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Abstract—This work develops a knowledge based system using 
Fuzzy Cognitive Maps (FCM) for autonomous navigation. A 
new variant of FCM, named Dynamic-Fuzzy Cognitive Maps 
(D-FCM), is used to model decision, tasks and/or make 
inference in the robot/mobile navigation. Fuzzy Cognitive 
Maps is a tool that models qualitative structured knowledge 
through concepts and causal relationships. The proposed 
model allows representing the dynamic behavior of the mobile 
robot (agent) in different environments. A brief review of 
correlated works in navigation area using FCM and Fuzzy 
Systems is presented. Some simulation results are discussed 
highlighting the ability of the mobile to navigate among 
obstacles and reach targets (navigation environment).  

Keywords - Fuzzy Cognitive Maps; Autonomous Navigations; 
Hybrid Architecture; Intelligent dynamic decision systems. 

 

I. INTRODUCTION  

Artificial Intelligence (AI) has applications and 
development in various areas of knowledge, such as 
mathematical biology, neuroscience, computer science, 
swarm robotics and others. The research area of intelligent 
computational systems aims to develop methods that try to 
mimic or approach the human’s capabilities to solve 
problems. These news methods are looking to emulate 
human’s abilities to cope with very complex processes, 
based on inaccurate and/or approximated information. 
However, this information can be obtained from the expert’s 
knowledge and/or operational data or behavior of an 
industrial system [1].  

Researches in autonomous navigation are in stage of 
ascent. Autonomous Systems have the ability to perform 
complex tasks with a high degree of success [2]. In this 
context, the complexity involved in the task of trajectory 
generation is admittedly high and, in many cases, requires 
the autonomous system being able to learn a navigation 
strategy through interaction with the environment [3]. 

There is a growing interest in the development of 
autonomous (agents) robots and vehicles, mainly because of 
the great diversity of tasks that can be carried out by them, 
especially those that endanger human health and/or the 

environment, [4][5]. As an example, we can cite Mandow et 
al. [6], which describe an autonomous mobile robot for use 
in agriculture, in order to replace the human worker through 
inhospitable activities, as spraying with insecticides.  

The problem of mobile robots control comprises two 
main sub problems: 1) navigation, determining of 
robot/vehicle position and orientation at a given time, and 2) 
guided tours, which refers to the control path to be followed 
by the robot/vehicle. Some cases have more complexity; e.g., 
a Hybrid Architecture [7] is used to develop Dynamic Fuzzy 
Cognitive Maps-based models for autonomous navigation 
with different goals: avoiding obstacles, exploration, and 
reach targets. 

This work specifically proposes the development of an 
autonomous navigation controller system using heuristic 
knowledge about the behavior of the robot/vehicle in 
different scenarios, modeled by Fuzzy Cognitive Maps 
(FCM) [8]. In this case, the robot/vehicle determines 
sequences of action in order to reach a given goal state from 
a predefined starting state.  

The FCM combines aspects of Artificial Neural 
Networks [2], Fuzzy Logic [1], Semantics Networks [2] and 
others intelligent systems techniques. Through cognitive 
maps, beliefs or statements, regarding a limited knowledge 
domain, are expressed through words or phrases, 
interconnected by simple relationship of cause and effect 
(question/non-question). In the proposed model, the FCM 
relationships are dynamically adapted by rules that are 
triggered by the occurrence of special events. These events 
must change mobile behavior. There are several works in the 
literature that model heuristic knowledge necessary for 
decision-making in autonomous navigation, e.g., Classic 
Fuzzy and FCM Systems [9]-[13]. In a similar way, the 
proposed approach in this paper is to build qualitative 
models for mobile navigation by means of fuzzy systems. 
However, the knowledge is structured and built as a 
cognitive map representing the behavior of the mobile.  

Therefore, the proposed autonomous navigation system 
must be able to take dynamic decisions to move through the 
environment and change its trajectory as a result of an event. 
For this, the proposed FCM model must aggregate discrete 

114Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems



and continuous knowledge about navigation. Actions, such 
as the decision to turn left or right, when sensors accuse 
obstacles, and accelerate, when there is a free path, are 
always valid control actions in all circumstances. In this way, 
this type of action is modeled as causal relationship in a 
classical FCM.  

However, there are specific situations, such as the need to 
maintain a trend of motion, mainly in curves, when the 
vehicle is turning left and sensors to accuse a new obstacle in 
the same direction. Due to inertia and physical restrictions, 
the mobile cannot abruptly change direction; this type of 
maneuver must be carefully executed. In this context, some 
specific situations should also be modeled in the map by 
causal relationships and concepts, but they are valid just as a 
result of a decision-making task caused by ongoing events. 
To implement such a strategy, new types of relationships and 
concepts will be added to the FCM classic model.  

