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Abstract—In recent years, with the prosperity of deep learning,
Graphics Processing Units (GPUs) have become popular as
hardware accelerators specialized for this purpose. However, com-
pared to CPUs, which are general-purpose computing resources,
GPUs are very scarce and valuable resources. Therefore, in this
paper, we would like to consider some control that reduces
GPU resource waste by determining GPU allocation based on
the difference in application performance when using different
GPUs. As a basic study, we evaluate the performance of 9 types of
benchmarks executed on the framework using GPU and compare
the performance when changing machine conditions. From this
examination, it is judged whether the above control is possible.
In addition, we estimate how much performance improvement
can be expected by preferentially allocating GPUs with high
performance to workloads that have a large impact on GPU
performance using the data we collected. From this estimate, it
is found that GPU priority control can reduce the total execution
time by 8.24%.

Keywords—Workload analysis; MLPerf; Zabbix; Deep learning.

I. INTRODUCTION

Graphics Processing Units (GPUs), processors designed for
3D graphics applications that require enormous computational
processing, possess a large number of computing cores and
memory that enables high-speed communication, and are good
at parallel processing. With the prosperity of deep learning,
GPUs became popular as specialized hardware accelerators.
However, compared with Central Processing Units (CPUs),
which are general-purpose computing resources, GPUs are
very scarce and valuable computing resources. Also, deep
learning does not fit well with current configuration practices
and deployment models, which assume a static allocation of
GPUs for each user or framework regardless of utilization,
performance and scalability [1].

Therefore, we would like to consider GPU allocation
control based on the difference in application performance
when using different GPUs. As a basic study, we evaluated
the performance of 9 benchmarks executed on a framework
that uses GPUs and compared the performance on machines
of different generations. From this examination, it was judged
whether the above control is possible.

Also, assuming that a physical machine is fully used by
one application in Docker environments, the job execution
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time can be determined by allocating a high-performance
GPU preferentially to a workload that has a large impact on
GPU performance. We estimated whether this would lead to
improvement using the data we collected. As a result, it was
found that the total execution time was reduced by 8.24%
when GPUs were assigned according to the difference in job
performance due to the difference in GPUs, compared to when
GPUs were evenly assigned.

The reminder of the paper is organized as follows.

In Section II, related works about operational methods
based on resource performance differences and application
characteristics are introduced. The overview of the experiment
for performance evaluation and comparison of each benchmark
is proposed in Section IV. In Section IV, the impact of
hardware on the execution of AI applications, focusing on
CPUs, GPUs, and memory are described. Finally, concluding
remarks are provided in Section V.

II. RELATED WORK

Operational methods based on resource performance dif-
ferences and application characteristics have already been
proposed. Scheduling based on the impact of power variability
for specific applications, taking into account performance and
power consumption variations that occur during the manu-
facturing process of the CPU, is the largest compared to
modern scheduling policies used in production clusters. The
job turnaround time has been reduced by 31% and the power
supply has been reduced by up to 5.5% [2].

Also, efficiency is an important consideration for large-
scale High Performance Computing centers with a wide range
of different applications and heterogeneous infrastructures. For
the purpose of optimizing the usage rate and job waiting time
of a cluster, a method for executing job simulation of a Portable
Batch System (PBS) based cluster using a historical workload
has been proposed [3].

Most of the data contained in Facebook are sent to the
machine learning pipeline, and the system is selectively used
for training using both GPUs and CPUs and real-time infer-
ence using CPUs. Additionally, in real-time reasoning, the
required resources are different because of the size of input
data, and the importance of feature analysis of Al workload
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behavior based on machine learning is discussed in [4]. A
toolkit called FBLearner has been developed for the purpose
of simplifying the task of using Facebook machine learning
and is processed by the CPU server and the GPU server
with different resource designs according to the features of
machine learning. FBLearner consists of three tools focused
on different parts of the machine learning pipeline: FBLearner
Feature Store, FBLearner Flow, and FBLearner Predictor. By
utilizing an internal job scheduler, it allocates the resources on
a shared pool of GPUs and CPUs and schedules jobs. Most
of Facebook’s machine learning training is performed through
FBLearner.

