
Application of Head Tracking for Interactive Data Visualization

Phillip C. S. R. Kilgore
Dept. of Computer Science
LABi @ LSU Shreveport
Shreveport, United States

Email: kilgorep54@lsus.edu

Charles D. McCarthy
Dept. of Computer Science
LABi @ LSU Shreveport
Shreveport, United States

Email: mccarthy20@lsus.edu

Urška Cvek
Dept. of Computer Science
LABi @ LSU Shreveport
Shreveport, United States
Email: ucvek@lsus.edu

Marjan Trutschl
Dept. of Computer Science
LABi @ LSU Shreveport
Shreveport, United States
Email: mtrutsch@lsus.edu

Abstract—The utilization of head tracking in gaming and
animation applications has increased due to greater availability
of relevant libraries and hardware. However, its application
to interactive data visualization has not followed the same
trajectory. In this paper, we describe an extensible platform
permitting the integration of head-tracking interactivity
into data visualization software. This platform utilizes Haar
classification to provide the recognition of facial features,
and uses Kalman filtering to smooth transient input. We also
discuss the application of head tracking to data visualization,
and address its challenges.

Keywords- human computer interaction; graphical user in-
terfaces; interaction styles; computer vision; scene analysis;
tracking;

I. INTRODUCTION

Data visualization focuses on visual presentation of
data that is usually highly abstract, high-dimensional and
structured, without a "natural" representation on a two-
dimensional (2D) plane or three-dimensional (3D) space.
One of the simplest data visualization examples is a scat-
ter plot. More complex examples include Radviz, parallel
coordinates, multidimensional scaling, or other projections
of the data that give insights and uncover previously un-
known relationships. Interactivity in high-dimensional data
visualizations has been shown to be highly beneficial for the
data exploration approach [1]. Interactive data visualization
is used for exploration, analysis and presentation of the data
[2]. Together with animation, 3D increases the density of
information that can be presented on the same screen and
thus increases the intrinsic dimensionality of visualizations
[3].

3D visualization enables the user to make use of spatial
memory. User interface animation in 3D spaces can reveal
process and structure (by moving the viewpoint) as previ-
ously discussed by Baecker and Small [4]. Investigations
of Ware and Franck into motion cues in 3D visualization
[5] noted that simple rotation about an axis is effective
in interpreting 3D information structures. Three dimen-
sions can bring about problems, including depth perception
and occlusion. Occlusion has already been addressed by
Elmqvist and Tsigas [6] and others. In this paper, we address
the problem of depth perception by using head tracking as

a more intuitive interactive approach. Augmented reality, or
enriched real environment, has been explored as a tool for
interacting with multidimensional information visualizations
based on the 3D scatter plots [7] and has been shown to
enhance a user’s data exploration experience [8].

Head tracking facilitates in determining the location of
a user’s head relative to a particular focal point. In the
context of human computer interaction, this information can
be used to change the presentation of application content.
Head tracking is common in CAVE and CAVE-like envi-
ronments that are geared towards groups. [9] Our platform
is designed for a single person using a standard desktop
computer with an off-the-shelf webcam. It is extensible for
the easy integration of head tracking-based interactivity into
additional data visualizations.

In this paper, we first describe the detection of features
such as face and eyes using the cross-platform Open Com-
puter Vision Library (OpenCV) [10]. Later, we integrate
the approach into sample well-known visualizations and
address the calibration and optimization. To provide for
wide adoption of the system, the system utilizes platform
independent tools such as OpenGL [11] for 3D graphics
and Qt [12] for the graphical user interface. We conclude
the paper with a list of challenges, followed by plans for
future work.

II. APPROACH

In order to adjust the view of the 3D scene, we first
have to identify the user’s position relative to the monitor.
We capture frames in a free-head fashion, with an off-
the-shelf webcam (Logitech R© Webcam C905) centered at
the top of the monitor. We then calculate the user’s head
position using an object detection algorithm. Many different
algorithms exist to perform face detection, although most are
computationally expensive [13]. We use the Haar Classifier
to detect facial features in frames, and later use Kalman
filtering to reduce jitter between frames.

