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Abstract—LR(1) parsing was a focus of extensive research
years ago. Though most fundamental mysteries have been re-
solved, a few remain hidden in the dark corners. The one we
bumped into is the minimization of the LR(1) state machines,
which we prove is NP-hard. It is the node-coloring problem that
is reduced to the minimization puzzle. The reduction makes use
of a technique in constructing a context-free grammar from the
graph to be colored. The expected LR(1) state machine is derived
from the constructed context-free grammar. A minimized LR(1)
machine can be used to recover a minimum coloring of the
original graph.

Keywords—graph coloring; LR(1) parser; LALR(1) parser; mini-
mize LR(1) state machine; node coloring; NP-hardness; parsing.

I. INTRODUCTION

Parsing is a basic step in every compiler and interpreter.
LR parsers are powerful enough to handle almost all practical
programming languages [11]. The downside of LR parsers is
the huge table size. This caused the development of several
variants, such as LALR parsers, which require significantly
smaller tables at the expense of reduced capability.

The core of an LR(1) parser is a deterministic finite state
machine. The LALR(1) state machine may be obtained by
merging every pair of similar states(Note that two states are
similar if and only if they become identical if the look-ahead
sets in the items in the two states are ignored.) in the LR(1)
machine [8]. In case (reduce-reduce) conflicts occur due to
merging,(note that only reduce-reduce conflicts may occur
due to merging similar states.) the parser is forced to revert
to the larger, original LR(1) machine. Due to the significant
size difference between LR(1) and LALR(1) state machines,
we know there are many pairs of similar states in an LR(1)
machine. If any pair of similar states may cause conflicts, the
parser will be forced to use the much larger LR(1) machine.
It would be more reasonable to merge some, but not all, pairs
of similar states [16]. The result, called an extended LALR(1)
state machine, is smaller than the LR(1) machine but larger
than the LALR(1) machine.

For example, there are five pairs of similar states
in the LR(1) machine in Figure 1. Only three pairs—
(s1, t1), (s2, t2), (s3, t3)—can be merged. The pair of similar
states—(s5, t5)—cannot be merged due to a (reduce-reduce)
conflict. The last pair of similar states—(s4, t4)—cannot be
merged because (s5, t5) are not merged for otherwise the
resulting machine would become nondeterministic. Figure 2
is the corresponding (minimum) LR(1) machine.

Fig. 1. The LR(1) machine of a grammar.

In general, two states in an LR(1) machine can be merged
if and only if the following two conditions are satisfied:

1) The two states must be similar;
2) Corresponding successor states of the two states must

have already been merged.

A further question is if there is an efficient algorithm that
can merge the most number of similar states, thus producing a
minimum LR(1) state machine. That is, we wish to minimize
the LR(1) state machine. Since the number of similar states is
finite, a naı̈ve approach is to try all possibilities.

Our study shows that minimizing the LR(1) state machine is
an NP-hard problem. We reduce the node-coloring problem to
this minimization problem. Starting from an (undirected) graph
to be node-colored, we construct a context-free grammar. Then
the LR(1) machine of the context-free grammar is derived. We
can use an algorithm to calculate the corresponding minimum
LR(1) machine.

In order to recover a minimum coloring from this minimum
LR(1) machine, we can perform one more easy step. In
the LR(1) machine, every state that is not similar to any
other states is removed, leaving only similar states. Then an
edge between two similar states is added if the two similar
states may cause conflicts. The resulting machine is called a
conflict graph. Merging similar states in the LR(1) machine
is essentially identical to merging states in the conflict graph.
(Note that Due to the construction of the grammar, all states

23Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems



Fig. 2. The corresponding minimum LR(1) machine for Figure 1.

in the resulting conflict graph are similar to one another in
the LR(1) machine. Furthermore, the conflict graph is actually
isomorphic to the original color graph.) From the minimum
LR(1) machine, it is straightforward to recover a minimum
coloring.

The following theorem seems obvious but we wish to bring
it to the reader’s attention when reading this paper:

Theorem. Let s1, s2, and s3 be three similar states in an
LR(1) machine. If the three states are not conflicting pairwise,
then merging all three states will not create any conflicts.

