
 Control of Traffic Congestion with Weighted Random Early Detection and Neural

Network Implementation

Irina Topalova

Department of Information Technology

University of Telecommunications and Post, Bulgaria

Sofia, Bulgaria

itopalova@abv.bg

Pavlinka Radoyska

College of Energy and Electronics

Technical University - Sofia

Sofia, Bulgaria

pradoiska@abv.bg

Abstract—Applying Quality of Service mechanisms to modern

communications is essential for the efficiency and for the

traffic reliability. The various Quality of Service methods are

based on queues management depending on individual traffic

parameters. Choosing Quality of Service parameters on the

edge network devices defines the management queue and

packet discard/queued parameters on the intermediate devices.

The proposed research explores the possibility of automatically

adapting to the already selected class based Quality of Service

policy, of new users added to the backbone of the network. A

neural network is trained to automaticlly adapt new end users

to the quality of service policy, already set by other end-users

and accepted by the intermediate routers. The obtained results

show that the automated adaptation of the Quality of Service

parameters to the already set ones, is possible for the

intermediate routers, and the positive consequences of

applying such a method are mentioned.

Keywords - traffic congestion; Quality of Service; early

detection, neural network.

I. INTRODUCTION

The aim of Quality of Service (QoS) in communication

networks is to guarantee the quality of message delivering by

congestion management and congestion avoidance. This is

achieved by dividing the traffic in queues and manage any

queue individually, based on parameters, configured in any

intermediate network device (router or switch). The packets

are marked in the endpoint devices, according to the QoS

model. Any intermediate device must be configured to create

and manage queues, based on this model. Synchronized

queue management in all devices is important for quality

assurance. The purpose of our work is to find a mechanism

by which each new device chooses its configuration

parameters for queue management, based on the

configuration parameters of the neighboring/end devices.

The various QoS methods are based on queues management

depending on individual traffic parameters. The chosen QoS

parameters on the edge network devices, define the

management queue and packet discard/queued parameters on

the intermediate devices. The proposed research explores the

possibility of automatically adapting to the already selected

class based QoS policy, of new users added to the backbone

of the network. A Neural Network (NN), defined among

many other types of neural networks NNs by Graupe [1] is

trained to adapt new end users to the QoS policy, already set

by other end-users and accepted by the intermediate routers.

The Weighted Random Early Detection (WRED) method,

described in Cisco guide [2], was applied to manage and to

define the train and test NN parameters. The automatic

adaptation of additional networking devices to existing

infrastructure with an already-defined QoS policy would

lead to the release of human resources and acceleration of

the adaptation of traffic parameters in communication

management. The experimental results are presented,

discussed and a further continuation of the study is proposed.

The rest of this paper is organized as follows. Section II

describes the related to the research works. Section III

describes and compares differentiated services and weighted

random early detection methods. In Section IV, the proposed

method for weighted random early detection parameter

adjustment is presented. Section V gives the experimental

results. The conclusion closes the article.

II. RELATED WORKS

The authors Sahu and Sar [3] have created an intelligent
method to recognize incoming congestion problems earlier.
They train a feedforward neural network with parameters
equivalent to the total drop, average per packet drop,
cumulative per packet drop, maximum packets drop and
minimum packets drop, for send and receive features. Тhe
final solution is not automatically obtained as a result of the
method, it is left to the administrator. The results are not
clear represented and discussed, moreover the authors claim
that their developed system missed some points of
congestion. Within the model proposed by Calderón, et al.
[4], the transmitted packets/traffic were predicted through a
neural network, achieving prediction by alternating the input
variables (Bandwidth, Congestion Algorithms, QoS, etc.). In
this case, in TCP predictions, where one of the most
important factors is related to the limitations of this protocol
in both the sender and receiver, congestion improvements or
methods for QoS were not considered. The different
predictions have validity with respect to the real data,

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

obtaining an average error of 4%. The authors Kumar, et al.
[5] apply a neural network to predict the actual time needed
for transmitting the packet to the destination, depending on
the number of hops. As neural network input train
parameters, the authors use CWND (Congestion Window) as
TCP state variable; Round-Trip Time (RTT) as the length of
time it takes for a signal to be sent plus the length of time it
takes for an acknowledgement of that signal to be received
and the time elapsed from the last loss of a packet. However,
this study does not use a method of prioritizing the traffic
according to different types of priorities and they do not
group traffic into classes according to the priority given by
the end routers/ users.