In the reference capture stage, our system extracts a frame
from the capture device and analyzes features from the Haar
classifier, yielding reference points used to calculate the
position of the head. The output of this stage is supplied
to a head position calculation, which performs calibration

264Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

if necessary, and supplies the resulting head position to the
visualization for use in the projection matrix calculation. The
projection matrix is set using matrix transformations calcu-
lated from the head position, and is followed by offsetting
the model view matrix by the position of the head. Finally,
the visualization is rendered as it would have been otherwise.
Each of these stages may be executed concurrently with one
another, allowing the process to be run asynchronously on
multiple threads.

A. Head tracking through eye detection

We chose to track the user’s eyes as head reference
points due to the relative ease of tracking a user’s eyes
and their constant presence while exploring a visualization.
We assume that the user would be looking directly at the
monitor, and thus into the webcam at the top of the monitor.
This gives us a frontal face with better view of the eyes.

We considered a number of different eye detection clas-
sifiers, from general single eye, to eye pair, to separate
classifiers for the left and right eyes [14]. Based on the
evaluations, a Haar cascade is run on each region using
individualized classifiers for each eye [15].

B. Open Computer Vision library

We accomplish eye detection and head tracking through
the use of the open source Open Computer Vision Library,
(OpenCV) which was developed initially by Intel [10]. We
make use of two OpenCV implementations of algorithms,
the Haar Classifier [16], and the Kalman filter [17]. We also
take advantage of the camera capture functions provided by
the library.

C. Haar Classifier

Rather than looking at individual pixels, Viola and Jones
devised an algorithm called the Haar Classifier to rapidly
detect objects, including human faces, using AdaBoost clas-
sifier cascades that are based on Haar-like features [16].
Haar-like features are rectangular patterns of black and white
areas, which define the change in contrast values between
adjacent groups of pixels. The simple rectangular features of
an image are calculated using an intermediate representation
of an image, called the integral image [16]. The pixels of
the entire rectangular subsection of the source image are
summed and subtracted from a scaled sum of the pixels
masked by the black region in the Haar-like feature.

Many of the Haar-like features will contain common
regions of pixels [16]. Calculating the sums iteratively for
each feature would result in massive amounts of redundant
calculations. The problem can be reduced to a simple four-
element summation for each region of the selected feature
pattern area by utilizing an integral image [16]. The integral
image is calculated by summing all the intensity values of
the pixels to the top and left of the (i, j) pixel, and placing
that value in the (i, j) pixel of the integral image. It only

takes two passes to compute both integral image arrays, one
for each array. Calculating a feature is extremely fast and
efficient, as it only takes the difference between six to eight
array elements forming two or three connected rectangles to
compute a feature of any scale. We chose to use one of the
frontal face cascades provided by OpenCV due to its high
detection rate and low false positive rate [15].

D. Kalman filter

Haar classifiers are not perfectly accurate, and occasion-
ally produce false positives. To mitigate these errors we use
a Kalman filter [17] implemented by OpenCV. The Kalman
filter was developed to predict the state of a system in the
presence of noisy measurements.

Creating a Kalman filter for each eye introduces new
problems, such as inconsistencies in the eye distance. We
chose to filter the center of the eye pairs in order to maintain
a more consistent eye separation. This approach still results
in noisy eye separation measurements, so we also create a
Kalman filter for the eye separation value. The filtered eye
position and eye separation are then recombined to form a
filtered eye pair.

III. IMPLEMENTATION

We utilize the camera functions provided by OpenCV to
configure the webcam and to query frames. The reference
capture stage begins by capturing a frame from the webcam,
and passing it to the face detection function.

A. Face detection

The Haar classifier (Sec. II-C) is passed the region of the
camera capture frame that is likely to contain a face and,
if a face is found, returns a rectangle describing the face
location. Due to minor shifts in the position and size of the
face rectangle, we cannot utilize this object as the location
of the user’s head. Therefore, we proceed to eye detection
as a method for more precisely locating the center of the
users face as the origin of the head.