Due to the above theorem, we need to consider only pairs,
not triples, quadruples, etc., of similar states. This greatly
simplifies our discussion.

Note also that there might be more than one minimum LR(1)
machine for a given LR(1) machine.

LR parsers were first introduced by Knuth [11]. Since LR
parsers are considered the most powerful and efficient practical
parsers, much effort has been devoted to related research and
implementation [1][3][7][10][12][14].

It is known that every language that admits an LR(k) parser
also admits an LALR(1) parser [12]. In order to parse for
an LR(1)-but-non-LALR(1) grammar, there used to be four
approaches: (1) use the much larger LR(1) parser; (2) add
ad hoc rules to the LALR(1) parser to resolve conflicts,
similar to what yacc [10] does; (3) merge some, but not all,
pairs of similar states [16]; and (4) transform the grammar
into LALR(1) and then generate a parser. The transformation
approach may exponentially increase the number of production
rules [12] and the transformed grammar is usually difficult to
understand. This paper shows that, although we wish to merge
as many pairs of similar states as possible, this optimization
problem is NP-hard.

Pager proposed two methods: “practical general method”
(PGM) [14] and “lane-tracing method” [13] [15]. Chen [4]
actually implements Pager’s two methods as well as other
improvements, such as unit-production elimination. Because

Fig. 3. Two cases for a color graph with two nodes and four cases for a
color graph with three nodes.

Fig. 4. The LR(1) machine for the graph in Figure 3 (b). Note that there is
a single conflict s1 ↔ s2. The empty boxes are not part of this machine.

They are used for comparison with later machines.

the minimization problem is NP-hard, it is important to build
practical LR parser generators. Pager and Chen’s work is one
of the best existing LR parser generators. The IELR method
[5] includes additional capability to eliminate conflicts even if
the grammar is not LR.

Both [14] and [5] attempt to find a minimal machine.
However, minimal simply means “very small” or “locally min-
imum” rather than “globally minimum”[5]. This is different
from our study of minimization.

The remainder of this paper is organized as follows. Section
2 will introduce the terminology and background. Section 3
introduces a reduction algorithm that translates an undirected
graph into a context-free grammar and discusses the reduction
of the coloring problem to the minimization problem. The last
section concludes this paper.

II. TERMINOLOGY AND BACKGROUND

A grammar G = (N,T, P, S) consists of a non-empty set
of nonterminals N , a non-empty set of terminals T , a non-
empty set of production rules P and a special nonterminal S,
which is called the start symbol. We assume that N ∩ T = ∅.
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Fig. 5. The LR(1) machine for the graph in Figure 3 (a). There is no
conflict in the machine. The empty boxes are not part of this machine. They

are used for comparison with later machines. G32-0.

LR(1) parsing is based on a deterministic finite state ma-
chine, called the LR(1) machine. A state in the LR(1) machine
is a non-empty set of items. An item has the form (A ::= γ1
• γ2, la), where A ::= γ1γ2 is one of the production rules, •
indicates a position in the string γ1γ2, and la (the lookahead
set) is a set of terminals that could follow the nonterminal A in
later derivation steps. The algorithm for constructing the LR(1)
state machine for a grammar is explained in most compiler
textbooks, for example, [2][8]. An example state machine is
shown in Figure 1.

Two states in the LR(1) machine are similar if they have the
same number of items and the corresponding items differ only
in the lookahead sets. For example, states s1 and t1 in Figure
1, each of which contains three items, are similar states.

LR(1) state machines are closely related to LR(0) state
machines. However, an LR(1) machine is much larger than
the corresponding LR(0) machine because many similar states
are introduced. In order to reduce the size of the LR(1) state
machine, some or all pairs of similar states may be merged as
long as no conflicts occur. For example, LALR(1) machines
are obtained from LR(1) machines by merging every pair of
similar states.

Sometimes merging two similar states may create a (pars-
ing) conflict. The aim of minimizing an LR(1) machine is to
merge as many pairs of similar states as possible without
causing conflicts. Our study shows that this minimization
problem is NP-hard.