All mentioned researches do not apply more productive/
efficient methods, such as WRED in conjunction with Class-
Based Weighted Fair Queueing (CBWFQ), proposed in
Cisco guide [2]. They do not interpret the task we offer - to
automaticlly adapt new end users to the quality of service
policy, already set by other end-users and accepted by the
intermediate routers.

III. DIFFERENTIATED SERVICES AND WEIGHTED RANDOM

EARLY DETECTION

Network congestion occurs when the volume of
incoming traffic exceeds the bandwidth of the outgoing
channel. Congestion avoidance mechanisms are trying to
provoke TCP slow-start algorithm (RFC 2001), implemented
in end devices. WRED and differentiated services,
implemented in routers, become the most effective approach
to prevent the congestions.

A. Active Queue Management congestion avoidance

mechanisms

Congestion avoidance in routers is implemented by
Active Queue Management (AQM) congestion avoidance
mechanisms. Extra packets coming on the inbound interfaces
are queued in buffers. The length of the queue is maintained
within defined limits by dropping the packets. One of the
first effective AQM mechanism is RED (Random Early
Detection), proposed by Floyd and Jacobson [6] in the early
1990s. Two critical thresholds for the queue are defined:
minimum queue length (𝒎𝒊𝒏q) and maximum queue length
(𝒎𝒂𝒙q) and three queue management phases: no drop,
random drop, and full drop, shown in Fig. 1. No drop phase
is executed only for queue length from 0 to 𝒎𝒊𝒏q. All

Figure 1. Random Early Detection phases.

packets are buffered. Random drop phase is for queue length
from 𝒎𝒊𝒏q to 𝒎𝒂𝒙q. Some packets are dropt. Full drop
phase is for queue length above 𝒎𝒂𝒙q. All packets are
dropped. The packet drop probability (random drop phase) is
calculated based on the average queue length and the MPD
(Mark Probability Denominator), Floyd and Jacobson [6].
MPD is the number of dropped packets when the queue size
is equal to 𝒎𝒂𝒙q. RED algorithm gives a decision for
congestion avoidance problem but has some disadvantages.
Firstly, this mechanism does not affect non-TCP protocols.
There are risky by insensitive protocols to embezzle the
queue. Secondary, the packets from different TCP sessions
are not dropped equally and there is a risk of global
synchronization problem. Third, the number of dropped
packets sharply jump to 100% when the queue size achieves
𝒎𝒂𝒙q size. Different algorithms for the improvement of
active queue management are proposed by Abbas et. al. [7].
WRED is a kind of class based queue management
algorithms. It uses the same parameters as RED, but it has
the ability to perform RED on traffic classes individually.
Several traffic classes can be defined within a single queue.
Each class has a specific level for the 𝒎𝒊𝒏q, 𝒎𝒂𝒙q and
MPD. Packets are classified and joined to a specific class.
Drop probability for each packet is calculated according to
its class parameters. The packets with lowest 𝒎𝒊𝒏q and/or
the highest MPD are dropped preferentially. Every class has
the same three phases as the RED algorithm. WRED
management queue with three classes: AF1, AF2 and AF3 is
presented on Fig.2. AF1 and AF2 have the same 𝒎𝒂𝒙q and
MPD parameters. The AF1 𝒎𝒊𝒏q parameter has the les
value then the AF2 𝒎𝒊𝒏q parameter. Obviously the most
packages are dropped from AF1 class, then from AF2 class
and finally from AF3 class. The network traffic is divided in
several queues to improve fairness in packet dropping. Each
queue is managed by the RED, WRED or а similar
algorithm. Weighted Fair Queue (WFQ), discussed by
Vukadinović and Trajković [8] is a data packet scheduling
algorithm. All the queues share outbound bandwidth equally
or by predefined ratios. The queues are visited one by one in
the cycle period. Every queue sends the amount of packets,
according to its share part of the outgoing capacity. The
simple WFQ example is presented in Fig.3. Q1 gets 50% of
the outgoing capacity, Q2 – 25% and Q3 – 25%. The
Scheduler visits Q1 and passes over 2 packets to the output.
After that it visits Q2 and passes over 1 packet to the output;
visits Q3 and passes over 1 packet to the output, and the
cycle is rotated again.

