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Abstract—Simulation serves as a third way of doing science, in
contrast to both induction and deduction. The web based mod-
eling may considerably facilitate the execution of simulations by
other people. We present examples of agent-based and stochastic
models of competition and business processes in economics. We
start from as simple as possible models, which have microscopic,
agent-based, versions and macroscopic treatment in behavior.
Microscopic and macroscopic versions of herding model proposed
by Kirman and Bass diffusion of new products are considered
in this contribution as two basic ideas.

Index Terms—agent-based modeling; stochastic modeling;
competition models; business models.

I. INTRODUCTION

Statistically reasonable models of social systems, first of
all stochastic and agent based, are of great interest for wide
community of interdisciplinary researchers dealing with diver-
sity of complex systems [1]. Computer modeling serves as a
technique in the for finding relation between micro level in-
teractions of agents and macro dynamics of the whole system.
Nevertheless, some general theories or methods that are well
developed in the natural and physical sciences can be helpful
in the development of consistent micro and macro modeling of
complex systems [1]. Our own modeling of financial markets
by the nonlinear stochastic differential equations is based
on the empirical analysis of financial data and power law
statistics of proposed equations [2]. Reasoning of proposed
equations by the microscopic interactions of traders (agents)
looks as a tough task for such complex system. Apparently
the development of macroscopic descriptions for the well
established agent based models would be more consistent
approach in the analysis of micro and macro correspondence.
For such analysis one should select simple enough agent
based models with established or expected corresponding
macroscopic description. In this contribution we discuss few
examples of agent based modeling in business and finance with
corresponding macroscopic description of selected systems.

Kirman’s ant colony model [3] is agent-based model, which
explains the importance of herding and individuality inside the
ant colonies. As human crowd behavior is ideologically very
similar, this model can be applied to and actually was built
as framework for financial market modeling [3], [4], [5]. On
our website, [6], we have presented interactive realizations of

the original Kirman’s agent-based model (see [7]) and of it’s
stochastic treatment by Alfarano et al. [4] (see [8]). Further
we follow the works by Alfarano et al. [4], [5] and introduce
our own model modifications in order to obtain more sufficient
agent-based models of financial markets, which would have an
alternative macroscopic description in the terms of Stochastic
Calculus.

Diffusion of new products is a key problem in marketing
research. Bass Diffusion model is a prominent model in
diffusion theory introducing a differential equation for the
number of adopters of the new products [9]. Such basic macro-
scopic description in marketing research can be studied using
microscopic agent-based modeling as well [10]. It is a great
opportunity to explore the correspondence between the two
micro and macro descriptions looking for the conditions under
which both approaches converge. Bass Diffusion model is of
great interest for us as representing very practical and widely
accepted area of business modeling. Web based interactive
models, presented on the site [11] serve as an additional
research instrument available for very wide community.

Our web site [6] was setup using WordPress webloging
software. WordPress is user-friendly, powerful and extensible
web publishing platform, which can be adapted to scientist’s
needs. There is a wide choice of plugins, which enable writing
of equations (mostly using LaTeX). Though bibliography
management is not as well covered.

Interactive models themselves are independent from Word-
Press framework. They were implemented using Java pro-
graming language [12], which is better suited for stochastic
modeling, and AnyLogic multi-paradigm simulation software
[13], which provides convenient tools to implement agent
based models. Either way by compiling appropriate files one
obtains Java applets, which can be included in to the articles
written using WordPress. This way articles become interactive
- user can both theoretically familiarize himself with the
model and test if the claims made in the article describing
model were true. This happens in the same browser window,
thus, transition between theory and modeling appears to be
seemless. As models are implemented as Java applets all
computation occurs on client machine, user must have Java
Runtime Environment installed (it is available free of charge
from Oracle Corp.), and server load stays minimal.
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In Sections II and III, we present web-based micro and
macro modeling of selected social systems in more details.
Conclusions and future work are given in the Section IV.