B. Eye detection

The face region is then subdivided into regions that likely
contain the users eyes (Sec. V-B), and each region is scanned
with an individualized Haar classifier cascade [15]. If each
eye region finds an eye, the eye group is analyzed to
determine user distance and position. We reduce the search
region, since running eye detection on an entire capture
frame would increase the number of false positives and
decrease performance.

C. Update Kalman filters

The output from eye detection step is more stable than
the face detection step, but there is still minor variation
in the coordinates for each eye. We attempt to smooth the
eye coordinates in both position and relative distance by
computing the center of the two points, and then passing

265Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Table I
SYMBOLS USED IN CALCULATIONS

Source Symbol Description Unit
Head Position Calculation

Input xc,yc center position pixel
Input w,h capture dimensions pixel

Config s screen height mm
Config dm actual dot separation mm
Config f field of view rad
Calc dp measured dot separation pixel
Calc r camera radians per pixel rad/pixel
Calc θ point angle of separation rad
Calc β,λ relative horizontal/vertical angle rad
Calc ρ camera vertical angle rad
Calc z′h head distance to camera s

Output xh,yh head position s
Output zh head distance s

Projection Matrix Calculation
Const pn near plane s
Const tw virtual room width s
Const th virtual room height s
Output pl , pr left/right planes s
Output pt , pb top/bottom plane s

Eye Search Region Calculation
Input x f ,y f face location pixel
Input w f ,h f face dimensions pixel
Input i eye index: 0 = right, 1 = left pixel

Output xe,ye eye location pixel
Output we,he eye width pixel

the coordinates from the capture frame to individual Kalman
filters. The distance between the user’s eyes must also
remain constant in order to prevent erratic movement on
the z axis. Once filtered, the values are recombined into an
eye group with each eye at the same vertical position. A
vector could be computed from the raw eyes before filtering
in order to restore the eye tilt, but this is unnecessary for
our purposes as we only require three degrees of freedom.

D. Head position calculation

The head position calculation stage takes the filtered
2D eye group output from the reference capture stage as
parameters to calculate the 3D head location. First, the
distance between the eyes (in pixels) and the point at the
center of the eye group is calculated. In the beginning of
the head position calculation stage, the field of view of the
capture device (provided by the configuration file discused
in Sec. IV-B1) and the current width of the capture frame are
used to compute the radians per pixel of the capture frame
(Eq. 1). This is done with each pass to account for changes
in capture resolution made by the user.

r = f/w (1)

Then we calculate half of the angle separation between the
reference points. (Eq. 2)

θ = rdp/2 (2)

z'hxh

x = 0

x = 1 __
2

(a)

λ

ρ
z'h

f

yh

y= 0
zh

y= - 1 __
2

 s

(b)

Figure 1. a) Horizontal position of head; b) vertical distance to head

Next, the head distance (screen units) is found using half
the actual distance between the user’s eyes (mm), the screen
height (mm) and the cotangent of the eye angle of separation
(Eq. 3).

z′h =
dm cotθ

2s
(3)

The x position of the user’s head is then found by taking
the sine of the angle between the user’s horizontal position
(from the reference capture device) and the center of the
display surface (Eq. 4, 5). This value is then scaled by the
user’s distance from the screen. (Fig. 1.a).

β = r(xc −
w
2
) (4)

xh = sin(β)z′h (5)

The angle of the camera relative to the user’s head is
found by calculating the number of pixels that the center
point resides above the middle of the frame and multiplying
this value by the number of radians in one pixel shift for
the current camera (Eq. 6). This value is loaded at startup
from the configuration file described in Sec. IV-B1.

λ = (yc −
h
2
)r (6)

The vertical position of the user can then be calculated for
the user’s head (Fig. 1.b). In order to account for any vertical
tilt that may exist in the cameras view, a calibration routine
can be performed at this time if it’s required (Sec. IV-B2).

yh =
1
2
+ sin(λ+ρ)z′h (7)

The last step in the head position stage is to calculate
the actual distance between the user and the surface of the
display (Eq. 8).

zh = cos(−λ−ρ)z′h (8)

266Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

E. Projection matrix calculation

pl =
pn(− 1

2 tw − xh)

zh
(9)

pr =
pn(

1
2 tw − xh)

zh
(10)

pt =
pn(− 1

2 tw − yh)

zh
(11)

pb =
pn(

1
2 tw − yh)

zh
(12)

