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Abstract—Applying Quality of Service mechanisms to modern 

communications is essential for the efficiency and for the 

traffic reliability. The various Quality of Service methods are 

based on queues management depending on individual traffic 

parameters. Choosing Quality of Service parameters on the 

edge network devices defines the management queue and 

packet discard/queued parameters on the intermediate devices. 

The proposed research explores the possibility of automatically 

adapting to the already selected class based Quality of Service 

policy, of new users added to the backbone of the network. A 

neural network is trained to automaticlly adapt new end users 

to the quality of service policy, already set by other end-users 

and accepted by the intermediate routers. The obtained results 

show that the automated adaptation of the Quality of Service 

parameters to the already set ones, is possible for the 

intermediate routers, and the positive consequences of 

applying such a method are mentioned. 

Keywords - traffic congestion; Quality of Service; early 

detection, neural network. 

I.  INTRODUCTION  

The aim of Quality of Service (QoS) in communication 

networks is to guarantee the quality of message delivering by 

congestion management and congestion avoidance. This is 

achieved by dividing the traffic in queues and manage any 

queue individually, based on parameters, configured in any 

intermediate network device (router or switch). The packets 

are marked in the endpoint devices, according to the QoS 

model. Any intermediate device must be configured to create 

and manage queues, based on this model. Synchronized 

queue management in all devices is important for quality 

assurance. The purpose of our work is to find a mechanism 

by which each new device chooses its configuration 

parameters for queue management, based on the 

configuration parameters of the neighboring/end devices. 

The various QoS methods are based on queues management 

depending on individual traffic parameters. The chosen QoS 

parameters on the edge network devices, define the 

management queue and packet discard/queued parameters on 

the intermediate devices. The proposed research explores the 

possibility of automatically adapting to the already selected 

class based QoS policy, of new users added to the backbone 

of the network. A Neural Network (NN), defined among 

many other types of neural networks NNs by Graupe [1] is 

trained to adapt new end users to the QoS policy, already set 

by other end-users and accepted by the intermediate routers. 

The Weighted Random Early Detection (WRED) method, 

described in Cisco guide [2], was applied to manage and to 

define the train and test NN parameters. The automatic 

adaptation of additional networking devices to existing 

infrastructure with an already-defined QoS policy would 

lead to the release of human resources and acceleration of 

the adaptation of traffic parameters in communication 

management. The experimental results are presented, 

discussed and a further continuation of the study is proposed.     

The rest of this paper is organized as follows. Section II 

describes the related to the research works. Section III 

describes and compares differentiated services and weighted 

random early detection methods. In Section IV, the proposed 

method for weighted random early detection parameter 

adjustment is presented. Section V gives the experimental 

results. The conclusion closes the article. 

II. RELATED WORKS 

The authors Sahu and Sar [3] have created an intelligent 
method to recognize incoming congestion problems earlier. 
They train a feedforward neural network with parameters 
equivalent to the total drop, average per packet drop, 
cumulative per packet drop, maximum packets drop and 
minimum packets drop, for send and receive features. Тhe 
final solution is not automatically obtained as a result of the 
method, it is left to the administrator. The results are not 
clear represented and discussed, moreover the authors claim 
that their developed system missed some points of 
congestion. Within the model proposed by Calderón, et al. 
[4], the transmitted packets/traffic were predicted through a 
neural network, achieving prediction by alternating the input 
variables (Bandwidth, Congestion Algorithms, QoS, etc.). In 
this case, in TCP predictions, where one of the most 
important factors is related to the limitations of this protocol 
in both the sender and receiver, congestion improvements or 
methods for QoS were not considered. The different 
predictions have validity with respect to the real data, 
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obtaining an average error of 4%. The authors Kumar, et al.  
[5] apply a neural network to predict the actual time needed 
for transmitting the packet to the destination, depending on 
the number of hops. As neural network input train 
parameters, the authors use CWND (Congestion Window) as 
TCP state variable; Round-Trip Time (RTT) as the length of 
time it takes for a signal to be sent plus the length of time it 
takes for an acknowledgement of that signal to be received 
and the time elapsed from the last loss of a packet. However, 
this study does not use a method of prioritizing the traffic 
according to different types of priorities and they do not 
group traffic into classes according to the priority given by 
the end routers/ users. 