II. KIRMAN’S MODEL FOR FINANCIAL MARKETS AND ITS
STOCHASTIC TREATMENT

There is an interesting phenomenon concerning behavior
of ant colony. It appears that if there are two identical food
sources nearby, ants exploit only one of them at a given time.
The interesting thing is that food source which is in use is
not certain at any point of time. As at some times switches
between food sources occur, though the quality of food sources
remains the same. One could imagine that those different
food sources are different trading strategies or simply actions
available to traders (i.e., buy and sell). Thus, one could argue
that speculation bubbles and crashes in the financial markets
are of similar nature as explotation of food in ant colonies
- as quality of stock and quality of food in the ideal case
can be assumed to be constant. Thus, model [3] was created
using ideas obtained from the animal world in order to mimic
traders’ behavior in the financial markets.

And actually Kirman, as an economist, developed this
model as rather general framework in context of economic
modeling (see [3] and his later bibliography). Though recently
his framework was also used by other authors who are
concerned with the financial market modeling (see [4], [5]).
Basing ourselves on the main ideas of these authors and our
previous results in stochastic modeling (see [2]) we introduce
specific modifications of Kirman’s model providing a class of
nonlinear stochastic differential equations [14] applicable for
the financial variables.

Original Kirman’s one step transition probabilities [3],

p(X → X + 1)=(N −X) (σ1 + hX) , (1)
p(X → X − 1)=X (σ2 + h[N −X]) , (2)

can be rewritten for continuous x = X/N as

π+(x)=(1− x)
(σ1

N
+ hx

)
, (3)

π−(x)=x
(σ2

N
+ h[1− x]

)
, (4)

where X is a number of agents exploiting chosen trading
strategy, N is a total number of agents in the system. Here the
large number of agents N is assumed to ensure the continuity
of variable x, expressing fraction of selected agents, X , from
whole population. Note that the transition probabilities depend
on σ1, σ2 parameters, which govern individual switches be-
tween trading strategies (thus, appropriate terms depend only
on the size of the opposing group), and h parameter, which
governs recruitment (thus, appropriate terms depend on both
sizes - size of the current and opposing groups). Evidently
these probabilities are interrelated

p(X → X ± 1) = N2π±(x). (5)

One can write Master equation for the probability density
function of continuous variable x by using one step operators

E and E−1 introduced in [15]. Thus, Master equation can be
compactly expressed as

∂tω(x, t) =N2
{

(E− 1)[π−(x)ω(x, t)]+
+(E−1 − 1)[π+(x)ω(x, t)]

}
. (6)

With the Taylor expansion of operators E and E−1 (up to the
second term) we arrive at the approximation of the Master
equation

∂tω(x, t) =−N∂x[{π+(x)− π−(x)}ω(x, t)]+

+
1
2
∂2

x[{π+(x) + π−(x)}ω(x, t)]. (7)

By introducing custom functions

A(x)=N{π+(x)− π−(x)} = σ1(1− x)− σ2x, (8)
D(x)=π+(x) + π−(x) = 2hx(1− x)+

+
σ1

N
(1− x) +

σ2

N
x, (9)

one can make sure that the above approximation of the Master
equation is actually Fokker-Planck equation (first derived in a
different way in [4])

∂tω(x, t) = −∂x[A(x)ω(x, t)] +
1
2
∂2

x[D(x)ω(x, t)]. (10)

It is known, [16], that the above Fokker-Planck equation can
be rewritten as Langevin equation (this equation was also
presented in [4])

dx=A(x)dt+
√
D(x)dW =

=[σ1(1− x)− σ2x]dt+
√

2hx(1− x)dW, (11)

here W stands for Wiener process.
By assuming that market is instantaneously cleared Alfarano

et al. [4] have defined return as

r = r0
x(t)

1− x(t)
η(t), (12)

where x(t) is assumed to be fraction of chartist traders in
the market, while other traders in the market, 1 − x(t), are
assumed to follow fundamentalist trading strategy, η(t) is the
change of chartist mood defined in the same time window as
return, in the most simple case it could be assumed to be a
random variable [4], and r0 scaling term. Using Ito formula
for variable substitution [16] we obtain nonlinear SDE for the
middle term, y(t) = x(t)

1−x(t) ,

dy = (σ1 − y[σ2 − 2h])(1 + y)dt+
√

2hy(1 + y)dW. (13)

Agreement between agent-based model and stochastic model
for y is demonstrated in Fig. 1.