GPU virtualization is a method for effectively using limited
GPU resources. Bitfusion FlexDirect [1] is a virtualization
layer that supports management of computing resources by
combining multiple CPUs and GPUs into a single elastic clus-
ter. FlexDirect is designed so that multiple workloads can be
executed in parallel by slicing the GPU into a virtual GPU of
any size, and achieves a significant reduction in GPU resources
compared to conventional GPU solutions. Singularity [5], a
Linux container for HPC developed by Lawrence Berkeley
National Laboratory, implements the ability to share GPUs
among multiple applications running in a virtual environment.
A job scheduler is used for resource management.

CPUs and servers with automatic workload management
functions to analyze the bottlenecks and allocate resources and
distribute the connections have already been developed. We
introduce two examples of tools and products that perform tun-
ing based on workload. Intel’s CPU architecture “Haswell” [6]
executes DynamicVoltage and Frequency Scaling that switches
the voltage and operating frequency according to the load on
a CPU core or cluster basis. NVIDIA’s “HGX-2” [7] is a
server for the GPU neck jobs that has many processors and
is specialized for Al workloads. Unlike a general IA server,
HGX-2 can use up to 16 GPUs in a single server.

We analyze the characteristics of workload as a basic study
of efficient operation technology of GPU resources.

III. OVERVIEW OF THE EXPERIMENT

In this study, performance evaluation and comparison of
each benchmark are performed using MLPerf to analyze
the hardware information at the time of the execution of
application, which is a representative type of Al. We use
MLPerf’s nine benchmarks for performance evaluation. Zabbix
[8] is used to acquire information. Information such as CPU,
GPU, memory, and I/O is acquired at the time of benchmark
execution by these commands for feature analysis for each
benchmark. Information acquisition is performed at one minute
intervals. Table IV shows the measurement conditions for each
benchmark. The learning accuracy is changed to 15 only for
the Recurrent Neural Network (RNN) translator (RT).

In particular, feature analysis is conducted focusing on
CPU, GPU, and memory utilization. Table II shows the ex-
perimental environment.

An outline of the software used in this research is provided
below.

A. MLPerf

MLPerf is an Al benchmark supported by companies, such
as Google, Intel, Baidu, and NVIDIA. It aims to build a
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TABLE I. MEASUREMENT CONDITIONS OF EACH BENCHMARK

Benchmark Epoch SEED Job Time
‘ (step, iteration) ‘
IC 53200 1 3:01:13
(step)
SSD 11 1 3:09:12
OD 25000 3 2:23:26
(iteration)
RM 6 1 1:09:34
SA 100 1 1:22:50
RT 1 1 2:48:18
TL 17200 1 2:59:55
(step)
SR 1 1 10:53:32
RI 4 1 5:46:00

TABLE II. ENVIRONMENT

OS ubuntsu 16.04
Server FUJITSU Primergy RX2540 M4
CPU Intel Xeon Skylake 2 sockets 20 cores

2.4GHz Gold 6148 150W

GPU NVIDIA Tesla V100 16GB

Storage M2.SSD | 290GB read 0.87GB/s write 1.75GB/s
Memory 192GB DDR4 2666MHz

Python 3.50

CUDA 9.2

common set of benchmarks that enable the machine learning
field to measure system performance for both training and
inference for a variety of environments ranging from mobile
devices to cloud services. This benchmark includes Image
Classification (IC), Single Stage Detector (SSD), Object Detec-
tion (OD), Recommendation (RM), Sentiment Analysis (SA),
Rnn Translator (RT), Translation (TL), Speech Recognition
(SR), and Reinforcement (RI).

1) Time-series Data: The following introduces the hard-
ware time-series data when MLPerf is run.

IPMI can obtain infrastructure information such as power
and temperature. Figure 1 shows the time-series data for the
CPU temperature. The time-series data for the CPU and GPU
power consumption is shown in Figure 2. Perf can obtain the
CPU utilization and memory usage that can be acquired by OS,
and nvidia-smi can acquire GPU utilization. These pieces of
information can be utilized for static optimal design of device
resources. The obtained time-series CPU and GPU utilization
data are shown in Figure 3. The CPU and GPU memory
utilization time-series data are illustrated in Figure 4. lostat
can obtain how much Input and Output occurs on the disk.
The results of the time-series data for the disk I/O access are
shown in Figure 5. PMU can obtain the number of instructions
and cache miss rate from CPU event information. These pieces
of information can be used for dynamic frequency design. The
time-series data of the memory intensive index in Figure 6 uses
the values obtained by the following equation.