The camera is positioned at the origin facing in the direction
of the negative z axis with an up vector aligned with
the y axis. The OpenGL projection matrix is altered to
simulate perspective and field of view changes. The camera
is positioned at the origin facing in the direction of the
negative z axis (the positive z axis points out of the screen
[11]), with an up vector aligned with the y axis. This stage
takes the 3D head position as input to calculate the values
of the left, right, top, and bottom walls of the near plane
(Table I, Eq. 9 – 12 [11]). These walls along with values for
the near and far plane are set as parameters to the OpenGL
view frustum call.

The actual location of the camera in the OpenGL scene is
not altered. Instead, we skew the viewport to achieve field of
view changes and move the entire scene opposite the head
movement to give the appearance of a receding background
as the user moves away. In any case, the projection matrix
calculation is isolated from the visualization stage to make
extensions easier to write; this matrix is calculated ahead of
time and can be utilized when updating the visualization.

IV. CALIBRATION

Due to the variance in consumer webcams, reference point
separation, and display device aspect ratio, we chose to
create a file to store persistent configuration information.
This allows us to retrieve previously stored configurations
without having to setup the environment every time the
system is restarted. In order to calibrate the system, we
have to obtain the capture configuration and subsequently
calibrate the software.

A. Reference capture device configuration

We generalize reference capture in order to keep our
software independent from the type of capture device. Our
software can easily adapt to new types of reference capture
devices without altering the overall structure. This gives us
a framework that is easily adaptable to any capture device,
from the webcam to the Wii Remote or other device. We are
using the reference point distance, in addition to the height
in order to calibrate the system.

Screen height is used as a base unit for all measurements.
The head position is given in units of "screen height." The
aspect ratio of the capture device is calculated in order to
scale the x axis translation of the user and to fit the virtual
room to the corners of the monitor. This sets the resolution
of the system.

B. Software calibration

The vertical angle of the camera in relation to the display
is calculated at run time during a calibration. Initiating the
calibration routine causes our software to use the next head
vertical position as the user’s center view of the screen.
Information about the camera specifications and the user’s
eye distance is loaded from configuration file at runtime.

1) Configuration file: An external configuration file that
contains hardware and user data is loaded at startup. This
file stores information about the position of the camera, the
aspect ratio of the computer monitor, the monitor’s physical
height, and the distance between the user’s eyes from the
center of one pupil to the center of the other.

2) Calibration routine: Because of factors such as the
height of the user’s monitor, the vertical angle of the camera
must be determined. Without knowing the vertical angle
of the camera, the position of the user’s head cannot be
reliably calculated. If one could accurately estimate the
size of a screen unit, then it would be possible to perform
calibration by positioning oneself in any orientation. Instead
of asking the user to properly position themselves one screen
unit away from the display, we ask the user to position
themselves close to the center of the screen, so that the user’s
y value is known to be half the screen height. Because we
have made this assumption and know both the height of the
screen and radians per pixel, we can calculate the vertical
angle of the user relative to the camera (Eq. 13). We also
have enough information to calculate the head distance of
the user, and can use this information to derive the vertical
angle of the camera.

ρ =−π

2
+ cos−1(

1
2z′h

)−λ (13)

V. OPTIMIZATION

Performing face detection using a single classification is
time-consuming and inefficient due to the redundant nature
of the algorithm [18]. Due to the real time nature of head
tracking, we performed several optimizations to first set a
smaller rough location of the face, which is then used by the
classifier. After the classifier is run and the face is detected,
it is more efficient to run the eye feature classifier. We use
the distances and set formulas that help us identify the eye
regions.

267Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 2. Webcam capture frame: (a) Face search region (b) Detected face
(c) Eye search region

A. Face search region reduction

Reducing the face search region can result in improved
performance, since the Haar cascade is computationally
expensive. We use a simple algorithm developed by [19]
to increase face detection performance on the iPhone. The
algorithm works by storing the last region that a face was
found in and assumes that the next frame will contain a
face in the same general region (Fig. 2.a). There is a small
amount of padding added to the face region to prevent the
face region from becoming smaller with each frame. This
happens because as the search region becomes smaller the
Haar classifier is more likely to find a face smaller than
the previous face, leading to cyclical shrinking. Eventually,
the search region becomes too small to contain a face, and
the region is reset to the size of the entire frame, therefore
degrading performance.

