savings delivered by the PIMUS algorithm.
The experimental results reveal that the PIMUS algorithm with
4 processing cores requires up to 78.72% less processing time
to discover all signatures fromD13 than the IMUS algorithm
under the discovery condition (30,2). Moreover, more than
71.35% of the processing time is saved under every discovery
condition in the experiment. Restated, the proposed PIMUS
algorithm performs at least 3.49 times faster than the IMUS
algorithm when 4 processing cores are used.

To elucidate the benefits of parallel computing for signature
discovery, various number of processing cores were used and
the PIMUS algorithm was used to discover the signatures
of (l = 30, d = 4) from D4 and D13. Table IV shows
the experimental results. The acceleration is the processing

TABLE IV
THE BENEFITS OF PARALLEL COMPUTING FOR SIGNATURE DISCOVERY.

THE TIME UNIT IS A SECOND.

(A) database =D4

CPUs Time Acceleration
1 8389.32 1.00
2 4239.86 1.98
3 3021.27 2.78
4 2252.30 3.72

(B) database =D13

CPUs Time Acceleration
1 2333.16 1.00
2 1048.36 2.23
3 744.46 3.13
4 553.16 4.22

time normalized to the processing time when one processor
is used. The acceleration values of the PIMUS algorithm
increase with the number of processing cores used in the
experiment. For example, to discover signatures fromD13,
the discovery processes that use 2, 3 and 4 processing cores
are approximately 2.23, 3.13 and 4.22 times faster than those
that use a single processing core respectively.

The PIMUS algorithm treats pattern entries based on their
order in a processing list. The influence on discovery efficiency
made by the processing list was examined. The PIMUS
algorithm that uses the processing list generated by the PEL
heuristic is denoted as PIMUSP and that uses the processing
list of pattern entries in the original order in index is denoted
as PIMUSN. To evaluate the improvements in the discovery
efficiency of the PIMUS algorithm provided by the PEL
heuristic, PIMUSP and PIMUSN were respectively used to
discover signatures fromD4 and D13 in this experiment.
Table V presents the improvements in the discovery efficiency
of the PIMUS algorithm delivered by the PEL heuristic when
4 processing cores were used. The percentage time saved is
used to evaluate the benefits to the PIMUS algorithm made
by the PEL heuristic. The time saving is defined as (1-
(processing time of the PIMUSP algorithm) / (processing time
of the PIMUSN algorithm))*100%. A larger ‘saving‘ means
a greater improvement delivered by the PEL heuristic. The
experimental results reveal that the PIMUS algorithm that uses
the processing list generated by the PEL heuristic saves up to
41.35% overall processing time than that uses the processing
list of pattern entries in the original order in index. The amount
of time used by the PEL heuristic to reorder the processing list
is presented in Table VI. All of the processing time used by
the PEL heuristic to reorder the processing list are less than
1.03 seconds in the experiment. Compared with the discovery
time, the generation time of the reordered processing listsis
negligible.

V. CONCLUSIONS

This work proposes a parallel unique signature discovery
algorithm called parallel internal-memory-based unique sig-
nature discovery (PIMUS) algorithm. The PIMUS algorithm
is a parallel enhancement of the existing IMUS algorithm.
The proposed PIMUS algorithm discovers hamming-distance-
based unique signatures under a certain discovery condition
efficiently. For example, when 4 processing cores are used,
the PIMUS algorithm can discover the unique signatures of
length 30 and mismatch tolerance 2 in 1150 seconds from

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

TABLE V
THE BENEFITS TO THEPIMUS ALGORITHM MADE BY THE PEL

HEURISTIC WHEN4 PROCESSING CORES WERE USED. THE TIME UNIT IS A

SECOND.

(A) database =D4

(l, d) PIMUSN PIMUSP Saving(%)
(30,2) 1359.70 1150.29 15.40
(28,2) 2194.71 1710.57 22.06
(26,2) 2585.03 2054.43 20.53
(24,2) 3439.14 2627.35 23.60
(30,4) 2523.20 2252.30 10.74
(28,4) 4554.72 3941.78 13.46
(26,4) 7331.77 6413.65 12.52
(24,4) 14253.49 12878.85 9.64

(B) database =D13

(l, d) PIMUSN PIMUSP Saving(%)
(30,2) 360.42 223.12 38.09
(28,2) 435.27 261.86 39.84
(26,2) 555.50 325.79 41.35
(24,2) 760.05 458.23 39.71
(30,4) 737.69 553.16 25.01
(28,4) 813.03 720.57 11.37
(26,4) 1315.04 1139.96 13.31
(24,4) 2987.61 2224.20 25.55

TABLE VI
THE PROCESSING TIME USED BY THEPEL HEURISTIC TO GENERATE THE

REORDERED PROCESSING LIST. THE TIME UNIT IS A SECOND.