B. Differentiated Services Quality of Service model

There are three main models for providing QoS in a
network: Best Effort; Integrated Services (IntServ);
Differentiated Services (DiffServ).

DiffServ is called soft QoS model and uses WFQ and

WRED algorithms. This model is based on user defined

service classes and Per-Hop-Behavior (PHB). The flows are

aggregated in traffic classes. The network service policies

are defined for each class on any single node. Priorities are

marked in each packet using Differentiated Services Code

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 2. WRED phases.

Figure 3. Weighted Fair Queue

Point (DSCP) for traffic classification.

The fields Type of Service (ToS) in IPv4 header (RFC

791) and Traffic Class (TC) in IPv6 header (RFC 2460) are

predefined as Differentiated Services Field (DS Field) in

RFC 2474. The first six bits of the DS field are used as a

code point (DSCP) to select the PHB packet experiences at

each node.

DSCP values are described in RFC 2475. They

determine the PHB of a packet. Four conventional PHBs are

available: two border marks; Class-Selector PHB and

Assured Forwarding (AF). DSCP = 000000 marks best

effort behavior. All packets with this mark will be dropt

when congestion occurs. This is the default PHB. DSCP =

101110 (46 in decimal) marks Expedited Forwarding (EF).

EF PHB provides a virtual leased line and is used for critical

traffic class as voice traffic. EF PHB provides low-loss,

low-latency, low-jitter and assured bandwidth service.

DSCP values of “xxx000” (“xxx” are the class selector bits)

mark Class-Selector PHB and are used to assure backward

compatibility with IP ToS model. DSCP values of “xxxyy0”

mark Assured Forwarding (AF) PHB. “xxx” is for user

defined AF class and “yy” is for drop precedence of a

packet. “01” denotes low drop precedence, “10” – middle

and “11” - high drop precedence. AF PHB classes are the

subject of this paper.

C. DiffServ model configuration steps

1) Network traffic classification

Performs predominantly on edge for QoS domain router

- Cisco Guide [9]. The traffic type is defined by Access

Control Lists (ACL) and joined to the specific AF class.

Every class is associated with specific DSCP value. Inbound

packets are marked with corresponding DSCP value on the

edge routers of QoS domain and it is not recommended to

change it in the intermediate routers.

2) Queue building

One or more AF classes can be aggregated in one queue,

based on PHB parameters. The Queues can be three types:

Strict priority queue (LLQ – Low latency queue); Class

based queues (managed by WRED algorithm) end best

effort queue.

3) Defining queue parameters

The WRED parameters are defined for every queue. For

the Strict priority queue is defined guaranteed outbound

bandwidth. The rest of outbound bandwidth is distributing

between all other queues. For every class based queue is

defined:

a) The portion of the bandwidth in percentage;

b) For each AF class (DSCP value) in the queue: min-

threshold; max-threshold; MD (Mark-denominator).
Successful congestion avoidance depends on the proper

execution of the above three steps. Especially on proper
queue management definitions, described in 3) b).

IV. PROPOSED METHOD FOR WRED PARAMETER

ADJUSTMENT

In this study, we apply the WRED method for QoS in
simple network and use NN to adjust parameters in new
added router.

A. Investigated topology

We apply the WRED method for QoS, because it gives

relation between AF classes and the most important queue

traffic parameters. Тhe topology shown in Fig.4 is

considered. It consists of two edge routers (Remotes 1 and

2), an intermediate router(Central) and an edge router

"New", which is added later, after the QoS parameters are

set in the edge routers. The idea is to train a neural network

(NN), implemented in the Central router with WRED

parameters: AF class, min-threshold; max-threshold and

MD, according to the IOS command random-detect. When

an ad-hoc edge router "New" is added with its configured

WRED (DSCP) requirements of its network, the already

trained NN will approximate/adjust its MD to that already

learned by the NN. This adjustment will be performed

Figure 4. Investigated topology with edge routers (Remote site 1 and 2),

intermedite (Central) router and the ‘New’ added router

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

automatically without the need for any operator

intervention. The new added router will have to comply

with the pre-set QoS requirements.

