
Compiler-based Differentiation of Numerical Simulation Codes

Michel Schanen, Michael Förster, Boris Gendler, Uwe Naumann
LuFG Informatik 12: Software and Tools for Computational Engineering

RWTH Aachen University
Aachen, Germany

{schanen,foerster,bgendler,naumann}@stce.rwth-aachen.de

Abstract—Based on algorithmic differentiation, we present
a derivative code compiler capable of transforming imple-
mentations of multivariate vector functions into a program
for computing derivatives. The resulting values are accurate
up to machine precision compared to the common numerical
approximation by finite differences. This paper gives a short
mathematical background of algorithmic differentiation while
focusing on the user’s perspective of applying derivative gen-
eration tools on an already implemented code. This process is
illustrated by a one dimensional implementation of Burgers’
equation in a generic optimization setting using for example
Newton’s method. In this implementation, finite differences are
replaced by the computation of adjoints, thus saving an order
of magnitude in terms of computational complexity.

Keywords-Algorithmic Differentiation; Source Transforma-
tion; C/C++; Optimization; Numerical Simulation;

I. I NTRODUCTION

A typical problem in fluid dynamics is given by the
continuous Burgers equation [1]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

describing shock waves moving through gases.u denotes
the velocity field of the fluid with viscosityν. Similar
governing equations represent the core of many numerical
simulations. Such simulations are often subject to various
optimization techniques involving derivatives. Thus, Burg-
ers’ equation will serve as a case study for a compiler-based
approach to the accumulation of the required derivatives.

Suppose we solve the differential equation in (1) by
discretization using finite differences on a equidistant one-
dimensional grid withnx points. For given initial conditions
ui,0 with 0 < i ≤ nx we simulate a physical process by inte-
grating overnt time steps according to the leapfrog/DuFort-
Frankel scheme presented in [2]. At time stepj we compute
ui,j+1 for time stepj + 1 according to

ui,j+1 = ui,j−1 −
∆t

∆x
(ui,j (ui+1,j − ui−1,j))

+
2∆t

∆x2
(ui+1,j − (ui,j+1 + ui,j−1) + ui−1,j) ,

(2)

where ∆t is the time interval and∆x is the distance
between two grid points. In general, if the initial conditions
ui,0 cannot be accurately measured, they are essentially

replaced by approximated values. To improve their accuracy
additional observed valuesuob ∈ R

nx×nt are taken into
account. The discrepancy between observed valuesuob

i,j and
simulated valuesui,j are evaluated by the cost function

y =
1

2

nx∑

i=1

nt∑

j=1

(ui,j − uob
i,j)

2 , (3)

allows us to obtain improved estimations for the initial
conditions by applying, for example, Newton’s method [3] to
solve the data assimilation problem with Burgers’ equation
as constraints [4]. The single Newton steps are repeated until
the residual costy undercuts a certain threshold.

In Section II, we introduce algorithmic differentiation as
implemented by our derivative code compilerdcc cover-
ing both the tangent-linear as well as the adjoint model.
Section III provides a user’s perspective on the application
of dcc. Higher-order differentiation models are discussed
in Section IV. Finally, the results of our case study are
discussed in Section V.

II. A LGORITHMIC DIFFERENTIATION

The minimization of the residual is implemented by
resorting to Newton’s second-order method for mini-
mization. In general, Newton’s method may be applied
to arbitrary differentiable multivariate vector functions
y = F (x) : Rn → R

m. This algorithm heavily depends on
the accurate and fast computation of Jacobian and Hessian
values, since one iterative stepxi → xi+1 is computed by

xi+1 = xi −∇2F (xi)
−1 · ∇F (xi) . (4)

The easiest method of approximating partial derivatives
∇xi

F uses the finite difference quotient

∇xi
F (x) ≈

F (x+ h · ei)− F (x)

h
, (5)

for the Cartesian basis vectorei ∈ R
n and with x ∈ R

n,
h → 0. In order to accumulate the Jacobian of a multivari-
ate function the method is rerunn times to perturb each
component of the input vectorx. The main advantage of
this method resides in its straightforward implementation;
no additional changes to the code of the functionF are nec-
essary. However, the derivatives accumulated through finite
differences are only approximations. This represents a major

