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Abstract—This work develops a knowledge based system using environment, [4][5]. As an example, we can cite klian et
Fuzzy Cognitive Maps (FCM) for autonomous navigatia. A al. [6], which describe an autonomous mobile rdbotuse
new variant of FCM, named Dynamic-Fuzzy Cognitive Mps  in agriculture, in order to replace the human wotkeough
(D-FCM), is used to model decision, tasks and/or rhe  inhospitable activities, as spraying with inseckés.
inference in the robot/mobile navigation. Fuzzy Cogitive The problem of mobile robots control comprises two
Maps is a tool that models qualitative structured kowledge  mgain sub problems: 1) navigation, determining of
through concepts and causal relationships. The praped  opot/vehicle position and orientation at a givienet, and 2)
model allows representing the dynamic behavior oftie mobile ¢ jiqed tours, which refers to the control path écfdllowed
robot (agent) in different environments. A brief review of by the robot/vehicle. Some cases have more contglexq
correlated works in navigation area using FCM and Bzzy - o°\vpri Architecture [7] is used to develop DynarBiuzzy
Systems is presented. Some simulation results aréscussed . .
Cognitive Maps-based models for autonomous nawdgati

highlighting the ability of the mobile to navigate among . . s - .
obstacles and reach targets (havigation environment with hdlfferent goals: avoiding obstacles, explaaii and
reach targets.

Keywords - Fuzzy Cognitive Maps; Autonomous Navigations; This work specifically proposes the developmentanf

Hybrid Architecture; Intelligent dynamic decision systems. autonomous navigation controller system using kéari
knowledge about the behavior of the robot/vehiahe i

different scenarios, modeled by Fuzzy Cognitive Map
(FCM) [8]. In this case, the robot/vehicle deterasn
o ] o sequences of action in order to reach a given gja& from
Artificial Intelligence (Al) has applications and g predefined starting state.
development in various areas of knowledge, such as The FCM combines aspects of Artificial Neural
mathematical biology, neuroscience, computer seienc Networks [2], Fuzzy Logic [1], Semantics Networ2§ ind
swarm robotics and others. The research area @figent  others intelligent systems techniques. Through itivgn
computational systems aims to develop methodstthab  maps, beliefs or statements, regarding a limiteslwedge
mimic or approach the human's capabilites to solvejomain, are expressed through words or phrases,
problems. These news methods are looking to emulaigterconnected by simple relationship of cause affect
human’s abilities to cope with very complex proesss (question/non-question). In the proposed model, FEM
based on inaccurate and/or approximated informationelationships are dynamically adapted by rules the
However, this information can be obtained froméfpert's  triggered by the occurrence of special events. &feagnts
knowledge and/or operational data or behavior of amnyst change mobile behavior. There are severalsiarthe
industrial system [1]. o , literature that model heuristic knowledge necesstmy
Researches in autonomous navigation are in stage gkcision-making in autonomous navigation, e.g.,sSita
ascent. Autonomous Systems have the ability tooperf Fuzzy and FCM Systems [9]-[13]. In a similar wafiet
complex tasks with a high degree of success [2]thla  proposed approach in this paper is to build qublia
context, the complexity involved in the task ofjeé@ory  models for mobile navigation by means of fuzzy eyst.
generation is admittedly high and, in many caseguires  However, the knowledge is structured and built as a
the autonomous system being able to learn a namigat cognitive map representing the behavior of the feobi
strategy through interaction with the environmejt [ Therefore, the proposed autonomous navigation msyste
There is a growing interest in the development ofmyst be able to take dynamic decisions to moveutirdhe
autonomous (agents) robots and vehicles, mainlgusof  environment and change its trajectory as a re$ahe@vent.

the great diversity of tasks that can be carrietbguthem,  For this, the proposed FCM model must aggregateretis
especially those that endanger human health arttior

l. INTRODUCTION
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and continuous knowledge about navigation. Acticugh
as the decision to turn left or right, when sensarsuse
obstacles, and accelerate, when there is a free pat
always valid control actions in all circumstandesthis way,
this type of action is modeled as causal relatignsh a
classical FCM.