B.Neural Network strategy

To conduct the experiment, we chose a neural network

of MLP type, training it with a BP (Backpropagation)

algorithm. It was trained with the DSCP values,

corresponding to AF Classes 1,2,3 and 4, where Class 1

represents the ‘worst queue’, for low priority traffic and

Class 4 – the ‘best queue’, for high priority traffic as first

parameter. The second and third parameters in the input

training set are min-threshold and max-threshold, defined by

the command random-detect in the Central router. If the

min-threshold is reached, Central router randomly drops

some packets with the specified IP precedence. If the max-

threshold is reached, Central router drops all packets with

the specified IP precedence. The MLP has one output

neuron and it represents the desired MD, where MD

represents the fraction of packets dropped when the average

queue depth is at the max-threshold. It means that one out of

every MD packets will be dropped. Table I represents the

correspondence between AF classes, DSCP values and drop

precedence. After the NN was trained, a combination of

different DSCP values with proposed bandwidth percent for

each AF class was provided at its input layer, in order to

simulate these parameters, send by the ‘New’ router.

According to the “New” requirements the Central router

generates new min-threshold and max-threshold and

forwards the new information to the NN inputs.

TABLE I. AF CLASSES AND CORRESPONDING DSCP VALUES

As result the NN gives an output with approximated MD

value, which is near the value defined initially by the

Central. In this way, the ‘New’ router will be forced to

"comply" with the chosen QoS policy.

V. EXPERIMENTAL RESULTS

The initially selected MLP network structure is 6-4-1 and
is trained to MSE (Mean-Square-Error) = 0.1. The train data
are given in Fig.5. They have 12 input samples as
combinations between DSCPs, min-threshold and max-
threshold, defined in Remote 1 and 2. After conducting the
test phase with the ‘New’ data, the obtained MD
approximation is shown in Fig. 6. The approximation error
EAPROX is calculated according to (1), where MDRSi is the
initial real system value for the Central router, for i-th input

 (1)

combination, and MDNNi is the NN response, and n is the

number of input combinations. In this case EAPROX is 2.56.

Obviously, it is necessary to improve the MPL parameters,

training a network with improved structure of 6-6-4-1 and

with more iterations aiming to reach a smaller MSE. In this

case we apply MSE of 0.01. The obtained better results using

this NN topology are given in Fig. 7. In this case EAPROX

is 0.91. Fig.8 represents the NN ‘New’ test data with MD

approximation. Thus, based on the training of the optimized

neural network with the defined AF classes and their initial

matching random-detection parameters, we obtain a

relatively good MD approximation. Further work is foreseen

to test the NN with more combinations of input parameters.

VI. CONCLUSION

In this research, a MLP neural network was trained,

aiming to automatically adapt new end users to the quality

of service policy, already set by other end-users and

accepted by the intermediate routers. The WRED method

was applied to manage and to define the train and test NN

parameters. The proposed method shows good MD

approximation results for the tested input set. The main

benefit of the automatic adaptation of additional networking

Figure 5. NN train data with initial QoS parameters

Figure 6. MD approximation with MLP – 6-4-1

-5

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12

Mark-denominator - MD

Value for the "Central" router

Approximated value for the "New" router

Assured

Forwarding

Low Drop

(DSCP)

Medium

Drop

(DSCP)

High Drop

(DSCP)

Class 4 AF41 (34) AF42 (36) AF43 (38)

Class 3 AF31 (26) AF32 (28) AF33 (30)

Class 2 AF21 (18) AF22 (20) AF23 (22)

Class 1 AF11 (10) AF12 (12) AF13 (14)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