(local 4+ remote)

intensive = x 100

inst

In the above equation, “local” means the number of times that
the local DRAM is accessed, and “remote” means the number
of time that remote DRAM is accessed because of the failure
to access L3 cache memory. “inst” indicates the number of
instructions.
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Figure 5. Disk I/O access during IC processing.

Figure 1. Temperature during the IC processing.
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Figure 2. CPU and GPU power consumption during IC processing. B. Zabbix

Zabbix is a flexible monitoring software and can add mon-
itoring targets by using templates. We analyze the information
that can be acquired by IPMI, Perf, nvidia-smi, and Perfor-
mance Monitoring Unit (PMU) [9], which is a performance

100
% monitoring mechanism of the Intel CPU. PostgreSQL is used
: for data storage. We build the environment shown in Figure 7.
g 80 Since acquiring information on the benchmark execution
% 40 server will influence the results, the server used for acquiring
20 information and the server used for the execution of the
benchmark are separated.
onow e (100120180160 180 IV. EXPERIMENTAL RESULTS
Execution time
—system.cpu.util[,user] —system.cpu.util[,system] —gpu.utilization[0] In this SeCtiOn, we inVeStigate the impaCt of hardware on
the execution of Al applications, focusing on CPUs, GPUs,
Figure 3. CPU and GPU utilization during IC processing. and memory.
A. Server
We compare the results by running MLPerf on different
100 generation servers. These servers are similar but have different
5 performance CPUs. First, we measure the speed of disk access
80 in the environment of Table II. Table III shows the maximum
£ 60 speed of disk access for each benchmark execution. The
8 ” maximum disk access speed of FUJITSU Primer RX2540 M4
5 used in the experiment is 0.87 GB/s for reading and 1.75 GB/s
20 for writing.
0 Since the maximum value of the disk access speed at the
0 20 40 60 8 100 120 140 160 180

time of benchmark execution is sufficient for the server disk
performance and the time required for disk access is extremely
short compared to the job time, it is possible that the disk
Figure 4. CPU and GPU memory utilization during IC processing. performance difference has a small impact on the benchmark.

We consider the change in the job execution time when
using the server with the different CPU. For comparison, we

n

Execution time mi

—CPU memory utilization = —GPU memory utilization
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use two servers with different specifications. the specifications
of the servers used for CPU comparison are shown in Table
IVv.

We compared IC, SSD, OD, RM, SA, RT, TL, and RIL
Table V lists the comparison results of the job times required
when executing MLPerf on the environments of Table IV. We
also obtained CPI information, which represents the number
of the clocks required to execute one instruction, but we did
not observe any major changes with the change of the server.

Figures 8 - 15 show the time-series data for the clock
frequency of each thread when each benchmark is executed
on each server.

The time-series data of the clock frequency for “IC” are
shown in Figure 8. On Skylake, two threads had a high clock
frequency and their values changed alternately. The time-series
data of the clock frequency for the “SSD” are illustrated
in Figure 9. There were no large differences between these
graphs. The results of the time-series data for clock frequency
of “OD” are shown in Figure 10. This benchmark also showed
no notable change. The time-series data for the clock frequency
of “RM” are shown in Figure 11. Compared with Skylake, the
clock frequency on Haswell tended to be high overall. Figure
12 shows the time-series data for the clock frequency of “SA”.
In “SA”, only a specific thread had a high clock frequency, and
this was considered to be a specification that only some threads
were used when the frequency decreased. The results of the
time-series data for the clock frequency of “RT” are shown
in Figure 13. Only the clock frequency of a specific thread
remained high on Skylake. The time-series data for the clock
frequency of "TL” are shown in Figure 14. On Skylake, some
Specific threads showed noticeable changes, but on Haswell
such changes were not observed. Figure 15 shows the time-
series data for the clock frequency of “RI”. The trends of the
changes were similar in Skylake and Haswell, but their periods
were different.

Comparing the results obtained on Skylake and Haswell, it
is observed that differences in the maximum values and other
details are present, but the clock frequency shows some similar
changes along the time series. We concluded that the impact
of the CPU on the performance of Al applications is small.

From these results, differences in servers and CPUs are
considered to have little impact on Al application performance.

B. GPU

This section introduces the analysis results on how GPU
performance affects the performance of each Al application.