All mentioned researches do not apply more productive/ 
efficient methods, such as WRED in conjunction with Class-
Based Weighted Fair Queueing (CBWFQ), proposed in 
Cisco guide [2]. They do not interpret the task we offer - to 
automaticlly adapt new end users to the quality of service 
policy, already set by other end-users and accepted by the 
intermediate routers.  

III. DIFFERENTIATED SERVICES AND WEIGHTED RANDOM 

EARLY DETECTION  

Network congestion occurs when the volume of 
incoming traffic exceeds the bandwidth of the outgoing 
channel. Congestion avoidance mechanisms are trying to 
provoke TCP slow-start algorithm (RFC 2001), implemented 
in end devices. WRED and differentiated services, 
implemented in routers, become the most effective approach 
to prevent the congestions.   

A. Active Queue Management congestion avoidance 

mechanisms  

Congestion avoidance in routers is implemented by 
Active Queue Management (AQM) congestion avoidance 
mechanisms. Extra packets coming on the inbound interfaces 
are queued in buffers. The length of the queue is maintained 
within defined limits by dropping the packets.  One of the 
first effective AQM mechanism is RED (Random Early 
Detection), proposed by Floyd and Jacobson [6] in the early 
1990s. Two critical thresholds for the queue are defined: 
minimum queue length (𝒎𝒊𝒏q) and maximum queue length 
(𝒎𝒂𝒙q) and three queue management phases: no drop, 
random drop, and full drop, shown in Fig. 1. No drop phase 
is executed only for queue length from 0 to 𝒎𝒊𝒏q. All 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Random Early Detection phases. 

packets are buffered. Random drop phase is for queue length 
from 𝒎𝒊𝒏q to 𝒎𝒂𝒙q. Some packets are dropt. Full drop 
phase is for queue length above 𝒎𝒂𝒙q. All packets are 
dropped. The packet drop probability (random drop phase) is 
calculated based on the average queue length and the MPD 
(Mark Probability Denominator), Floyd and Jacobson [6]. 
MPD is the number of dropped packets when the queue size 
is equal to 𝒎𝒂𝒙q. RED algorithm gives a decision for 
congestion avoidance problem but has some disadvantages. 
Firstly, this mechanism does not affect non-TCP protocols. 
There are risky by insensitive protocols to embezzle the 
queue. Secondary, the packets from different TCP sessions 
are not dropped equally and there is a risk of global 
synchronization problem. Third, the number of dropped 
packets sharply jump to 100% when the queue size achieves 
𝒎𝒂𝒙q size. Different algorithms for the improvement of 
active queue management are proposed by Abbas et. al. [7]. 
WRED is a kind of class based queue management 
algorithms. It uses the same parameters as RED, but it has 
the ability to perform RED on traffic classes individually. 
Several traffic classes can be defined within a single queue. 
Each class has a specific level for the 𝒎𝒊𝒏q, 𝒎𝒂𝒙q and 
MPD. Packets are classified and joined to a specific class. 
Drop probability for each packet is calculated according to 
its class parameters. The packets with lowest 𝒎𝒊𝒏q and/or 
the highest MPD are dropped preferentially. Every class has 
the same three phases as the RED algorithm. WRED 
management queue with three classes: AF1, AF2 and AF3 is 
presented on Fig.2. AF1 and AF2 have the same 𝒎𝒂𝒙q and 
MPD parameters. The AF1 𝒎𝒊𝒏q parameter has the les 
value then the AF2 𝒎𝒊𝒏q parameter. Obviously the most 
packages are dropped from AF1 class, then from AF2 class 
and finally from AF3 class. The network traffic is divided in 
several queues to improve fairness in packet dropping. Each 
queue is managed by the RED, WRED or а similar 
algorithm. Weighted Fair Queue (WFQ), discussed by 
Vukadinović and Trajković [8] is a data packet scheduling 
algorithm. All the queues share outbound bandwidth equally 
or by predefined ratios. The queues are visited one by one in 
the cycle period. Every queue sends the amount of packets, 
according to its share part of the outgoing capacity. The 
simple WFQ example is presented in Fig.3. Q1 gets 50% of 
the outgoing capacity, Q2 – 25% and Q3 – 25%. The 
Scheduler visits Q1 and passes over 2 packets to the output. 
After that it visits Q2 and passes over 1 packet to the output; 
visits Q3 and passes over 1 packet to the output, and the 
cycle is rotated again. 

B. Differentiated Services Quality of Service model 

There are three main models for providing QoS in a 
network: Best Effort; Integrated Services (IntServ); 
Differentiated Services (DiffServ).  