However, there are specific situations, such asi¢es to
maintain a trend of motion, mainly in curves, whimwe
vehicle is turning left and sensors to accuse aaotestacle in
the same direction. Due to inertia and physicdri@®ns,
the mobile cannot abruptly change direction; tlyiget of
maneuver must be carefully executed. In this cansome
specific situations should also be modeled in thegp rby
causal relationships and concepts, but they aié et as a
result of a decision-making task caused by ongewvents.
To implement such a strategy, new types of relatiggs and
concepts will be added to the FCM classic model.

on rules if-then type. However, due to this “rigktiowledge
representation the FCM-based inference models

robustness in presence of dynamic modificationsanotiori
modeled [17]. To circumvent this problem, this cei
develops a new type of FCM, in which concepts asasal
relationships are dynamically inserted into thepbrdrom
the occurrence of events. In this way, the dynafuizy
cognitive map model is able to dynamically acqainel use

the heuristic knowledge. The proposed D-FCM and its

application in autonomous navigation will be depeld and
tested in the following sections.

Related work using cognitive maps in the robotics

research area can be found in the literature. Antbam, it
can be cited the work by Min et al. [12], that eaysl
probabilistic FCM in the decision-making of a sacoebot
team. These actions are related to the behavitreofeam,

such as kick the ball in presence of opponents. The

This new type of FCM, in which the concepts andprobabilistic FCM aggregates a likelihood functiorupdate

relationships are valid as a result of decisionyedr by
events modeled by rules
Specifically, the work of Mendonga et al. [16] pets a
type of D-FCM (ED-FCM), which aggregates the ocenoe
of events and other facilities that makes approptias type
of cognitive map, for the development of intelligeontrol
and automation in an industrial environment.

the concepts of the map. A FCM is used by Pipe [b3]

is called Dynamic-FCM.guide an autonomous robot. The FCM is designed faom

priori knowledge of experts and afterwards it iined by a
genetic algorithm.

The inference process of the FCM model can be

calculated by the following rule given in (1) ar@);(these
equations are used in several works in the liteeate.g.,

Section Il presents the concept of FCM and the FCM-CM and evolutions such as Mendonca et al. [7] Sina),

applied in autonomous navigation. Section Il iifages the

D-FCM model utilized. Section IV presents the Hybri

Architecture and a brief background. Section V shdie
results, and finally, Section VI presents the cosidn and
future works.

Il Fuzzy COGNITIVE MAPS

Cognitive maps were initially proposed by Axelrdd]
to represent words, thoughts, tasks, or other iferked to a
central concept and willing radially around thisncept.
Axelrod developed also a mathematical treatmenttese
maps, based in graph theory, and operations wittigesa. In
general, these cognitive maps are "belief struttafea

Bridges and Vaugh{9].

A = f nA. W. )+ A%
i (2151 ]X ]|)+ i (1)

j#i
where:

1

PR 2

f(x)=1_|_e

A review of correlated works in indoor autonomous

person or group, allowing to infer or predict the navigation robotics can be found in [14]. The obyjex of

consequences that this organization of ideas repte# the
graph; in cognitive maps, a central concept isveaessary.

this paper is to develop an autonomous exploremtage
(robot) based in a low cost and open source platfeith the

This mathematical model was adapted for inclusibn o@Pility to tune FCM model by interacting with the

Fuzzy logic uncertainty. In specific, linguisticerms

environment. The agent architecture is

generating widespread fuzzy cognitive maps. Like thBraitenberg [15], who suggests the application of

original, FCMs are directional graphs, in which themeric

computational intelligence techniques, starting with a

values are fuzzy sets or variables. The "graph sfode simple model with one or only a few functionalitiend

associated to linguistic concepts are representeduizy

gradually adding new objectives to improve the esadion

sets and each "node" is linked with others througtf@papility of the agent.

connections [8]. Each of these connections hasnzerigal
value (weight), which represents a fuzzy varialelated to
the strength of its concepts.

However, our navigation system does not use aiprior

information about the environment. The FCM repréedka
usual navigation actions as turn right, turn leitcelerate

The concept of a cognitive map can be updated gfivou and others. The adaptation ability to environmemnges

the iteration with other concepts and with its ovalue. In

and to take decisions in presence of random eientached

this contextt a FCM uses a structured knowledg@y means of a rule-based system. These rulesiggered in

representation through causal relationships beaigutated
mathematically from matrix operations, unlike muoh
intelligent systems whose knowledge representasidrased
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accordance of “intensity” of the sensor measureméntthis
research, the kinematic model use sensors sigdapalses
in the right and left wheels.
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I"l. THE D-FCM MODEL

The development of a FCM model is similar of therkvo
of Mendongca et al.’s [16]. In this case, we idgn8finputs
related to the description of the environment (pneg of
obstacles) and 2 outputs describing
movements: turn left, turn right or forward (pulgasboth
wheels). The three inputs take values from theetlsensors
located at left, right and front side of the mobile

These concepts are connected by arcs represehing
actions of acceleration (positive) and braking @ie@).
Three decisions are originally modeled, if left s@n
accuses an obstacle, the vehicle must turn toigfn side
and equally if the right sensor accuses an obsiactbe
right side, the vehicle turns to the other sidee Tirection
change decision implies in smoothly vehicle dectien.
The third decision is related to a free obstackirenment;
in this case, the mobile follows a straight lineelerating
smoothly.