III. REDUCTION

We may prove that minimizing LR(1) machines is an NP-
hard problem by reducing the node-coloring problem to this
minimization problem. Specifically, from a graph F to be
colored, we construct a context-free grammar G. Then the
LR(1) state machine M is derived from G. An algorithm is
used to calculate the minimum state machine, from which a
minimum coloring can be recovered.

(no edge) (one edge)
P ::= S$ P ::= S$

S ::= 1Xa S ::= 1X)
S ::= 1Yb S ::= 1Yb

S ::= 2Xc S ::= 2Xc
S ::= 2Yd S ::= 2Y)

X ::= @ X ::= @
Y ::= @ Y ::= @

Fig. 6. The two grammars the color graphs in Figure 3 (a) and (b).

(a) (b) (c) (d)
P ::= S$ P ::= S$ P ::= S$ P ::= S$

S ::= 1Xa S ::= 1X) S ::= 1X) S ::= 1X)
S ::= 1Yb S ::= 1Yb S ::= 1Yb S ::= 1Yb
S ::= 1Ze S ::= 1Ze S ::= 1Z= S ::= 1Z=
S ::= 1Vf S ::= 1Vf S ::= 1Vf S ::= 1Vf

S ::= 2Xc S ::= 2Xc S ::= 2Xc S ::= 2Xc
S ::= 2Yd S ::= 2Y) S ::= 2Y) S ::= 2Y)
S ::= 2Zg S ::= 2Zg S ::= 2Zg S ::= 2Z=

S ::= 2Vh S ::= 2Vh S ::= 2Vh S ::= 2Vh

S ::= 3Xi S ::= 3Xi S ::= 3Xi S ::= 3Xi
S ::= 3Yj S ::= 3Yj S ::= 3Yj S ::= 3Yj

S ::= 3Zk S ::= 3Zk S ::= 3Zk S ::= 3Zk
S ::= 3Vm S ::= 3Vm S ::= 3V= S ::= 3V=

X ::= @ X ::= @ X ::= @ X ::= @
Y ::= @ Y ::= @ Y ::= @ Y ::= @
Z ::= @ Z ::= @ Z ::= @ Z ::= @
V ::= @ V ::= @ V ::= @ V ::= @

Fig. 7. The four grammars constructed from graphs with 3 nodes by our
algorithm.

In order to recover a minimum coloring, M can be simpli-
fied by removing every state that is not similar to any other
state, resulting in a conflict graph. Merging similar states in
the conflict graph is essentially identical to finding a minimum
coloring of F .

We define a node-coloring of a graph as a partition of the
set of nodes in the color graph satisfying the requirement that
nodes connected by an edge cannot be in the same partition
block. A minimum coloring is a partition with the fewest
blocks. Similarly, a merge scheme of an LR(1) state machine
is a partition of the states satisfying the requirement that states
in the same partition block are similar to one another and do
not conflict with one another. A minimum merge scheme is a
partition with the fewest blocks. Minimizing an LR(1) machine
is to find a minimum merge scheme of the machine.

We build a context-free grammar G for a given color graph
F inductively.
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Assume color graph F has n nodes. Then the constructed
machine M has n states that are similar to one another; the
remaining states are distinct and can be ignored in the discus-
sion of merging similar states. There is 1-1 correspondence
between the n nodes in F and the n similar states in M . We
claim that M satisfies the following property:

F may be colored with k colors if and only if n−k
pairs of similar states in M may be merged (so that
only k similar states remain).

If there is any algorithm that can calculate the minimum
LR(1) machine Mmin from M by merging certain pairs of
similar states, we can use that algorithm to solve the node-
coloring problem—for all states that are merged into a single
state in Mmin, their corresponding nodes in F have the same
color.

Due to the above property, we have successfully reduced the
node-coloring problem to the minimization problem. Because
the node-coloring problem is NP-hard [9], the minimization
problem is also NP-hard.

To construct a context-free grammar from the color graph
F , we first choose two arbitrary nodes t1 and t2. There are
two cases, shown in Figure 3 (a) and (b): there is no or one
edge t1—t2. Then one of the grammars in Figure 6 is selected.