Note that the above derivation, and thus, the final equations,
does not change even if σ1, σ2 or h are functions of x
or y. Thus, one can further study the possibilities of the
model by checking different scenarios of σ1, σ2 or h being
functions of x or y. Nevertheless, the most natural way is to
introduce a custom function τ(y) as inter-event time. In such
case the switching probabilities above can be interpreted as
probability fluxes per time unit. And thus, one can divide the
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Fig. 1. Agreement between statistical properties of y, (a) probability density function and (b) power spectral density, obtained from stochastic (blue and
magenta curves) and agent-based (red and green curves) models. Two qualitatively different model phases are shown: red and blue curves correspond to herding
dominant model phase (σ1 = σ2 = 0.2, h = 5), while green and magenta curves correspond to individual behavior dominant model phase (σ1 = σ2 = 16,
h = 5).

aforementioned constants by τ(y). We have chosen the case
of

dy =
(
σ1 + y

2h− σ2

τ(y)

)
(1+y)dt+

√
2hy
τ(y)

(1+y)dW, (14)

as nonlinear SDE driving statistics of return in financial
market. We did not devide σ1 by τ(y) on purpose as one
could argue that individual behavior of fundamentalist trader
does not depend on the observed returns.

In Fig. 2, we have shown statistical properties of the
stochastic model (14) with different τ(y) scenarios in use.

Note that while obtained stochastic model appears to be too
crude to reproduce statistical properties of financial markets
in such details as our stochastic model [2] based on empirical
analyzes, it contains long range power-law statistics of return.
Obtained equations are very similar to some general stochastic
models of the financial markets [14], [17] and thus, in future
development might be able to serve as microscopic justifica-
tion for them and maybe for our more sophisticated modeling
[2].

III. TWO TREATMENTS OF THE BASS DIFFUSION MODEL

The Bass model introduces a differential equation for the
diffusion rate of new products or technologies [9]

dN(t)
dt

=[M −N(t)][p+
q

M
N(t)], (15)

N(0) =0. (16)

where N(t) denotes the number of product users at time t;
M is a market potential (number of potential users), p is
the coefficient of innovation, the likelihood of an individual
to adopt the product due to influence by the commercials
or similar external sources, q is the coefficient of imitation,
a measure of likelihood that an individual will adopt the
product due to influence by other people who already adopted
the product. This nonlinear differential equation serves as a
macroscopic description of new product adoption by customers
widely used in business planning [10].

Another approach to the same problem is related with
agent based modeling of product adoption by individual users,
or agents. The diffusion process is simulated by computers,
where individual decisions of adoption occur with specific
adoption probability affected by the other individuals in the
neighborhood. It is easy to show that Bass diffusion process
is a specific case of Kirman’s herding model [3]. Indeed, lets
define x(t) as x(t) = N(t)/M and in analogy with Kirman’s
model probability that new user will adopt the product as

π+(x) = (1− x)
(
σ1

M
+

h

M
x

)
. (17)

In the case of Bass diffusion process is of one direction and
π−(x) = 0. Note that we assume an extensive herding in
equation (17) as only in this case the stochastic term in cor-
responding Langevin equation vanishes with M → ∞. Then
the functions defining the macroscopic system description are
as follows

A(x)=Mπ+(x) = (1− x) (σ1 + hx) , (18)

D(x)=π+(x) =
(1− x)
M

(σ1 + hx) . (19)

In the limit M → ∞ one gets Bass diffusion equation (15)
with p = σ1 and q = h instead of Langevin equation. This
proofs that Bass diffusion is a special case of Kirman’s herding
model. Though this simple relation looks straightforward,
we derive it and confirm by numerical simulations in fairly
original way.