DiffServ is called soft QoS model and uses WFQ and 

WRED algorithms. This model is based on user defined 

service classes and Per-Hop-Behavior (PHB). The flows are 

aggregated in traffic classes. The network service policies 

are defined for each class on any single node. Priorities are 

marked in each packet using Differentiated Services Code 
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Figure 2.  WRED phases. 

 
Figure 3.  Weighted Fair Queue 

Point (DSCP) for traffic classification. 

The fields Type of Service (ToS) in IPv4 header (RFC 

791) and Traffic Class (TC) in IPv6 header (RFC 2460) are 

predefined as Differentiated Services Field (DS Field) in 

RFC 2474. The first six bits of the DS field are used as a 

code point (DSCP) to select the PHB packet experiences at 

each node.   

DSCP values are described in RFC 2475. They 

determine the PHB of a packet. Four conventional PHBs are 

available: two border marks; Class-Selector PHB and 

Assured Forwarding (AF). DSCP = 000000 marks best 

effort behavior. All packets with this mark will be dropt 

when congestion occurs. This is the default PHB. DSCP = 

101110 (46 in decimal) marks Expedited Forwarding (EF). 

EF PHB provides a virtual leased line and is used for critical 

traffic class as voice traffic. EF PHB provides low-loss, 

low-latency, low-jitter and assured bandwidth service. 

DSCP values of “xxx000” (“xxx” are the class selector bits) 

mark Class-Selector PHB and are used to assure backward 

compatibility with IP ToS model. DSCP values of “xxxyy0” 

mark Assured Forwarding (AF) PHB. “xxx” is for user 

defined AF class and “yy” is for drop precedence of a 

packet. “01” denotes low drop precedence, “10” – middle 

and “11” - high drop precedence. AF PHB classes are the 

subject of this paper. 

C. DiffServ model configuration steps 

1) Network traffic classification  

Performs predominantly on edge for QoS domain router 

- Cisco Guide [9]. The traffic type is defined by Access 

Control Lists (ACL) and joined to the specific AF class. 

Every class is associated with specific DSCP value. Inbound 

packets are marked with corresponding DSCP value on the 

edge routers of QoS domain and it is not recommended to 

change it in the intermediate routers. 

 

2) Queue building  

One or more AF classes can be aggregated in one queue, 

based on PHB parameters. The Queues can be three types: 

Strict priority queue (LLQ – Low latency queue); Class 

based queues (managed by WRED algorithm) end best 

effort queue.   

3) Defining queue parameters 

The WRED parameters are defined for every queue. For 

the Strict priority queue is defined guaranteed outbound 

bandwidth. The rest of outbound bandwidth is distributing 

between all other queues. For every class based queue is 

defined: 

a) The portion of the bandwidth in percentage; 

b) For each AF class (DSCP value) in the queue: min-

threshold; max-threshold; MD (Mark-denominator).  
Successful congestion avoidance depends on the proper 

execution of the above three steps. Especially on proper 
queue management definitions, described in 3) b). 

IV. PROPOSED METHOD FOR WRED PARAMETER 

ADJUSTMENT 

In this study, we apply the WRED method for QoS in 
simple network and use NN to adjust parameters in new 
added router.  

A. Investigated topology 

We apply the WRED method for QoS, because it gives 

relation between AF classes and the most important queue 

traffic parameters. Тhe topology shown in Fig.4 is 

considered. It consists of two edge routers (Remotes 1 and 

2), an intermediate router(Central) and an edge router 

"New", which is added later, after the QoS parameters are 

set in the edge routers. The idea is to train a neural network 

(NN), implemented in the Central router with WRED 

parameters: AF class, min-threshold; max-threshold and 

MD, according to the IOS command random-detect. When 

an ad-hoc edge router "New" is added with its configured 

WRED (DSCP) requirements of its network, the already 

trained NN will approximate/adjust its MD to that already 

learned by the NN. This adjustment will be performed  

 

 
Figure 4.  Investigated topology with edge routers (Remote site 1 and 2), 

intermedite (Central) router and the ‘New’ added router 
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automatically without the need for any operator 

intervention. The new added router will have to comply 

with the pre-set QoS requirements. 