The padding must be as small as possible to maximize
the benefits of the algorithm. However, making the padding
too small also degrades performance due to the increased
probability that a smaller face will be detected with each
frame. Reducing the margin also increases the number of
times the user’s face is lost due to movement outside the
bounds of the search region.

B. Eye search region reduction

Once a face is identified, the region is divided into
subregions that should contain the user’s eyes (Fig. 2.c).
The eyes are assumed to lie on approximately the same
horizontal line, and the head is assumed to be in an upright
orientation. Therefore, the eye regions are defined by the
following formulas:

xe = x f + i(
w f

2
) (14)

ye = y f +
h f

5
(15)

we =
w f

2
(16)

he =
h f

3
(17)

Reducing the eye search region in this way helps to
prevent false positives and increases performance by elimi-
nating regions that are unlikely to contain eyes.

VI. VISUALIZATION

Head tracking enabled visualizations allow the user to
control the perspective of the view in a natural way. The
data is presented in a virtual room to heighten the perception
of depth.

A. Objectives and application

Visualization in 3D space can be useful with multidimen-
sional data sets as compared to two-dimensional visualiza-
tions by affording an extra spatial dimension for points to
lie on. In some cases, this extra spatial dimension can assist
in the visual detection of outliers. The Abalone data set
[20], a nine-dimensional data set containing 4,177 records, is
such an example. Outliers in the Abalone dataset are clearly
exposed when ring count is plotted against height, but are
obscured when it is plotted against visceral weight.

However, traditional mechanisms of manipulating this
space introduce new problems regarding interaction with
the visualization. The first problem arises because these
visualizations are operated using input devices that are
intended for manipulation of objects on a plane, such as
a mouse or a trackball. An attempt has been made to
address these concerns in specialized 3D input devices, such
as 3DConnexion’s SpacePilot PRO [21]. However, these
devices are not widespread, and may require considerable
support.

We have proposed head tracking, via a web cam or similar
device, as an alternative to traditional 3D input devices.
Devices such as these are inexpensive, and are supported
in a variety of modern environments [22]. In a 2007 study
published by Dynamics of Institutions and Markets Europe,
31.6% of 2094 participants owned web cams [23]. Because
of their widespread usage and availability, optical input de-
vices lend themselves to the navigation of 3D visualizations.
Computer vision has previously been used as mechanisms of
cursor control for those who have limited motor capability
[22], and is currently being implemented by manufacturers
of video game consoles [24]. With this research in mind,
we considered head tracking as a viable input device to 3D
visualizations.

We created an implementation of the traditional scatter
plot in three dimensions that allowed for manipulation of the
camera via eye tracking. We designed the operation of the
visualization viewport to be analogous to looking through a

268Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Figure 3. 3D scatter plot interaction utilizing our head tracking framework

window. Eye tracking was not the sole method of input;
mouse input was used to manipulate the position of the
visualization itself, affording zoom, panning, and rotation.
3D scatter plot (Fig. 3) and PCA projections are trivial ex-
amples of 3D visualization, other visualizations may benefit
from the addition of head tracking as a navigation method.
For instance, volume visualizations could benefit from this
input method, allowing users simple access to data obscured
by the corners, overlap or pattern in the model. Similarly,
projections of classical 2D visualizations into 3D space can
benefit from being able to temporarily hone in on data in
much the same manner.

B. Challenges

In order to accommodate eye tracking, the visualization
viewport is treated as an aperture. As the user moves closer
to the aperture, more of the scene is revealed, and the field of
view with respect to the scene becomes wider. This variable
field of view yields a "dolly-and-zoom" effect, where objects
in the background of a scene appear to move into its horizon
[25]. Although this kind of perspective distortion is consis-
tent with what is currently known about optics, it appearance
seems unnatural, as the eye would never see it the same
way, leading to its use in cinematography for dramatic
effect. However, this behavior can result in confusion in
a visualization system in the absence of a static point of
reference, and it was observed in a pre-test of the software
on a small group of users. 3D perspective distortion can be
described with a 2D distorting visual transfer function, and
has been previously detected in information visualizations
[26].