Assume that there is an edge t1—t2 in F . Then the grammar
on the right inFigure 6 is selected. The corresponding LR(1)
machine is shown in Figure 4, in which there are two similar
states (s1 and s2). Merging the two similar states will cause
a conflict due to the terminal symbol “)”. The grammar is
carefully constructed so that the conflict s1 ↔ s2 corresponds
to the edge t1—t2 in F .

In our constructed grammars, the numbers, such as 1, 2,
14, 27, etc., are teminals and indicate a similar state in the
resulting LR(1) machine and the order the corresponding
nodes in F are chosen. The upper-case English letters, such
as A, B, etc., denote nonterminals. The lower-case English
letters, such as a, b, etc., denote terminals that are used only
once in the grammar. These lower-case letters will not cause
conflicts. The punctuation marks, such as “)” and “=”, are
terminals that will cause conflicts.

On the other hand, if t1 and t2 in F are not connected, the
grammar on the left in Figure 6 will be selected. Figure 5 is
the LR(1) machine for that grammar. There are two similar
states in that machine (s1 and s2). The two similar states can
be merged without conflicts. This corresponds to the fact that
t1 and t2 in Figure 3 (a) can have the same color since there
is no edge connecting them.

Note that the notion of “two (similar) states can be merged”
in the LR(1) machine is closely related to the notion of “two
nodes can have there same color” due to our construction.

The remaining nodes in F are chosen one by one in an
arbitrary order. By adding one node at a time, we can grad-
ually construct grammars G2, G3, G4, . . . , Gn. The complete
algorithm for generating a context-free grammar from a graph
is shown in Figure 10.

Example. The grammar on the right column in Figure 6 is
extended to the grammar on the third column in Figure 7. The
four grammars constructed from graphs with 3 nodes by our
algorithm. (a) is for graphs with no edges (Figure 3 (c)); (b)
is for graphs with one edge (Figure 3 (d)); (c) is for graphs
with two edges (Figure 3 (e)); and (d) is for graphs with three
edges (Figure 3 (f)). The production rules are classified into
five categories. In particular, the boxed production rules in (c)
are new rules added to the grammar on the right column in
Figure 6.The corresponding color graphs are shown in Figure
3 (b) and (e), respectively. The boxed production rules are
added by the algorithm in Figure 10. 2

The grammar on the third column in Figure 7 is a typical
grammar generated by our algorithm. The production rules are
classified into five categories:

1) one starting production rule (i.e., P ::= S $)
2) four production rules of the form (Π ::= @)
3) four production rules whose right-hand sides begin with

the terminal 1
4) four production rules whose right-hand sides begin with

the terminal 2
5) four production rules whose right-hand sides begin with

the terminal 3

The LR(1) machine is then derived from the grammar. We
did not construct the LR(1) machines directly because context-
free grammars are easier to generate.

Now consider the constructed LR(1) machine in Figure 9.
Note that all items derived from rules of categories 1, 3, 4,
and 5, appear only once in the whole LR(1) machine. Any
state containing any of these items will not be similar to any
other state and hence can be ignored. We could focus on states
consisting solely of items derived from production rules of
category 2. There are only 3 such states, which are indeed
similar to one another. Each such state has all items of the
form (Π ::= @ •, . . .), where Π is a nonterminal except P and
S.

Another characteristic of the constructed LR(1) machine in
Figure 9 is that there are no cycles. The longest path contains
3 steps.

In fact, all grammars generated by the algorithm in Figure
10 share the above characteristics. They help us to infer
properties of the minimized LR(1) machines.

In the corresponding state machine in Figure 9, consider
the four states that come immediately after the initial state.
Items derived from rules in categories (3), (4) and (5) are
cleanly separated because of the first symbols (which are
integer terminals) on the right-hand sides of the rules. Hence,
except the four states that come immediately after the initial
state, those items whose first symbols on the right-hand sides
are different will never be mixed in the same state in the state
machine. Items derived from rules in category (2) are quite
similar—actually all items of the form (Π ::= • @, where is Π
is a nonterminal) appear in every state that comes immediately
after the initial state (we will ignore the starting production
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Fig. 8. The LR(1) machine for the graph in Figure 3 (d).