105

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7



drawback for codes that simulate highly nonlinear systems,
resulting in truncation and cancellation errors or simply
providing wrong results. In particular by applying the Taylor
expansion to the second-order centered difference quotient
we derive a machine precision induced approximation error
of ǫ

h2 , with ǫ being the rounding error.
Algorithmic differentiation (AD) [5] solves this prob-

lem analytically, changing the underlying code to compute
derivatives by applying symbolic differentiation rules to
individual assignments and using the chain rule to propagate
derivatives along the flow of control. The achieved accuracy
only depends on the machine’s precisionǫ. There exist
two distinct derivative models, differing in the order of
application of the associative chain rule. Let∇F be the
Jacobian ofF . The tangent-linearcode

F
(↓
x,y

↓

) dcc
−→ Ḟ

(↓
x,

↓

ẋ,y
↓
, ẏ
↓

)
,

where

ẏ = ∇F (x) · ẋ

and y = F (x) ,

(6)

of F computes the directional derivativėy of the outputsy
with respect to the inputsx for a given directionẋ ∈ R

n,
while arrows designate inputs and outputs. By iteratively set-
ting ẋ equal to each of then Cartesian basis vectors inRn,
we accumulate the entire Jacobian. This leads to a runtime
complexity identical to finite differences ofO(n) · cost(F ),
where cost(F ) denotes the computational cost of a single
function evaluation.

By exploiting the associativity of the chain rule, the
adjoint code

F
(↓
x,y

↓

) dcc
−→ F̄

(↓
x,

↓
x̄
↓
,y
↓
,
↓
ȳ
)

,

where

y = F (x)

and x̄ = x̄+∇F (x)
⊺
· ȳ ,

(7)

of F computesadjoints x̄ ∈ R
n of the inputsx for given

adjoints ȳ ∈ R
m of the outputs. To accumulate the entire

Jacobian we have to iteratively setȳ equal to each Cartesian
basis vector ofRm yielding a runtime complexity ofO(m) ·
cost(F ). Note that for scalar functions withm = 1 the
accumulation of the Jacobian amounts to the computation
of one gradient yielding a runtime cost ofO(1) · cost(F )
for the adjoint model compared toO(n) · cost(F ) for the
tangent-linear model. In this particular case, we are able to
compute gradients at a small constant multiple of the cost
of a single function evaluation. The reduction of this factor
down toward the theoretical minimum of three [5] is one
of the major challenges addressed by ongoing research and
development in the field of AD [6], [7], [8].

III. DCC - A DERIVATIVE CODE COMPILER

Numerical optimization problems are commonly
implemented as multivariate scalar functions
y = F (x) : Rn → R, describing some residualy of a
numerical model. We assume that the goal is to minimize a
norm of this residualy by adapting the inputsx. Therefore,
for better readability and without the loss of generality, in
this paper, we will only cover multivariate scalar functions.

The main link betweendcc and the mathematical models
of AD is the ability to decompose each function implemen-
tation into single assignment code (SAC) as follows:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j .
(8)

The entire program is regarded as a sequence ofp+ 1 ele-
mental statements. In each statement an elemental function
ϕj is applied to a set of variables(vi)i≺j yielding the unique
intermediatevariablevj with i ≺ j denoting a dependence
of vj on vi. The independentinputs are given byvi = xi

for i = 0, . . . , n− 1 while thedependentoutput ofF is the
final valuey = vn+p. Whendcc applies the tangent-linear
model to each of thep+ 1 assignments, we obtain

for j = n, . . . , n+ p

v̇j =
∑

i≺j

∂ϕj

∂vi
· v̇i

vj = ϕj(vi)i≺j .

(9)

Considering thej-th assignment in (9), the localk-th entry
of the gradient(∂ϕj

∂vk
)k≺j is provided in v̇j by setting v̇k

to one and all(v̇i)k 6=i≺j to zero. The gradient component
( ∂y
∂xk

)k∈{0,...,n−1} is obtained by evaluating (9) and setting
ẋk to one and all other(ẋi)k 6=i∈{0,...,n−1} to zero. To get
the whole gradient we have to evaluate (9)n times letting
ẋ range over the Cartesian basis vectors inR

n. The adjoint
model is acquired by transforming (8) into:

for j = n, . . . , n+ p

vj = ϕj(vi)i≺j

for i ≺ j andj = n+ p, . . . , n

v̄i = v̄i +
∂ϕj

∂vi
(vk)k≺j · v̄j .