Figure 1 shows the robot (agent) for used as kitiema
model development; however, it is not in the scop¢his
work to demonstrate the equations of the model us¢le
simulations, only the development and simulatedlteof
the proposed controller. The kinematic model usadehs
similar physic characteristics, e.g., geometry gadistance)
and inputs and outputs development. The input quecEe
LS (Left sensor), RS (Right sensor) and FS (Froseakor)
and the output concepts are LW (Left Wheel Pulsd)RW
(Right Wheel Pulse). The values of the conceptsthee
readings of the corresponding sensors. As a furrgber,
these values are normalized into the interval JO, 1

Figure 2 shows the simplest case, where the agm¥ g

directly toward the target (known point in the s@en). In
this context, and two objectives were developed tfer
FCMs (avoid obstacles and reach the targets); dhget
the mobile’dosition is known and the agent will alternate ket two
FCMs (using a finite state machine) to changebjsdaives.

Figure 3 shows concepts and relationships for awvgid

obstacles. In resume, weights wl4 and w35 are ipesit
otherwise the weights w34 and wl5 are negativegs&h
values are necessaries for avoiding maneuversweights
w24 and w25 are connected in the frontal sensors an
wheels concepts, and have negative values becaoee w
obstacle is near, the robot should decelerate.

200
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Figure 2. Scenario - Distances

If the target is located to the left of the robbiSx is
negative and is located at the rear of the rob@y Ds
negative. The values are dynamically tuned by thedtH
Learning algorithm [17].

Figure 1. Structure Generic Robot using Arduino Mega

The future navigation prototype has its positiotinegted
by the numbers of pulses given by the step motodsthe
obstacle avoidance is guided by the navigation egyst
However, the prototype is under development anddhes
of this work is in its initial results obtained tye simulator.
Whereas the environment is partially known, only thrgets
have their position known by the robot (agent)simulation
time, the robot (agent) knows its position, and thewv
control actions are calculated by the D-FCM, setjaky at
every step.

In this work, if the target is located to the left the
robot, DSx is negative and is located at the rédnerobot,
DSY is negative. The concept used is "DSx" to tierhl
distance between the robot and the target)(and "DSy"
to the front distanceA).
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Figure 4. D-FCM reach targets.

Figure 4 shows the D-FCMwhich its goal is to reach
the one or more target using distance previoustwkadge
(see in Figure 2).

For changing D-FCM and D-FCM, a finite state
machine is used (Figure 5); the deliberative pdrtthe
architecture is discussed in Section IV. The sviitghis
done dynamically according to the occurrence ohtsjeat

116



ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

first the robot will toward the target, howevercitanges D-  without prior knowledge of their position by therpeption
FCM if an obstacle is at a minimum distance of 15cm of sensors.

\j Perception System

Internal States
System

Figure 5. Finite State Machine
Behavior Learning
The language of the finite state machine is: System System
« a: Start Machine for reach targets;

« b: Change FCM for avoid obstacles;

« c: Return Machine for reach targets again;

E
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o
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n
t

Motor System
Other developments in the FCM are known in the
literature as E-FCM (Extended-FCM) [18], RB-FCM (Ru Figure 6. hybrid architecture D-FCM
Based-FCM) [19] and the DCN (Dynamic Cognitive ) ]
Networks) [20]. A recent survey with major variati of The motor system is responsible for the agent mevem

classic FCMs, in recent years, suggesting low cdatjpmal  inferences on the environment, according to itsenirstate
complexity, is presented by Papageorgiou and Salmer dynamically tuned by a Hebb learning algorithm [17]

[21]. through data provided by the perception system;dvew it
could be also used reinforcement learning algosttih®].
V. HYBRID ARCHITECTURE BACKGROUND This generic Hebb equation is:
Hybrid Architectures aims to combine the main feasu
of deliberative and reactive approaches, tryingetluce the Aw,; () =17y, (N)x; (n) (3)

restriction on the scope of each of these apprsadiet is,
the hybrid architectures use determination to pthe
actions of the robot from an internal global repreation of

the world knowledge, so the objectives of the rotem be >0 4 )
achieved efficiently. Once the actions are planngmy EPresents the postsynaptic signalVy is the synaptic
action plan implementation is done using reactiveveightn. Each of the causal relationships of FCMs (Figures

interactions between sensors and output systemwiaty S 2d 4) uses the above equation to dynamically tbeirs

quick actions towards changes in the environmehesg Weights. _
architectures, also use deliberation to plan thiermrs of the The basic difference between D-FCM and classic FCM

robot from an internal knowledge representation thod is the dynamic tuning ability of causal relatiomshiand
world, so the goals of the robot can be achievéidiefity ~ SWitching of two or more structures by state maehin
[22][23]. This D-FCM hybrid architecture is alsospired ~according to the desired goal.
by behavior [24][25]. V. RESULTS