Fig. 9. The LR(1) machine for the graph in Figure 3 (e).

rule in this discussion). Furthermore, all items of the form (Π
::= @ •) appear in states that come two steps after the initial
state. It is these states (which contain all items of the form (Π
::= @ •) and no other items) that are similar to one another.
All other states are not similar to any other states and hence
can be ignored when we discuss the merging of similar states.

Therefore, we can create or avoid conflicts among similar
states by carefully adjusting the last terminal ψ in rules of
the form (S ::= µ Π ψ), where µ is an integer terminal, Π is
a nonterminal, and ψ is a terminal. In the four grammars in
Figure 7, when ψ is a lower-case English letter (e.g., “b” or
“i”), that rule will not cause any conflict because the lower-
case letter appears only once in the whole grammar. On the
other hand, when ψ is a punctuation marks (e.g., “)” or “=”),
a conflict is intentionally added to the grammar because that
punctuation mark is used in two different production rules.
The above discussion is related lines 18-22 in the algorithm

in Figure 10.

We will use an algorithm to calculate the minimum state
machine from M .

In what follows, we will describe how to recover a minimum
coloring of the original color graph from the minimum state
machine.

For the purpose of merging similar states, we may ignore
all states that are not similar to any other states. To make
conflicts among states explicit we add a conflict edge between
two states if a conflict will occur when the two states are
merged. The state machine in Figure 9 becomes Figure 11,
which is called a conflict graph. In Figure 11, there are two
conflict edges s1 ↔ s2 and s1 ↔ s3.

Finding a minimum merge scheme for the LR(1) machine is
identical to finding a minimum merge scheme for the conflict
graph. So we will focus on the conflict graph instead.
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1. Nodes in graph P are listed as v1, v2, . . . , vn;
2. if there is an edge v1—v2 then G := the left grammar
in Figure 6 ;
3. else G := the right grammar in Figure 6;
4. NewNonTerm := { X, Y };
5. for µ := 3 to n do
6. generate two new nonterminals, called ∆ and Θ;
7. generate two new terminals, called φ and ω;
8. generate four production rules:
9. (“S ::= ” µ ∆ φ) and (“S ::= ” µ Θ ω) and
10. (∆ “ ::= @”) and (Θ “ ::= @”);
11. for each nonterminal Π ∈ NewNonTerm do
12. generate a new terminal, called ψ;
13. generate a production rule: (“S ::= ” µ Π ψ);
14. end;
15. for δ := 1 to µ− 1 do
16. generate two new terminals, called τ and ρ;
17. generate a production rule: (“S ::= ” δ Θ ρ);
18. if there is an edge vµ ↔ vδ then
19. /* The following rule will cause a conflict due
to ω. */
20. generate a production rule: (“S ::= ” δ ∆ ω);
21. else /* The following rule will NOT cause a
conflict. */
22. generate a production rule: (“S ::= ” δ ∆ τ );
23. end;
24. NewNonTerm := NewNonTerm ∪ {∆,Θ};
25. end;

Fig. 10. Algorithm for generating a context-free grammar from a graph. The
four rules generated at lines 9, 17, and 20 will cause a conflict in the LR(1)

machine due to the terminal ω.

Fig. 11. The conflict graph. After removing the states that are not similar to
any other states, only three states are left. We may add an edge s1 ↔ s2 to

indicate there is a conflict edge s1 ↔ s2 and another conflict edge
s1 ↔ s3.

The reader may find that the conflict graph (Figure 11) is
isomorphic to the original color graph (Figure 3 (e)). This is
due to the construction of the context-free grammar.

IV. CONCLUSION

We have reduced the node-coloring problem to the mini-
mization problem of the LR(1) state machines. Therefore, the
minimization problem is NP-hard.

There are efficient algorithms for minimization of finite
state machines. LR(0) state machines are minimum by its
construction. We show that LR(1) state machines cannot be
easily minimized in general.

Note that minimizing an LR(1) machine is quite different
from minimizing a general finite state machine. For one thing,
we need to examine the items in the states of an LR(1)
machine. On the other hand, minimizing a general finite state
machine does not consider the “contents” of the states.
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