(A) database =D4

(l, d) Time
(30,2) 1.03
(28,2) 0.92
(26,2) 0.80
(24,2) 0.51
(30,4) 1.03
(28,4) 0.92
(26,4) 0.76
(24,4) 0.54

(B) database =D13

(l, d) Time
(30,2) 0.72
(28,2) 0.65
(26,2) 0.60
(24,2) 0.45
(30,4) 0.71
(28,4) 0.65
(26,4) 0.60
(24,4) 0.46

an EST database of 88M bases. Compared with the typical
IMUS algorithm, it saves more than 72% of the discovery
time. The PIMUS algorithm can be used to rapidly discover
signature data for further analysis, for example finding implicit
signatures.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Council of the Republic of China, Taiwan, for financially
supporting this research under Grants 100-2218-E-040-001.

REFERENCES

[1] B. M. Kiryu and C. P. Kiryu., “Rapid identification of candida albicans
and other human pathogenic yeasts by using oligonucleotides in a pcr.”
J. Clin. Microbiol., vol. 73, pp. 1634–1641, 1998.

[2] L. Kaderali and A. Schliep., “Selecting signature oligonucleotides to
identify organisms using dna arrays.”Bioinformatics, vol. 18, no. 10,
pp. 1340–1349, 2002.

[3] P. Francois, Y. Charbonnier, J. Jacquet, D. Utinger, M. Bento, D. Lew,
G. M. Kresbach, M. Ehrat, W. Schlegel, and J. Schrenzel, “Rapid
bacterial identification using evanescent-waveguide oligonucleotide mi-
croarray classification,”Journal of Microbiological Methods, vol. 65,
no. 3, pp. 390–403, 2006.

[4] A. M. Phillippy, J. A. Mason, K. Ayanbule, D. D. Sommer, E.Taviani,
A. Huq, R. R. Colwell, I. T. Knight, and S. L. Salzberg, “Comprehensive
dna signature discovery and validation,”PLoS Computational Biology,
vol. 3, no. 5, 2007.

[5] E. K. Nordberg, “Yoda: selecting signature oligonucleotides,” Bioinfor-
matics, vol. 21, pp. 1365–1370, 2005.

[6] A. M. Phillippy, K. Ayanbule, N. J. Edwards, and S. L. Salzberg,
“Insignia: a dna signature search web server for diagnosticassay
development.”Nucleic Acids Research, vol. 37, no. 2, pp. 229–234,
2009.

[7] S. H. Chen, C. Z. Lo, S. Y. Su, B. H. Kuo, C. A. Hsiung, and C. Y. Lin.,
“Ups 2.0: unique probe selector for probe design and oligonucleotide
microarrays at the pangenomic/genomic level.”BMC Genomics, vol. 4,
no. 6, 2010.

[8] R. C. Fry, M. S. DeMott, J. P. Cosgrove, T. J. Begley, L. D. Samson, and
P. C. Dedon., “The dna-damage signature in saccharomyces cerevisiae
is associated with single-strand breaks in dna.”BMC Genomics, vol. 7,
no. 313, 2006.

[9] M. W. J. van Passel, E. E. Kuramae, A. C. M. Luyf, A. Bart, and
T. Boekhout., “The reach of the genome signature in prokaryotes.” BMC
Evolutionary Biology, vol. 6, no. 84, 2006.

[10] M. Nicolau, R. Tibshirani, A.-L. Borresen-Dale, and S.S. Jeffrey.,
“Disease-specific genomic analysis: identifying the signature of patho-
logic biology.” Bioinformatics, vol. 23, pp. 957–965, 2007.

[11] K. C. Bader, C. Grothoff, and H. Meier., “Comprehensiveand re-
laxed search for oligonucleotide signatures in hierarchically-clustered
sequence datasets.”Bioinformatics, vol. 27, pp. 1546–1554, 2011.

[12] T. J. J. Zheng, T. J. Close and S. Lonardi., “Efficient selection of unique
and popular oligos for large est databases.”Bioinformatics, vol. 20, pp.
2101–2112, 2004.

[13] H. P. Lee, T. F. Sheu, and C. Y. Tang, “A parallel and incremental
algorithm for efficient unique signature discovery on dna databases.”
BMC Bioinformatics, vol. 11, p. 132, 2010.

[14] H. P. Lee, T. F. Sheu, Y. T. Tsai, C. H. Shih, and C. Y. Tang., “Efficient
discovery of unique signatures on whole-genome est databases.” in
Proceeding of the 20th annual ACM Symposium on Applied Computing
(SAC2005), 2005, pp. 100–104.

[15] Y. Chen, A. Wan, and W. Liu., “A fast parallel algorithm for finding
the longest common sequence of multiple biosequences.”BMC Bioin-
formatics, vol. 7, no. 4, 2006.

[16] W. Sun, S. Al-Haj, and J. He., “Parallel computing in protein structure
topology determination.” inProceedings of 26th Army Science Confer-
ence, 2008.

[17] J. R. Green, M. J. Korenberg, and M. O. Aboul-Magd., “Pci-ss:
Miso dynamic nonlinear protein secondary structure prediction.” BMC
Bioinformatics, vol. 10, no. 222, 2009.

[18] W. N. Grundy, T. L. Bailey, and C. P. Elkan., “Parameme: aparallel
implementation and a web interface for a dna and protein motif discovery
tool.” Bioinformatics, vol. 12, pp. 303–310, 1999.

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