(10)

The first part consists of the original assignmentsj =
n, . . . , n + p and is calledforward section. The reverse
sectionfollows with the computation of the adjoint variables
in the orderj = n+p, . . . , n. Note the reversed order of the
assignments as well as the changed data flow of the left and
right-hand sides compared with the original assignments. To
compute the local gradient(∂ϕj

∂vk
)k≺j we have to initialize

(v̄i)i≺j with zero andv̄j with one. The initialization with
zero is mandatory because(v̄i)i≺j occurs in (10) on both
sides of the adjoint assignment. According to (7), the adjoint
variable v̄j is an input variable. Therefore it is initialized
with the ”Cartesian basis vector” inR.

106

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7



The important advantage of the adjoint model is that by
evaluating (10) only once we obtain the full gradient∂y

∂x

in x̄i = v̄i for i = 0, . . . , n − 1. To achieve this we have
to initialize (x̄i)i=0,...,n−1 with zero andȳ with one. As
mentioned abovēx must be zero because it occurs not only
on the left-hand side in (7) andy is initialized with the value
of the Cartesian basis vector inR.

In (8), we assumed that the input code is given as a
SAC. This is an oversimplification in terms of real codes.
The adjoint code has to deal with the fact that real code
variables are overwritten frequently. One way to simulate the
predicate of unique intermediate variables is to store certain
left-hand side variables on a stack during the augmented
forward section. Candidates for storing on the stack are
those variables that are being overwritten and are required
for later use during the computation of the local gradients
and associated adjoints. Before evaluating the corresponding
adjoint assignment in the reverse section the values are
restored from the stack.

For illustration purposes we consider Listing 1 show-
ing an implementation of the non-linear reduction
y(x) =

∏n−1

i=0
sin(xi). dcc parses only functions withvoid

as a return type (line 1). All inputs and return values are
passed through the arguments, which in turn only consist
of arrays (called by pointers) and scalar values (called by
reference). Additionally we may pass an arbitrary number of
integer arguments by value or by reference. We assume that
all differentiable functions are implemented using valuesof
type double. Therefore, only variables of typedouble are
directly affected by the differentiation process.

1 void f ( i n t n , double ∗x , double &y )
2 {
3 i n t i =0;
4 y=0;
5 for ( i =0; i<n ; i ++) {
6 y=y∗ s i n ( x [ i ] ) ;
7 }
8 }

Listing 1: dcc input code.

Using the command linedcc f.c -t, we instruct the
compiler to use the tangent-linear (-t) mode in order to
generate the functiont1 f (tangent-linear,1st-order version
of f) presented in Listing 2. The original function arguments
x and y are augmented with their associated tangent-linear
variablest1 x andt1 y. Inside a driver program this code has
to be rerunn times letting the input vectort1 x range over
the Cartesian basis vectors inRn to accumulate the entire
gradient. Listing 3 shows how to use the generated code of
Listing 2 in a driver program. Lines 2 and 5 let input variable
t1 x range over the Cartesian basis vectors. By settingt1 x[ i ]

to 1 the functiont1 f (line 3) computes the partial derivative
of y with respect tox[ i ].

The command linedcc f.c -a tells dcc to apply
the adjoint mode (-a) to f.c. The result is the function

1 void t 1 f ( i n t n , double∗ x , double∗ t1 x
2 , double& y , double& t1 y )
3 {
4 . . .
5 for ( i n t i =0; i<n ; i ++) {
6 y=y∗ s i n ( x [ i ] ) ;
7 t1 y=t1 y∗ s i n ( x [ i ] ) +y∗cos ( x [ i ] ) ∗ t1 x [ i ] ;
8 }
9 . . .