B.Neural Network strategy 

To conduct the experiment, we chose a neural network 

of MLP type, training it with a BP (Backpropagation) 

algorithm. It was trained with the DSCP values, 

corresponding to AF Classes 1,2,3 and 4, where Class 1 

represents the ‘worst queue’, for low priority traffic and 

Class 4 – the ‘best queue’, for high priority traffic as first 

parameter. The second and third parameters in the input 

training set are min-threshold and max-threshold, defined by 

the command random-detect in the Central router. If the 

min-threshold is reached, Central router randomly drops 

some packets with the specified IP precedence. If the max-

threshold is reached, Central router drops all packets with 

the specified IP precedence. The MLP has one output 

neuron and it represents the desired MD, where MD 

represents the fraction of packets dropped when the average 

queue depth is at the max-threshold. It means that one out of 

every MD packets will be dropped. Table I represents the 

correspondence between AF classes, DSCP values and drop 

precedence. After the NN was trained, a combination of 

different DSCP values with proposed bandwidth percent for 

each AF class was provided at its input layer, in order to 

simulate these parameters, send by the ‘New’ router. 

According to the “New” requirements the Central router 

generates new min-threshold and max-threshold and 

forwards the new information to the NN inputs.  

 
TABLE I.  AF CLASSES AND CORRESPONDING DSCP VALUES  

 
 

As result the NN gives an output with approximated MD 

value, which is near the value defined initially by the 

Central.  In this way, the ‘New’ router will be forced to 

"comply" with the chosen QoS policy. 

V. EXPERIMENTAL RESULTS 

The initially selected MLP network structure is 6-4-1 and 
is trained to MSE (Mean-Square-Error) = 0.1. The train data 
are given in Fig.5. They have 12 input samples as 
combinations between DSCPs, min-threshold and max-
threshold, defined in Remote 1 and 2. After conducting the 
test phase with the ‘New’ data, the obtained MD 
approximation is shown in Fig. 6. The approximation error 
EAPROX is calculated according to (1), where MDRSi is the 
initial real system value for the Central router, for i-th input 

                                                                                                                         

                        (1) 

 
 

combination, and MDNNi is the NN response, and n is the 

number of input combinations. In this case EAPROX is 2.56. 

Obviously, it is necessary to improve the MPL parameters, 

training a network with improved structure of 6-6-4-1 and 

with more iterations aiming to reach a smaller MSE. In this 

case we apply MSE of 0.01. The obtained better results using 

this NN topology are given in Fig. 7. In this case EAPROX 

is 0.91. Fig.8 represents the NN ‘New’ test data with MD 

approximation.  Thus, based on the training of the optimized 

neural network with the defined AF classes and their initial 

matching random-detection parameters, we obtain a 

relatively good MD approximation. Further work is foreseen 

to test the NN with more combinations of input parameters.   

VI. CONCLUSION 

In this research, a MLP neural network was trained, 

aiming to automatically adapt new end users to the quality 

of service policy, already set by other end-users and 

accepted by the intermediate routers. The WRED method 

was applied to manage and to define the train and test NN 

parameters. The proposed method shows good MD 

approximation results for the tested input set. The main 

benefit of the automatic adaptation of additional networking  

 

 
 

Figure 5.  NN train data with initial QoS parameters 

 
Figure 6.  MD approximation with MLP – 6-4-1 
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Figure 7.  MD approximation with MLP – 6-6-4-1 

 

Figure 8.  NN ‘New’ test data with MD approximation 

devices to existing infrastructure with an already-defined 
QoS policy, would lead to the release of human qualified 
resources, needed for manual QoS parameter pre-settings. It 
also would accelerate the traffic parameters adaptation in 
communication management and in real time 
communication. As further work, the input training and test 
sets may be increased to generalize the method. The idea is 
to train the NN with the same standard AF classes but with 
much more possible / reasonable combinations of min-max 
thresholds, together with a proper proposal for the required 
link bandwidth at the outputs of the NN. The investigated 
topology given in Fig. 4, may be tested with more Remote 
routers and many “New” routers, to test the behavior of the 
Central router. In this case different NNs could be trained 
with QoS parameters defined in the different Remotes, and 
the NN outputs may be combined in input train data for a 
generalized neural network, to give the final MD proposal. 

Also software modules will be developed to integrate the 
neural network into a module of the central router operating 
system, for direct data exchange between the routers. Aiming 
to achieve/solve this task, we envisage the use of Python 
programming language, suitable for implementation in 
networking operating systems. As hardware devices we 
intend to use Cisco routers, platforms 2800/2900 with IOS 
15.0.  
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