Initial testing of the environment revealed that users were
mislead into believing that some objects in the visualization
were being translated towards the horizon. As a result, we
added a room to serve as a static reference point. Like other

objects in the background, the back wall of a room will
recede into the background as the user moves towards the
viewport. The wall is known to be stationary with respect
to the user’s position, however, and prevents the erroneous
conclusion that these objects are in motion.

The notion of a virtual room as static reference point could
become ineffective if objects in the visualization were ever
to penetrate one of the walls. If one chose to implement
zoom by scaling the visualization in question, this problem
might be unavoidable, and continuity will be broken. Instead
of growing and shrinking the objects in the visualization, we
found that an alternative metaphor was bringing the object
closer to or further away from the camera. By doing this,
one can ensure that the content of the visualization is never
large enough to cross the boundaries provided by the virtual
room.

Reduction of the search region results in increased perfor-
mance due to its smaller area that must be analyzed by the
Haar classifier, but results in false negatives as the search
region approaches face size. We suggest a "user movement
vector" to dynamically resize the region based on the user’s
predicted movement. The user movement vector is a two-
dimensional vector that is representative of velocity of the
user’s head. By utilizing a user movement vector, one can
resize the search region to account for quick movements of
the head.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an alternative interactive
mechanism that may be used to augment traditional three-
dimensional visualizations. This method uses resources that
are readily available and may be obtained at relatively little
expense. We discussed the implementation of such a system,
and steps that are taken in our system to optimize its
performance. With these optimizations in place, we were
able to implement an interactive 3D scatter plot and PCA
projection.

We discussed several challenges that restrict the usability
of head tracking in a visualization setting, and how we
addressed these issues. One notable challenge we faced was
transient input from the input capture system, which we ad-
dressed by removing noise generated by Haar classification
using a Kalman filter. We also found that problems with
maintaining perspective arose, such as perspective distortion
introduced by dolly zoom.

We hypothesize that head tracking can be applied, in
a general sense, to any 3D visualization. In future work,
we would like to apply this research to other types of 3D
visualizations, in addition to scatter plots. We would also
like to compare the current method of filtering transient input
(Kalman filtering) to double exponential smoothing, which
claims performance that is two orders of magnitude greater
than Kalman filtering.

269Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

Implementation of a user movement vector (as described
in Sec. VI-B) may increase performance by resizing search
regions based on context. We would finally like to perform
extensive usability testing to gather evidence to sustain or
deny our hypotheses. Though we have performed prelimi-
nary testing of our head tracking system, we plan to perform
a full study involving users in the future.

VIII. ACKNOWLEDGEMENTS

This project was supported by grants from the Na-
tional Center for Research Resources (5P20RR016456-11
and 5P20RR018724-10) and the National Institute of Gen-
eral Medical Sciences (8 P20GM103424-11 and 8 P20
GM103433-10) from the National Institutes of Health. Its
contents are solely the responsibility of the authors and do
not necessarily represent the official views of NIH.

REFERENCES

[1] A. Buja, D. Cook, and D. F. Swayne, “Interactive high-
dimensional data visualization,” Journal of Computational
and Graphical Statistics, vol. 5, pp. 78–99, 1996.

[2] R. Kosara and H. Hauser, “An interaction view on informa-
tion visualization,” in State-of-the-Art Proceedings of EURO-
GRAPHICS (EG 2003), Granada, Spain, 2003, pp. 123–137.

[3] G. G. Robertson and S. K. Card, “Information visualization
using 3d interactive animation,” Communications of the ACM,
vol. 36, no. 4, pp. 57–71, Apr. 1993.

[4] R. Baecker and I. Small, The Art of Human-Computer Inter-
face Design. Addison-Wesley, 1990.