The average GPU utilization divided by the average CPU
utilization is illustrated in Figure 16. Additionally, we note that
the average utilizations of GPU and CPU per socket are shown
in Table VL.

Large differences were observed in processor utilization for
the different applications in the family of benchmarks. Table
16 and Table VI show that the overall application tends to be
GPU-necked, and that translation-based applications require a
particularly large amount of GPUs. On the other hand, there
are also applications in which CPU performance is considered
to be important, such as RM and SSD.

We compare the results obtained by running MLPerf with
different generation GPUs. the specifications of the servers
used for GPU comparison are shown in Table VIIL.
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Figure 7. Zabbix environment for acquiring information.

TABLE III. DISK ACCESS SPEED

[ Benchmark [ Read (MB/s) [ Write (MB/s) ]

IC 73.92 111.32
SSD 6.75 10.96
OD 4.66 1.25
RM 2.67 29.26
SA 9.82 0.01
RT 29.50 0.06
TL 26.14 93.90
SR 7.10 8.05

RI 22.13 0.75

TABLE IV. ENVIRONMENTS FOR CPU COMPARISON

[ Environment 1

l

Environment 2

oS CentOS Linux release ubuntsu 16.04
7.5.1804 (Core)
Server FUJITSU Primergy FUJITSU Primergy
CX400 M1 RX2540 M4
CPU Intel Xeon Haswell Intel Xeon Skylake
2 sockets 14 cores 2 sockets 20 cores
2.6GHz E5-2697 2.4GHz Gold 6148
145W 150W
GPU NVIDIA Tesla NVIDIA Tesla
GPU P100 16GB P100 16GB
Storage | 270GB read 0.21GB/s | 290GB read 0.87GB/s
HDD write 1.07GB/s write 1.75GB/s
Memory 256GB 192GB
DDR4 2133MHz DDR4 2666MHz
Python 3.50 3.50
CUDA 9.2 9.2

TABLE V. COMPARISON OF THE JOB TIME - CPU

Benchmark Haswell Skylake Skylake /
’ ‘ ‘ ‘ Haswell ‘

IC 4:36:10 4:33:04 0.99
SSD 3:56:42 3:12:18 0.81
OD 2:59:34 2:57:51 0.99
RM 1:12:00 1:09:07 0.96
SA 2:00:12 1:48:14 0.90
RT 4:06:41 4:05:28 1.00
TL 4:37:47 4:29:21 0.97
SR - 15:07:34 -

RI 6:28:00 6:08:37 0.95

11
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Figure 8. Time-series data for the clock frequency of IC (above:Haswell
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Figure 9. Time-series data for the clock frequency of SSD (above:Haswell
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Figure 10. Time-series data for the clock frequency of OD (above:Haswell
below:Skylake).
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Figure 16. Average GPU/CPU utilization.

TABLE VI. GPU AND CPU AVERAGE UTILIZATION

[ Benchmark [ CPU (%) [ GPU (%) |

IC 5.1 95.4
SSD 9.9 59.8
OD 4.9 74.5
RM 6.7 44.3
SA 1.4 82.0
RT 1.5 95.5
TL 1.5 83.9
SR 32 65.1
RI 11.4 62.7
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TABLE VII. ENVIRONMENTS FOR GPU COMPARISON

l l

Environment 1

[

Environment 2

OS ubuntsu 16.04 ubuntsu 16.04
Server FUJITSU Primergy FUJITSU Primergy
RX2540 M4 RX2540 M4
CPU Intel Xeon Skylake Intel Xeon Skylake
2 sockets 20 cores 2 sockets 20 cores
2.4GHz Gold 6148 150W | 2.4GHz Gold 6148 150W
GPU NVIDIA Tesla NVIDIA Tesla
P100 16GB V100 16GB
Storage 290GB read 0.87GB/s 290GB read 0.87GB/s
HDD write 1.75GB/s write 1.75GB/s
Memory 192GB 192GB
DDR4 2666MHz DDR4 2666MHz
Python 3.50 3.50
CUDA 9.2 9.2

TABLE VIII. GPU SPEC

[ [ P100 [ V100 |
Core 3584 5120
MHz 1300 1455
FP16 18.636 119.19
FP32 9.318 14.90
FP64 4.659 7.45
Memory Bandwidth 720 900

Table VIII shows the specifications of the GPUs V100 and

P100 used in this experiment.