This new type of FCM, in which the concepts and 
relationships are valid as a result of decision, driven by 
events modeled by rules is called Dynamic-FCM. 
Specifically, the work of Mendonça et al. [16] presents a 
type of D-FCM (ED-FCM), which aggregates the occurrence 
of events and other facilities that makes appropriate this type 
of cognitive map, for the development of intelligent control 
and automation in an industrial environment. 

Section II presents the concept of FCM and the FCM 
applied in autonomous navigation. Section III illustrates the 
D-FCM model utilized. Section IV presents the Hybrid 
Architecture and a brief background. Section V shows the 
results, and finally, Section VI presents the conclusion and 
future works. 

 

II. FUZZY COGNITIVE MAPS 

Cognitive maps were initially proposed by Axelrod [16] 
to represent words, thoughts, tasks, or other items linked to a 
central concept and willing radially around this concept. 
Axelrod developed also a mathematical treatment for these 
maps, based in graph theory, and operations with matrices. In 
general, these cognitive maps are "belief structure" of a 
person or group, allowing to infer or predict the 
consequences that this organization of ideas represents in the 
graph; in cognitive maps, a central concept is not necessary.  

This mathematical model was adapted for inclusion of 
Fuzzy logic uncertainty. In specific, linguistics terms 
generating widespread fuzzy cognitive maps. Like the 
original, FCMs are directional graphs, in which the numeric 
values are fuzzy sets or variables. The "graph nodes", 
associated to linguistic concepts are represented by fuzzy 
sets and each "node" is linked with others through 
connections [8]. Each of these connections has a numerical 
value (weight), which represents a fuzzy variable related to 
the strength of its concepts.  

The concept of a cognitive map can be updated through 
the iteration with other concepts and with its own value. In 
this context, a FCM uses a structured knowledge 
representation through causal relationships being calculated 
mathematically from matrix operations, unlike much of 
intelligent systems whose knowledge representation is based 

on rules if-then type. However, due to this “rigid” knowledge 
representation the FCM-based inference models lack 
robustness in presence of dynamic modifications not a priori 
modeled [17]. To circumvent this problem, this article 
develops a new type of FCM, in which concepts and causal 
relationships are dynamically inserted into the graph from 
the occurrence of events. In this way, the dynamic fuzzy 
cognitive map model is able to dynamically acquire and use 
the heuristic knowledge. The proposed D-FCM and its 
application in autonomous navigation will be developed and 
tested in the following sections. 

Related work using cognitive maps in the robotics 
research area can be found in the literature. Among them, it 
can be cited the work by Min et al. [12], that employs 
probabilistic FCM in the decision-making of a soccer robot 
team. These actions are related to the behavior of the team, 
such as kick the ball in presence of opponents. The 
probabilistic FCM aggregates a likelihood function to update 
the concepts of the map. A FCM is used by Pipe [13] to 
guide an autonomous robot. The FCM is designed from a 
priori knowledge of experts and afterwards it is refined by a 
genetic algorithm.  

The inference process of the FCM model can be 
calculated by the following rule given in (1) and (2); these 
equations are used in several works in the literature, e.g., 
FCM and evolutions such as Mendonça et al. [7] and Siraj, 
Bridges and Vaughn [9].   
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A review of correlated works in indoor autonomous 
navigation robotics can be found in [14]. The objective of 
this paper is to develop an autonomous explorer agent 
(robot) based in a low cost and open source platform with the 
ability to tune FCM model by interacting with the 
environment. The agent architecture is inspired by 
Braitenberg [15], who suggests the application of 
computational intelligence techniques, starting up with a 
simple model with one or only a few functionalities, and 
gradually adding new objectives to improve the exploration 
capability of the agent.  

However, our navigation system does not use a priori 
information about the environment. The FCM represent the 
usual navigation actions as turn right, turn left, accelerate 
and others. The adaptation ability to environment changes 
and to take decisions in presence of random events is reached 
by means of a rule-based system. These rules are triggered in 
accordance of “intensity” of the sensor measurements. In this 
research, the kinematic model use sensors signal and pulses 
in the right and left wheels. 
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III.  THE D-FCM MODEL 

The development of a FCM model is similar of the work 
of Mendonça et al.’s [16]. In this case, we identify 3 inputs 
related to the description of the environment (presence of 
obstacles) and 2 outputs describing the mobile’s 
movements: turn left, turn right or forward (pulses in both 
wheels). The three inputs take values from the three sensors 
located at left, right and front side of the mobile.  