[5] C. Ware and G. Franck, “Evaluation stereo and motion cues
for visualizing information nets in three dimensions.” ACM
Transactions on Graphics, vol. 15, Apr. 2006.

[6] N. Elmqvist and P. Tsigas, “View projection animation for
occlusion reduction,” in Proceedings of the Working Confer-
ence on Advanced Visual Interfaces, ser. AVI ’06, May 2006,
pp. 471–475.

[7] B. S. Meiguins, R. M. Casseb do Carmo, A. S. Gonclaves, P. I.
Alves Godinho, and M. de Brito Garcia, “Using augmented
reality for multidimensional data visualization,” in Proceed-
ings of the the Conference on Information Visualization, Jul.
2006.

[8] R. M. Casseb do Carmo et al., “Coordinated and multive
views in augmented reality environment.” in Proceedings of
the 11th International Conference on Information Visualiza-
tion, Jul. 2007, pp. 156–162.

[9] J. Jacobson et al., “The CaveUT system: immersive
entertainment based on a game engine,” in Proceedings of the
2005 ACM SIGCHI International Conference on Advances
in computer entertainment technology, ser. ACE ’05. New
York, NY, USA: ACM, 2005, pp. 184–187. [Online].
Available: http://doi.acm.org/10.1145/1178477.1178503

[10] Intel Coproration, Open Computer Vision Library Reference
Manual, 2001.

[11] Khronos Group, “OpenGL - The Industry Standard for High
Performance Graphics,” www.opengl.org, Feb. 2012.

[12] Nokia Corporation, “Qt – A cross platform application and
UI framework,” http://qt.nokia.com, Feb. 2012.

[13] G. Bradski, “Computer vision face tracking for use in a
perceptual user interface,” Intel Technology Journal, 1998,
2nd Quarter.

[14] M. Castrillón Santana et al., “Face amd feature detection
evaluation,” in Third International Conference on Computer
Vision Theory and Applications, ser. VISAPP, 2008.

[15] ——, “ENCARA2: Real-time detection of multiple faces at
different resolutions in video streams,” Journal of Visual
Communication and Image Representation, pp. 130–140,
2007.

[16] P. Viola and M. Jones, “Rapid object tection using boosted
cascade of simple features,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2001.

[17] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Basic Engineering, vol. 82D,
no. 1, pp. 34–45, 1960.

[18] L. Liuxia, “Research on face detection classifier using an
improved adaboost algorithm,” in International Symposium
on Computer Science and Computational Technology, 2008,
pp. 78–81.

[19] More Than Technical, “Near realtime face detection on the
iPhone w/ OpenCV port,”
http://www.morethantechnical.com, Feb. 2012.

[20] W. J. Nash et al., “The population biology of abalone (halito-
tis species) in tasmania, i. blacklip abalone (h. rubra) from the
north coast and islands of bass strait.” Sea Fisheries Division,
Tech. Rep. 48, Dec. 1995, UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml/datasets/Abalone.

[21] 3DConnexion,
http://www.3dconnexion.com, Feb. 2012.

[22] P. Mauri, T. Ganollers, and M. Garcia, “Computer vision
interaction for people with severe movement restrictions,”
Human Technology Journal, vol. 2, no. 1, pp. 38–53, 2006.

[23] F. van Rijnsoever and C. Castaldi, “Perceived technology
clusters and ownership of related technologies: the role of
path-dependenence,” in DIME Workshop on Demand, Product
Characteristics and Innovation, Jena, 2007.

[24] Microsoft Corporation, “Xbox Kinect,” http://www.xbox.
com/kinect, Feb. 2012.

[25] K. E. Zheng et al., “Parallax compution: Creating 3d cine-
matic effects from stills,” in Graphics Interface Conference,
Kelowna, British Columbia, Canada, 2009.

[26] J. D. Mackinlay, G. G. Robertson, and S. K. Card, “The
perspective wall: Detail and context smoothly integrated,” in
SIGCHI ’91, 1991, pp. 173–179.

270Copyright (c) IARIA, 2012. ISBN: 978-1-61208-202-8

ICCGI 2012 : The Seventh International Multi-Conference on Computing in the Global Information Technology