10 }

Listing 2: Tangent-linear version off as generated bydcc

1 for ( i n t i =0; i<n ; i ++) {
2 t1 x [ i ]=1 ;
3 t 1 f (n , x , t1 x , y , t1 y ) ;
4 g rad i en t [ i ]= t1 y ;
5 t1 x [ i ]=0 ;
6 }

Listing 3: Driver for t1 f

a1 f (adjoint, 1st-order version off) shown in Listing 4.
As in the tangent-linear case each function argument is
augmented by an associated adjoint component, herea1 x

and a1 y. As mentioned above we need a stack in the
adjoint code for storing data during the forward section.
The augmented forward sectionuses stacks to store values
that are being overwritten and to store the control flow. The
actual implementation of the stack is not under consideration
here; therefore we replaced the calls to the stacks with macro
definitions for better readability. By default,dcc generates
code that uses static arrays which ensures high runtime
performance. There are three different stacks used in the
adjoint code. The stack calledCS is for storing the control
flow, FDS takes floating point values andIDS keeps integer
values. The unique identifier of the two basic blocks [9] in
the forward section are stored in lines 6 and 9. For example,
after evaluating the augmented forward section of Listing 4,
the stackCS contains the following sequence

0, 1, . . . , 1
︸ ︷︷ ︸

n times

(11)

In line 10, variabley is stored onto the stack because it
is overwritten in each iteration although needed in line 21.
Hence, we restore the value ofy in line 20. For the same
reason we store and restore the value ofi in line 11 and
19. The reverse section consist of a loop that processes
the control flow stackCS. The basic block identifiers are
restored from the stack and depending on the value, the
corresponding adjoint basic block is executed. For example,
the sequence given in (11) as content in theCS stack leads
to a n-times evaluation of the adjoint basic block one and
afterward one evaluation of the adjoint basic block zero.
The basic block one in line 9 to 11 has the corresponding
adjoint basic block in line 19 to 22. In contrast to (7), in

107

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7



1 void a1 f ( i n t n , double∗ x , double∗ a1 x ,
2 double& y , double& a1 y )
3 {
4 i n t i =0;
5 / / augmented forward sec t i on
6 CS PUSH( 0 ) ;
7 y=0;
8 for ( i =0; i<n ; i ++) {
9 CS PUSH( 1 ) ;

10 FDS PUSH( y ) ; y=y∗ s i n ( x [ i ] ) ;
11 IDS PUSH( i ) ;
12 }
13 / / reverse sec t i on
14 while (CS NON EMPTY) {
15 i f (CS TOP==0) {
16 a1 y =0;
17 }
18 i f (CS TOP==1) {
19 IDS POP( i ) ;
20 FDS POP( y ) ;
21 a1 x [ i ]+=y∗cos ( x [ i ] ) ∗a1 y ;
22 a1 y=s i n ( x [ i ] ) ∗a1 y ;
23 }
24 CS POP;
25 }
26 }

Listing 4: Adjoint dcc output

line 22 the adjointa1 y is not incremented but assigned.
This is due to the fact thaty is on both hand sides of
the original assignment in line 10. This brings an aliasing
effect into play. This effect can be avoided with help of
intermediate variables; making this code difficult to read.
For that reason we show the adjoint assignment without
intermediate variables.dcc generates adjoint assignments
with intermediate variables and incrementation of the left-
hand side as shown in (7). Thedcc-generated code and the
one shown here are semantically equivalent. To accumulate
the gradient using the functiona1 f, we again have to write
a driver, presented in Listing 5. It is sufficient to initialize
the adjoint variablea1 y and call the adjoint functiona1 f

only once to get the whole gradient (line 2), illustrating the
reduced runtime complexity of the adjoint mode.

1 a1 y=1;
2 a1 f ( n , x , a1 x , y , a1 y ) ;
3 for ( i n t j =0; j<n ; j ++)
4 g rad i en t [ j ]= a1 x [ j ] ;

Listing 5: Driver for a1 f

IV. H IGHER ORDER DIFFERENTIATION

Numerical optimization algorithms often involve higher-
order derivative models. Thus, the need for Hessians is
imminent. With this in mind,dcc was designed to generate
higher-order derivative codes effortlessly using itsreappli-
cation feature. dcc is able to generatejth-order derivative
code by reading(j−1)th-order derivative code as the input.
In this section we will focus on second-order models.

The tangent-linear mode reapplied to the first-order
tangent-linear code (6) withm = 1 for scalar functions
yields the second-order tangent-linear code

Ḟ
(↓
x,

↓

ẋ, y
↓
, ẏ
↓

) dcc
−→ ˜̇

F
(↓
x,

↓

x̃,
↓

ẋ,

↓

˜̇x, y
↓
, ỹ
↓
, ẏ
↓
, ˜̇y
↓

)
,

where
˜̇y =

(
∇2F (x) · ẋ

)⊺
· x̃+∇F (x) · ˜̇x ,

ẏ = ∇F (x) · ẋ ,

ỹ = ∇F (x) · x̃ and

y = F (x) .