These concepts are connected by arcs representing the 
actions of acceleration (positive) and braking (negative). 
Three decisions are originally modeled, if left sensor 
accuses an obstacle, the vehicle must turn to the right side 
and equally if the right sensor accuses an obstacle in the 
right side, the vehicle turns to the other side. The direction 
change decision implies in smoothly vehicle deceleration. 
The third decision is related to a free obstacle environment; 
in this case, the mobile follows a straight line accelerating 
smoothly. 

Figure 1 shows the robot (agent) for used as kinematic 
model development; however, it is not in the scope of this 
work to demonstrate the equations of the model used in the 
simulations, only the development and simulated results of 
the proposed controller. The kinematic model used have is 
similar physic characteristics, e.g., geometry (axes distance) 
and inputs and outputs development. The input concepts are 
LS (Left sensor), RS (Right sensor) and FS (Frontal sensor) 
and the output concepts are LW (Left Wheel Pulse) and RW 
(Right Wheel Pulse). The values of the concepts are the 
readings of the corresponding sensors. As a fuzzy number, 
these values are normalized into the interval [0, 1].  

 

 
Figure 1.  Structure Generic Robot using Arduino Mega 

The future navigation prototype has its position estimated 
by the numbers of pulses given by the step motors and the 
obstacle avoidance is guided by the navigation system. 
However, the prototype is under development and the focus 
of this work is in its initial results obtained by the simulator. 
Whereas the environment is partially known, only the targets 
have their position known by the robot (agent). In simulation 
time, the robot (agent) knows its position, and the new 
control actions are calculated by the D-FCM, sequentially at 
every step. 

In this work, if the target is located to the left of the 
robot, DSx is negative and is located at the rear of the robot, 
DSY is negative. The concept used is "DSx" to the lateral 
distance between the robot and the target (∆X), and "DSy" 
to the front distance (∆Y). 

Figure 2 shows the simplest case, where the agent goes 
directly toward the target (known point in the scenario). In 
this context, and two objectives were developed for the 
FCMs (avoid obstacles and reach the targets); the target 
position is known and the agent will alternate between two 
FCMs (using a finite state machine) to change its objectives. 

Figure 3 shows concepts and relationships for avoiding 
obstacles. In resume, weights w14 and w35 are positive, 
otherwise the weights w34 and w15 are negatives. These 
values are necessaries for avoiding maneuvers. The weights 
w24 and w25 are connected in the frontal sensors and 
wheels concepts, and have negative values because when 
obstacle is near, the robot should decelerate.  

 

 
Figure 2.  Scenario - Distances 

If the target is located to the left of the robot, DSx is 
negative and is located at the rear of the robot, DSY is 
negative. The values are dynamically tuned by the Hebb 
Learning algorithm [17].  

 

 
Figure 3.  D-FCM  avoid obstacles 

 

Figure 4.  D-FCM reach targets. 

Figure 4 shows the D-FCM2 which its goal is to reach 
the one or more target using distance previously knowledge 
(see in Figure 2).  

For changing D-FCM1 and D-FCM2, a finite state 
machine is used (Figure 5); the deliberative part of the 
architecture is discussed in Section IV. The switching is 
done dynamically according to the occurrence of events, at 
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first the robot will toward the target, however, it changes D-
FCM if an obstacle is at a minimum distance of 15cm.  

 

 

Figure 5.  Finite State Machine 

The language of the finite state machine is: 
• a: Start Machine for reach targets; 
• b: Change FCM for avoid obstacles; 
• c: Return Machine for reach targets again; 

 
Other developments in the FCM are known in the 

literature as E-FCM (Extended-FCM) [18], RB-FCM (Rule 
Based-FCM) [19] and the DCN (Dynamic Cognitive 
Networks) [20]. A recent survey with major variations of 
classic FCMs, in recent years, suggesting low computational 
complexity, is presented by Papageorgiou and Salmeron 
[21]. 

IV.  HYBRID ARCHITECTURE BACKGROUND 

Hybrid Architectures aims to combine the main features 
of deliberative and reactive approaches, trying to reduce the 
restriction on the scope of each of these approaches. That is, 
the hybrid architectures use determination to plan the 
actions of the robot from an internal global representation of 
the world knowledge, so the objectives of the robot can be 
achieved efficiently. Once the actions are planned, the 
action plan implementation is done using reactive 
interactions between sensors and output system, allowing 
quick actions towards changes in the environment. These 
architectures, also use deliberation to plan the actions of the 
robot from an internal knowledge representation of the 
world, so the goals of the robot can be achieved efficiently 
[22][23]. This D-FCM hybrid architecture is also inspired 
by behavior [24][25]. 