Table IX lists the comparison of job times obtained when

running each benchmark on different GPUs. Compared to the
average GPU utilization data presented in Table VI, the change
in the job time when changing the GPU is larger for the
benchmarks with higher average GPU utilization.

The present result suggested that a job with a high GPU
utilization shows a high job performance improvement effect
due to changes in the GPU performance, and the difference
in the job performance due to the changes in the CPU
performance is small.

C. Memory

Figure 17 shows the maximum value of the memory
utilization of each benchmark. Compared with the memory
utilization of a CPU, the memory use of a GPU is remarkably
large in this experiment. This is because the capacity of
GPU memory is insufficient for the data size required by
applications. Additionally, both the class “IC” and the class
“TL” have high GPU utilization but show a large difference in

TABLE IX. COMPARISON OF JOB TIME - GPU

[ Benchmark [ P100 [ V100 [ V100 / P100 ]
IC 4:33:04 3:01:13 0.66
SSD 3:12:18 3:09:12 0.98
OD 2:57:51 2:23:26 0.81
RM 1:09:07 1:09:34 1.01
SA 1:48:14 1:22:50 0.76
RT 4:05:28 2:48:18 0.68
TL 4:29:21 2:59:55 0.67
SR 15:07:34 10:53:32 0.72
RI 6:08:37 5:46:00 0.93

13
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the CPU memory utilization. This difference is caused by the
data set type.
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Figure 17. Memory utilization.

In this experimental environment and experimental con-
ditions, the amount of total memory is sufficient for the
operation of the application, and the effect on job performance
is considered to be small.

D. GPU Priority Assignment

From the results of comparing job execution times when
changing the GPU in Table VIII, we estimate the improvement
in job time by GPU priority assignment.

In a Docker environment, it is assumed that one application
fully uses a physical machine. Each machine that handles
nine MLPerf benchmarks is assigned one of 10 P100 and
10 V100 as GPU resources, and process the same number
of each benchmark in this assumption. Table X shows the
comparison of the total execution time when a new GPU is
preferentially assigned to a benchmark where the improvement
in job execution time due to GPU performance was significant
(Proposed Method) and the time when a GPU is evenly
assigned (Evenly Assigned).

TABLE X. COMPARISON OF TOTAL EXECUTION TIME

Number Proposed Evenly Reduce
of Jobs Method Assigned

(h:m:s) (h:m:s) (%)
200 74:30:00 81:11:27 8.241
400 149:00:00 162:22:54 8.241
600 223:30:00 243:34:21 8.241
800 298:00:00 324:45:48 8.241
1000 372:30:00 405:57:15 8.241
10000 3724:42:00 | 4059:32:33 8.248

Regardless of the number of jobs to be processed, improve-
ment in job performance was confirmed at an almost constant
rate. In the research works on task scheduling algorithm, the
previous study [10] has shown that overall execution time
was reduced by 1.2% - 8% over one-step and predictive
average interval scheduling policies based on more accurate
information prediction. Also, it was observed that the proposed
algorithm resulted in 9.47% in terms of overall execution time
of task completion in previous reseach [11]. These research
works focus on the task scheduling of different target from
ours.

From the simulation results, the control method proposed
in this study is expected to reduce the total execution time by
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8.24%, which can lead to efficient operation of limited GPU
resources.

However, from the viewpoint of fairness of allocation
among applications, the order of job processing should not
necessarily be determined only by the type of benchmark, the
order of job processing should not be determined only by the
type of benchmark.

V. CONCLUSION AND FUTURE WORK

In this paper, the efficient operation technology of GPU
resources has been investigated using the difference of job
performance caused by the difference of GPU performance.
As a basic study, we evaluated the characteristics of 8 types
of benchmarks executed on a framework that uses GPUs and
compared performance on machines of different generations.

As a result of job performance analysis when GPUs of
different generations were used, it was found that there is a
big difference in job performance caused by the difference of
GPU performance for each benchmark.

Assuming a Docker environment where old GPUs and new
GPUs coexist, the execution time of the case where GPUs
were evenly assigned was estimated and compared with that
of the case where new GPUs were preferentially assigned to
benchmarks with large differences in job performance due to
differences in GPUs. The total execution time was reduced by
8.24%. This suggests that the above control leads to efficient
operation of limited GPU resources. In the future, we would
like to construct a system that actually controls the operation
of the GPU.
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