(12)

Again, dcc generates exactly the implementation of the
mathematical model. As we see in (12), the term∇F (x) · ˜̇x
must be equal to0 in order to accumulate the entries of
the Hessian∇2F . As a consequence,̃ẋ must be set to0 on
input. The product

(
∇2F (x) · ẋ

)⊺
·x̃ represents a projection

of the Hessian, determined by the vectorsẋ and x̃. In our
case withm = 1 the Hessian∇2F ∈ R

n×n hasn2 entries.
To compute the entry∇Fi,j of the Hessian the vectors

x̃ and ẋ have to be set to thei-th and j-th Cartesian
basis vectors, respectively. In order to accumulate the whole
Hessian this step has to be repeated for each entry, yieldinga
computational complexity ofO

(
n2

)
·cost (F ). Taking either

adjoint or tangent-linear first-order input code, we reapply
dcc by invokingdcc -t -d 2 t1_foo.cpp. This tells
dcc to generate second-order (-d 2) tangent-linear (-t)
derivative code while avoiding internal namespace clashes.

Looking at the possible combinations of the two dif-
ferentiation models, there exist another three second-order
models. We may either apply the adjoint model to the
tangent-linear code or apply the adjoint mode to the adjoint
code. We will focus on the model where tangent-linear mode
is applied to the adjoint code, calledtangent-linear over
adjoint mode.

This time the adjoint code (7) is taken as the input for the
reapplication of the tangent-linear mode, obtaining

F̄
(↓
x,

↓
x̄
↓
, y
↓
,
↓
ȳ
) dcc
−→ ˙̄F

(↓
x,

↓

ẋ,
↓
x̄
↓
, ˙̄x
↓
, y
↓
, ẏ
↓
,
↓
ȳ,

↓

˙̄y
)

,

where

ẏ = ∇F (x) · ẋ ,

y = F (x) ,

˙̄x = ˙̄x+ ẋ
⊺ · ∇2F (x) · ȳ +∇F (x)

⊺
· ˙̄y and

x̄ = x̄+∇F (x)
⊺
· ȳ .

(13)

The generated implementation computes the term
ẋ⊺ · ∇2F (x) · ȳ. This time we do not end up with
one single entry, but we are able to harvest one complete
row ∇2Fi of the Hessian in˙̄x. To achieve this, the term
∇F (x)

⊺
· ˙̄y and thus ˙̄y must be set to0 on input. The

scalarȳ must be set to1. Finally to compute a row of the

108

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7



n 250 500 1000 2000
f (s) 0.03 0.08 0.15 0.32
TLM (s) 33 109 457 1615
ADJ (s) 0.21 0.43 0.85 1.82
TLM-ADJ (s) 150 587 2286 8559
IDS size 7500502 15001002 30002002 60004002
FDS size 5000002 10000002 20000002 40000002
CS size 7500503 15001003 30002003 60004003

Table I: Time and memory requirements for gradient com-
putation

Hessian∇2Fi, ẋ must be set to thei-th Cartesian basis
vector. As such, we have to rerun this modeln times in
order to accumulate the whole Hessian, yielding only a
linear increase in runtime complexity ofO(n) · cost (F ).

The desired dcc command is dcc -a -d 2
t1_foo.cpp resulting in the filea2_t1_foo.cpp. The
option-a instructsdcc to generate adjoint code.

V. CASE STUDY

As discussed in Section I, we run a test case on an inverse
problem based on Burgers’ equation (1). As a start we take
the code presented in [2] implementing the original function
with the signature of

1 vo id f ( i n t n , i n t nt , double& cost , double∗∗
u , double∗ ui . . . )

2 {
3 . . .
4 }

Listing 6: Signature of Burgers’ function

Taking n grid points of ui as the initial conditions we
integrate overnt timesteps. The values are saved in the two
dimensional arrayu for each grid pointi and time stepj .

To solve the inverse problem we need the derivatives of
cost with respect to the initial conditionsui.

The results in Table I represent the runtime of one full
gradient accumulation as well as the memory requirements
in adjoint and tangent-linear mode. Additionally one Hessian
accumulation is performed using the tangent-linear over
adjoint model (13). Different problem sizes are simulated
with varying n. We also mention the different stack size
shown in Section III.