As shown in Figure 6, the proposed architecture is 
presented in a generic form to assist the D-FCM 
development. Each block represents a specific part of the 
system; the Perception System symbolizes the sensors; the 
Internal State System, the finite state machine; the Behavior 
System, the FCM´s; the Learning System, the dynamic 
learning algorithm; the Motor system, the system output; 
and at last, the Environment, the interaction with the 
environment (perception, planning and actions). This means 
that planning is not part of the perception-action cycle, 
interacting only when that organization have any relevant 
result (as an event, e.g., detecting an obstacle) of their 
planning. 

The states modeled in this study are two: get the target, 
located at a previously known point, and avoid obstacles, 

without prior knowledge of their position by the perception 
of sensors.  
 

 
Figure 6.  hybrid architecture D-FCM 

The motor system is responsible for the agent movement 
inferences on the environment, according to its current state 
dynamically tuned by a Hebb learning algorithm [17], 
through data provided by the perception system; however, it 
could be also used reinforcement learning algorithms [16]. 
This generic Hebb equation is: 

  

                                  (3) 

 
where:  is a positive constant that determines the 

learning rate, xj represents the presynaptic signal Yk 
represents the postsynaptic signal, ∆Wkj is the synaptic 
weight n. Each of the causal relationships of FCMs (Figures 
3 and 4) uses the above equation to dynamically tune theirs 
weights. 

The basic difference between D-FCM and classic FCM 
is the dynamic tuning ability of causal relationships and 
switching of two or more structures by state machine, 
according to the desired goal. 

V. RESULTS 

A two dimensional simulator was implemented in 
Matlab to study the dynamic behavior of the mobile agent. 
Several studies present FCMs results, using simulation, can 
be found in the literature [7] [12] [13] [17] [18] [20]. 

The scale used for the simulated scenario is 1:100. In 
this context, Russel and Norvig [2] suggest that, in order to 
consider an autonomous agent, it is necessary to succeed in 
at least three different simulations. Thus, the simulations 
were tested with different scenarios settings to suggest 
autonomy. Figures 7-11 show the proposed work 
simulations; the first two simulations only reach targets, in 
different scenarios. Each simulation has a crescent level of 
difficulty, as proposed and specified in [15]; observe that all 
the scenarios are static. 

)()()( nxnynw jkkj η=∆

η
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Figure 7.  Simulation 1 (Target 1) 

The simulation in Figure 7 is simple and shows the 
trajectory of the agent (robot) toward the target at a specific 
point, between first and second quadrant. It shows, in 
yellow, the trail (agent´s pose memory), and finally, it 
shows the initial and final pose of the agent. This 
explanation applies to all following figures. 

 

 
Figure 8.  Simulation 2 (target 2) 

The second experiment (Figure 8) is similar to the first 
put the show initial poses and different finals, including in 
different quadrants. It shows the navigation versatility of the 
FCM controller.  

The experiment in Figure 9 and 10 has an increase in its 
difficulty, by adding obstacles in the environment. One of 
the classic challenges is the problem of series decision 
making, i.e., an error in the second step can have influence 
in the third one, and so on [16]. 

 

 
Figure 9.  Simulation 3 (target and obstacles) 

Figure 9 suggest autonomy due results showing positive 
outcomes in different scenarios, as already mentioned. 

 

 
Figure 10.  Simulation 4 (target and obstacles) 

The simulation in Figure 11 suggests an increase in the 
autonomy of the controller’s capacity; in particular, it shows 
the difficulty of reaching the target, in the center of a spiral 
of obstacles, successfully. 

 
 

 
Figure 11.  Simulation 5 (spiral) 

 

VI.  CONCLUSION 

 
This paper developed a hybrid autonomous navigation 

architecture based on a new type of fuzzy cognitive maps, 
named dynamic fuzzy cognitive map, D-FCM. 

The initial results obtained from the simulations were 

convincing, because the mobile agent accomplished the goal 

of reaching the target with a maximum error of few 

centimeters deviating from obstacles. However, in a real 

environment, it is difficult to reach the same precision.  
Some difficulties presents in real robots, e.g., ghost 

signal (in particular, ultrasound sensors), noise, and others, 

were not considered in the simulations. However, the 

variations of scenarios with obstacles, highlighting the 

scenario with a spire of obstacles, suggest that hybrid 
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architectures for autonomous robots navigation can handle 
achieving goals in different scenarios, with crescent degrees 
of difficulties. 

Future work aims to compare the proposed controller 
with other intelligent techniques, like Classic Fuzzy or 
Adaptive Fuzzy and ANFIS, by comparing number of 
maneuvers and time required for achieving the objectives, 
and then, by improving the complexity of the scenarios 
using walls with 90 degrees.  

Another target is to embed this system into a real robot 
using an open source development platform, such as low 
cost microcontroller (e.g., Arduino), due FCMs low 
computational complexity. Finally, a test phase is scheduled 
for the proposed controller in dynamic scenarios, such as in 
the presence of mobile and/or surprise obstacles. 
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