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Abstract—This paper investigates the topological entropy of
continuous-time polytopic systems. The topological entropy is a
measure that quantifies the instability in dynamical linearsystems
and has important applications in autonomous systems. Polytopic
systems are dynamical linear systems whose coefficients arefunc-
tions of an uncertain vector constrained into a polytope. A novel
approach is proposed for establishing upper bounds of the largest
topological entropy of continuous-time polytopic systemsbased
on the Routh-Hurwitz stability criterion. The upper bounds are
established through Linear Matrix Inequality (LMI) feasib ility
tests, which amount to solving convex optimization problems. A
numerical example illustrates the proposed approach.
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I. I NTRODUCTION

The topological entropy is a measure that quantifies the
instability in dynamical linear systems. This measure is defined
as the sum of the real part of the unstable eigenvalues in the
continuous-time case, and as the product of the magnitude
of the unstable eigenvalues in the discrete-time case [1]. The
topological entropy has important applications in autonomous
systems where it is required to ensure stability with communi-
cation constraints [2]. For instance, this measure can be used to
establish the existence of stabilizing state feedback controllers
in the presence of constraints on the signal-to-noise ratio[3].
See also [4] [5] for other uses of this measure.

Unfortunately, the mathematical model of a control system
is often affected by uncertainty, e.g., representing physical
quantities that cannot be measured exactly or that are subject
to changes. As a consequence, one has to consider a family of
admissible models depending on the uncertainty. Clearly, the
instability measures become functions of the uncertainty,and
the target is to determine the largest instability measuresover
the admissible uncertainties.

In the literature, the topological entropy of continuous-time
uncertain systems has been investigated in [6] [7] through con-
vex optimization. However, these methods exploit Lyapunov
functions [8] and determinants, and cannot be easily used for
control design because the presence of an unknown controller
would lead to the formulation of nonconvex optimization
problems.

In order to deal with this drawback, a novel approach is
proposed in this paper for investigating the topological entropy
of continuous-time uncertain systems. Specifically, polytopic
systems are considered, i.e., dynamical linear systems whose
coefficients are functions of an uncertain vector constrained
into a polytope. It is shown that upper bounds of the largest

topological entropy can be established based on the Routh-
Hurwitz stability criterion through LMI feasibility tests, which
amount to solving convex optimization problems. A numerical
example illustrates the proposed approach.

The paper is organized as follows. Section II introduces
the preliminaries. Section III describes the proposed results.
Section IV presents an illustrative examples. Lastly, Section V
concludes the paper with some final remarks.

II. PRELIMINARIES

Notation: R,C: sets of real and complex numbers;
ℜ(M),ℑ(M): real and imaginary parts ofM ; I: identity
matrix (of size specified by the context);M ′: transpose;
M > 0, M ≥ 0: symmetric positive definite and symmetric
positive semidefinite matrix;λi(M): i-th eigenvalue ofM ;
spec(M): set of eigenvalues ofM ; ‖M‖2: 2-norm of v;
M2: entry-wise square; Hurwitz matrix: a matrix whose
eigenvalues have negative real parts.

Let us consider the continuous-time uncertain system

ẋ(t) = A(p)x(t) (1)

wheret ∈ R is the time,x(t) ∈ Rn is the state,p ∈ Rq is an
uncertain vector constrained by

p ∈ S (2)

whereS is the simplex

S =

{

p ∈ R
q : pi ≥ 0,

q
∑

i=1

pi = 1

}

, (3)

andA(p) ∈ Rn×n is a matrix polynomial.

Let B ∈ Rn×n. The topological entropy ofB is defined as

µ(B) =

n
∑

i=1

max {0,ℜ(λi(B))} , (4)

i.e., as the sum of the real part of the unstable eigenvalues of B.

Problem 1. The problem that we consider in this paper
consists of determining the largest topological entropy of(1)–
(3), i.e.,

µ∗ = sup
p∈S

µ(A(p)). (5)

126Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems



III. PROPOSEDAPPROACH

The first step of the proposed approach is to introduce a
matrix whose eigenvalues are all the possible sums of the
eigenvalues of a given matrix. Specifically, letB ∈ R

n×n

the given matrix, and letk = 1, . . . , n denote the number of
eigenvalues that have to be multiplied. We denote withΩk(B)
the matrix function whose eigenvalues are all the possible sums
of k eigenvalues ofB, i.e.,

spec(Ωk(B))

{

k
∑

i=1

λzi(U), z ∈ Ik

}

(6)

whereIk is the set ofk-tuples in{1, . . . , n} defined by

Ik = {(z1, . . . , zk) : zi ∈ {1, . . . , n},

zi < zi+1 ∀i = 1, . . . , k − 1}.
(7)

The matrix functionΩk(B) can be built for any positive
integer n and for anyk ∈ {1, . . . , n} following the idea
described by Bellman [9].

The second step of the proposed approach is to build a
modified Routh-Hurwitz table. Specifically, letB ∈ R

n×n and
θ ∈ C. Let us define

f(θ,B) = det (θI −B) (8)

which is a polynomial inθ. We denote withgi,j(B) the (i, j)-
th entry of the table obtained forf(θ,B) under the following
constraints:

1) gi,j(B) is a polynomial inB;
2) gi,1(B) > 0 if and only if B is Hurwitz.

The third step of the proposed approach is to exploit convex
optimization. Specifically, letw > 0, and fork = 1, . . . , n let
us define

hi,k(p, w) = g2i,1 (Ωk(A(p)) − wI) (9)

which is a polynomial inp. Let mi,k(p, w) be the homoge-
neous polynomial inp with the minimum degree satisfying

mi,k(p, w) = hi,k(p, w) ∀p ∈ S. (10)

Let di,k denote such a degree. Then, a condition for establish-
ing thatw is an upper bound ofµ∗ can be obtained by looking
for a scalarε > 0 such that

mi,k(p
2, w)− ε‖p‖

2di,k

2 is SOS∀i, k (11)

where SOS stands for sum of squares of polynomials.

The condition (11) amounts to solving a convex optimiza-
tion problem because establishing whether a polynomial is
SOS amounts to establishing feasibility of an LMI; see, for
instance, [10] and references therein. It can be shown that
the condition (11) is sufficient for establishing thatw is an
upper bound ofµ∗. Moreover, it can also be shown that this
condition is also necessary by suitably increasing the degree
of the polynomial in (11) following the ideas in [11].

IV. EXAMPLE

Let us consider for simplicity (1)–(3) with

A(p) = p1

(

3.4 2.9
−1.6 −1.6

)

+ p2

(

−2.9 −4.1
4.5 0.3

)

.

We test the condition (11) for different values through bi-
section, finding that the best upper bound guaranteed by this
condition is

µ̂ = 2.457

(the condition (11) is equivalent to an LMI with 4 scalar
variables and can be solved in less than one second on standard
personal computers). Brute force search shows that this upper
bound is tight, i.e.,µ∗ = µ̂. Indeed,

p = (0.785, 0.215)′ ⇒ A(p) = µ̂.

V. CONCLUSION

A novel approach has been proposed for establishing
upper bounds of the largest topological entropy in continuous-
time polytopic systems. The proposed approach can be easily
implemented with standard software, moreover the numerical
example has shown that the computational burden can be
significantly low and that the upper bounds can be non-
conservative. Future work will explore the use of the proposed
approach for control design.
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