As shown in Figure 6, the proposed architecture is ] ) ) ) )
presented in a generic form to assist the D-FCM A two dimensional simulator was implemented in
development. Each block represents a specific glathe ~ Matlab to study the dynamic behavior of the mobitent.
system; the Perception System symbolizes the sente Several s.tudles present FCMs results, using siiolatan
Internal State System, the finite state machine:Bahavior € found in the literature [7] [12] [13] [17] [1§0].

System, the FCM's; the Learning System, the dynamic The scale used for the simulated scenario is 1:Ii90.
learning algorithm; the Motor system, the systentpou this context, Russel and Norvig [2] suggest tharder to

and at last, the Environment, the interaction witre Consider an autonomous agent, it is necessaryctesd in
environment (perception, planning and actions)s Theans at least three (jlffer_ent S|mulat|ons_. Thus, _theummons
that planning is not part of the perception-acticycle, Were tested with different scenarios settings tggest

interacting only when that organization have anlgwent ~autonomy. Figures 7-11 show the proposed work
result (as an event, e.g., detecting an obstadleiheir simulations; the first two simulations only reaegets, in
planning. different scenarios. Each simulation has a cresieset of

The states modeled in this study are two: get ahget, difficulty, as proposed_ and specified in [15]; obs&ethat all
located at a previously known point, and avoid abes, the scenarios are static.

where:  is a positive constant that determines the
learning rate, x; represents the presynaptic signéj
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Figure 7. Simulation 1 (Target 1)

The simulation in Figure 7 is simple and shows the

trajectory of the agent (robot) toward the targed apecific

point, between first and second quadrant. It shoiws,

yellow, the trail (agent’s pose memory), and fipalit

Figure 9 suggest autonomy due results showingipesit
outcomes in different scenarios, as already meetion

Y Axis

Figure 10. Simulation 4 (target and obstacles)

The simulation in Figure 11 suggests an increagben

shows the initial and final pose of the agent. Thisautonomy of the controller's capacity; in partioulid shows

explanation applies to all following figures.
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Figure 8. Simulation 2 (target 2)

The second experiment (Figure 8) is similar to filhst
put the show initial poses and different finals;liging in
different quadrants. It shows the navigation vélisabf the
FCM controller.

The experiment in Figure 9 and 10 has an incraags i
difficulty, by adding obstacles in the environmeBmne of
the classic challenges is the problem of seriedsibec
making, i.e., an error in the second step can livalgence
in the third one, and so on [16].
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Figure 9. Simulation 3 (target and obstacles)
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the difficulty of reaching the target, in the centé a spiral
of obstacles, successfully.
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Figure 11. Simulation 5 (spiral)
VI. CONCLUSION

This paper developed a hybrid autonomous navigation

architecture based on a new type of fuzzy cognithaps,
named dynamic fuzzy cognitive map, D-FCM.

The initial results obtained from the simulations were
convincing, because the mobile agent accomplished the goal
of reaching the target with a maximum error of few
centimeters deviating from obstacles. However, in a real
environment, it is difficult to reach the same precision.

Some difficulties presents in real robots, e.g., ghost
signal (in particular, ultrasound sensors), noise, and others,
were not considered in the simulations. However, the
variations of scenarios with obstacles, highlighting the
scenario with a spire of obstacles, suggest that hybrid
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architectures for autonomous robots navigation ltamdle
achieving goals in different scenarios, with cresaegrees
of difficulties.

Future work aims to compare the proposed controller

with other intelligent techniques, like Classic Ewzor
Adaptive Fuzzy and ANFIS, by comparing number of
maneuvers and time required for achieving the divies,
and then, by improving the complexity of the scéersr
using walls with 90 degrees.

Another target is to embed this system into a relbt

using an open source development platform, suclows

cost microcontroller

Arduino), due FCMs low

(e.g.,

computational complexity. Finally, a test phasedseduled
for the proposed controller in dynamic scenarioghsas in
the presence of mobile and/or surprise obstacles.
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