If we assume four bytes per integer and control stack
element plus eight bytes for a floating data stack element
we end up with a memory requirement of≈ 610 MB for
the Hessian accumulation. The tests were running on a
GenuineIntel computer with Intel(R) Core(TM)2 Duo CPU
and with 2000.000 MHz cpu.

The execution time of the tangent-linear gradient compu-
tation is growing proportionally to the problem sizenx and
the execution time off:

FM :
cost(F ′)

cost(F )
∼ O(n).

The single execuiton oft1 f takes approximately twice so
much as the execution off.

The execution time of the adjoint gradient computation is
growing only proportional to the execution time off:

AM :
cost(F ′)

cost(F )
∼ O(1).

Finally we accumulate the Hessian using tangent-linear
over adjoint mode. Here, the runtime is growing linearly
with respect ton as well asf since the dimension of the
dependentcost is equal to1.

FM −AM :
cost(F ′′)

cost(F )
∼ O(n).

For scalar functions in particular, the runtime complexity
for accumulating the Hessian using AD is the same as the
runtime complexity of the gradient accumulation using finite
difference. This enables developers to implement a second-
order model where a first-order model has been used so far.

VI. OUTLOOK & CONCLUSION

We have presented a source transformation compiler for
a restricted subset of C/C++. As such,dcc runs on any
system with a valid C/C++ compiler making it a very
portable tool. Its unique reapplication feature allows code
to be transformed up to any order of differentiation.

Additionally, several extensions were implemented. As
these programs run on cluster systems, they often rely on
parallelization techniques. The most widely used paralleliza-
tion method is MPI. Hence, there is a need for adjoint MPI
enabled code [10]. This feature has been integrated intodcc
using an adjoint MPI library [11]. Additionally there are
attempts to achieve the same goal with OpenMP [12]. For
the sake of brevity we did not mention the program analysis
dcc performs. For better efficiency,dcc usesactivity and
TBRanalyses [13].

REFERENCES

[1] D. Zwillinger, Handbook of Differential Equations, 3rd ed.
Boston, MA: Academic Press, 1997.

[2] E. Kalnay, “Atmospheric modeling, data assimilation and
predictability,” 2003.

[3] T. Kelley, Solving nonlinear equations with Newton’s method,
ser. Fundamentals of Algorithms. Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 2003.

[4] A. Tikhonov, “On the stability of inverse problems,”Dokl.
Akad. Nauk SSSR, vol. 39, no. 5, pp. 195–198, 1943.

[5] A. Griewank and A. Walter,Evaluating Derivatives. Prin-
ciples and Techniques of Algorithmic Differentiation (2nd
Edition). Philadelphia: SIAM, 2008.

[6] G. Corliss and A. Griewank, Eds.,Automatic Differentiation:
Theory, Implementation, and Application, ser. Proceedings
Series. Philadelphia: SIAM, 1991.

109

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7



[7] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Nau-
mann, Eds.,Automatic Differentiation of Algorithms – From
Simulation to Optimization. New York: Springer, 2002.

[8] U. Naumann, “Dag Reversal is NP-complete,”
Journal of Discrete Algorithms, vol. 7,
no. 4, pp. 40–410, 2009. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B758J-
4THC1FD-2/2/7ddfc2eab484bbe184d4dcdf16d8e58a

[9] A. Aho, M. Lam, R. Sethi, and J. Ullman,Compilers.
Principles, Techniques, and Tools (Second Edition). Reading,
MA: Addison-Wesley, 2007.

[10] P. Hovland and C. Bischof, “Automatic differentiationfor
message-passing parallel programs,” inParallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First
Merged International ... and Symposium on Parallel and
Distributed Processing 1998, mar-3 apr 1998, pp. 98 –104.

[11] M. Schanen, U. Naumann, and M. Förster, “Second-order
adjoint algorithmic differentiation by source transformation
of mpi code,” in Recent Advances in the Message Passing
Interface, Lecture Notes in Computer Science. Springer,
2010, pp. 257–264.

[12] OpenMP Architecture Review Board, “OpenMP Application
Program Interface,” Specification, 2008. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[13] L. Hascoët, U. Naumann, and V. Pascual, “To-be-recorded
analysis in reverse mode automatic differentiation,”Future
Generation Computer Systems, vol. 21, pp. 1401–1417, 2005.

110

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-139-7