NN Train Data

DSCP-Class4-Higher priority DSCP-Class3

DSCP-Class2 DSCP-Class1-Lower priority

Min-threshold Max-threshold

Mark-denominator

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

Figure 7. MD approximation with MLP – 6-6-4-1

Figure 8. NN ‘New’ test data with MD approximation

devices to existing infrastructure with an already-defined
QoS policy, would lead to the release of human qualified
resources, needed for manual QoS parameter pre-settings. It
also would accelerate the traffic parameters adaptation in
communication management and in real time
communication. As further work, the input training and test
sets may be increased to generalize the method. The idea is
to train the NN with the same standard AF classes but with
much more possible / reasonable combinations of min-max
thresholds, together with a proper proposal for the required
link bandwidth at the outputs of the NN. The investigated
topology given in Fig. 4, may be tested with more Remote
routers and many “New” routers, to test the behavior of the
Central router. In this case different NNs could be trained
with QoS parameters defined in the different Remotes, and
the NN outputs may be combined in input train data for a
generalized neural network, to give the final MD proposal.

Also software modules will be developed to integrate the
neural network into a module of the central router operating
system, for direct data exchange between the routers. Aiming
to achieve/solve this task, we envisage the use of Python
programming language, suitable for implementation in
networking operating systems. As hardware devices we
intend to use Cisco routers, platforms 2800/2900 with IOS
15.0.

REFERENCES

[1] D. Graupe, ‘Deep Learning Neural Networks: Design and
Case Studies’, World Scientific Publishing Co Inc. pp. 57–
110, ISBN 978-981-314-647-1, July, 2016.

[2]https://www.cisco.com/c/en/us/td/docs/ios/120s/feature/guide/fs
wfq26.html, last accessed 21.04.2018.

[3] Y. Sahu and S. K. Sar, ‘Congestion analysis in wireless
network using predictive techniques’, Research Journal of
Computer and Information Technology Sciences, ISSN 2320
– 6527 vol. 5(7), pp. 1-4, September, 2017.

[4] A. F. Luque Calderón, E. J. Vela Porras, O. J. Salcedo Parra,
‘Predicting Traffic through Artificial Neural Networks’,
Contemporary Engineering Sciences, vol. 10, no. 24, pp. 1195
- 1209 HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ces. 2017.710146, 2017.

[5] S. S. Kumar, K. Dhaneshwar, K. Garima, G. Neha and S.
Ayush, ‘Congestion Control in Wired Network for
Heterogeneous resources using Neural Network’,
International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 3, Issue 5, May
2013, ISSN: 2277 128X, pp.533-537, 2013.

[6] S. Floyd and V. Jacobson, ‘Random Early Detection
Gateways for Congestion Avoidance’, IEEE/ACM
Transactions on Networking, Networking, vol. 1 No. 4, pp.
397-413, August, 1993,
Available:http://www.icir.org/floyd/papers/early.twocolumn.p
df

[7] G. Abbas, Z. Halim and Z. H. Abbas, ‘Fairness-Driven Queue
Management: A Survey and Taxonomy’, IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 324-
367, Firstquarter 2016. doi: 10.1109/COMST.2015.2463121,
2016.

[8] V. Vukadinović and L. Trajković, ‘RED with Dynamic
Thresholds for improved fairness’, Proceedings of the 2004
ACM symposium on Applied computing (SAC '04). ACM,
New York, NY, USA, 371-372. DOI:
https://doi.org/10.1145/967900.967980, 2004.

 [9] QoS: DiffServ for Quality of Service Overview Configuration
Guide, Cisco IOS Release 15M&T, January16, 2013
Available:https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/qos_dfsrv/configuration/15-mt/qos-dfsrv-15-mt-
book.html

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

NN Data of the 'New' router and MD
approximation

DSCP-Class4-Higher priority DSCP-Class3

DSCP-Class2 DSCP-Class1-Lower priority

Min-threshold Max-threshold

Mark-denominator

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12

Mark-denominator - MD

Value for the "Central" router

Approximated value for the "New" router

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-634-7

ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems

https://books.google.com/books?id=e5hIDQAAQBAJ&pg=PA57
https://books.google.com/books?id=e5hIDQAAQBAJ&pg=PA57
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-981-314-647-1
https://www.cisco.com/c/en/us/td/docs/ios/120s/feature/guide/fswfq26.html
https://www.cisco.com/c/en/us/td/docs/ios/120s/feature/guide/fswfq26.html
http://www.m-hikari.com/
https://doi.org/10.12988/ces.%202017.710146
https://doi.org/10.1145/967900.967980