In Figure 3 we demonstrate the correspondence between
macroscopic and microscopic Bass diffusion description.
Agent based and continuous descriptions of product adoption
∆N per time interval ∆t converge when number of potential
users M or time interval ∆t increase.

One of the goals of developing these models on the web site
[11] was to provide theoretical background of Bass diffusion
model and practical steps how such computer simulations can
be created even with limited IT knowledge and then used for
practical purposes. Thus, we target small and medium enter-
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Fig. 2. Statistical properties, probability density functions (sub-figure (b)) and power spectral density (sub-figure (c)), obtained while solving (14) with
different τ(y) scenarios (sub-figure (a)) being in use. Model parameters were set as follows: σ1 = σ2 = 0.009, h0 = 0.003.

Fig. 3. Comparison of Bass diffusion, ∆N/∆t versus t, in macroscopic description (red line) and agent based model (blue points) shows convergence when
time interval ∆t or number of potential users M are increasing. (a) M = 1000, ∆t = 0.1; (b) M = 1000, ∆t = 1; (c) M = 10000, ∆t = 0.1; (d)
M = 10000, ∆t = 1. Other parameters are as follows p = 0.01, q = 0.275.
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prises to encourage them to use modern computer simulation
tools for business planning and other purposes.

Computer models published at the [11] provide a relatively
easy starting point to get acquainted with computer simulation
and enables portal visitors to use these computer models inter-
actively, running them directly in a window of web browser,
changing parameters and observing results. This significantly
increases accessibility and dissemination of these simulations.

IV. CONCLUSIONS AND FUTURE WORK

Reasoning of stochastic models of complex systems by the
microscopic interactions of agents is still a challenge for re-
searchers. Only very general models such as Kirman’s herding
model in ant colony or Bass diffusion model for new product
adoption have well established agent based versions and can
be described by stochastic or ordinary differential equations.
There are many different attempts of microscopic modeling in
more sophisticated systems, such as financial markets or other
social systems, intended to reproduce the same empirically
defined properties. The ambiguity of microscopic description
in complex systems is an objective obstacle for quantitative
modeling. Simple enough agent based models with established
or expected corresponding macroscopic description are indis-
pensable in modeling of more sophisticated systems. In this
contribution we discussed various extensions and applications
of Kirman’s herding model.

First of all, we modify Kirman’s model introducing in-
terevent time τ(y) or trading activity 1/τ(y) as functions of
driving return y. This produces the feedback from macroscopic
variables on the rate of microscopic processes and strong
nonlinearity in stochastic differential equations responsible for
the long range power-law statics of financial variables. We do
expect further development of this approach introducing the
mood of chartists as independent agent based process.

One more outcome of Kirman’s herding behavior of agents
is one direction process - Bass diffusion. This simple example
of correspondence between very well established microscopic
and macroscopic modeling becomes valuable for further de-
scription of diffusion in social systems. Models presented on
the interactive web site [6] have to facilitate further extensive
use of computer modeling in economics, business and educa-
tion.
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[7] A. Kononovičius and V. Gontis, “Kirmans ant colony model,” Web page:
http://mokslasplius.lt/rizikos-fizika/en/agent-based-models/kirman-ants.

[8] ——, “Stochastic ant colony model,” Web page: http://mokslasplius.lt/
rizikos-fizika/en/stochastic-models/stochastic-ant-colony-model.

[9] F. M. Bass, “A new product growth model for consumer durables,”
Management Science, vol. 15, pp. 215–227, 1969.

[10] V. Mahajan, E. Muller, and F. M. Bass, “New-product diffusion mod-
els,” in Handbooks in Operations Research and Management Science,
G. L. L. J. Eliashberg, Ed. Amsterdam: North Holland, 1993, vol. 5:
Marketing, pp. 349–408.
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