
Supporting the Neon and VFP Instruction Sets in an LLVM-based Binary Translator

Yu-Chuan Guo, Wuu Yang, Jiunn-Yeu Chen
Computer Science Department

National Chiao-Tung University
Hsinchu, Taiwan, R.O.C.

Emails: qoo12345654321@gmail.com, {wuuyang, jiunnyeu}@cs.nctu.edu.tw

Jenq-Kuen Lee
Computer Science Department
National Tsing-Hua University

Hsinchu, Taiwan, R.O.C.
Email: jklee@cs.nthu.edu.tw

Abstract—Binary translation attempts to emulate one instruc-
tion set with another on the same or different platforms.
This important technique is widely used in instruction-set-
architecture migration, binary instrucmentation, dynamic op-
timizations, software security, and fast arhitecture simulation.
Vector and floating-point instructions are widely used in many ap-
plications, including multimedia, graphics, and gaming. Though
these instructions are usually simulated with software in a binary
translator, it is important to support them in such a way that
the host SIMD (single instruction multiple data) and floating-
point hardware is efficiently used in the translation process.
We report our design and implementation of the emulation of
ARM Neon and VFP (vector floating point emulation) instructions
in the MC2LLVM (machine-to-low-level-virtual-machine) binary
translator. Our approach can take full advantage of the vector
and floating-point functional units, if present, of the host machine.
The experimental results show that code generated by MC2LLVM
with the Neon and VFP extensions achieves an average speedup
of 1.174x in SPEC 2006 benchmark suites compared to code
generated by MC2LLVM without the Neon and VFP extensions.

Keywords–binary translation; cloud computing; LLVM;
floating-point instruction; Neon, VFP; vector instruction;
virtualization.

I. INTRODUCTION

Binary translation [14] attempts to emulate one instruction
set with another on the same or different platforms. The im-
portant technique is widely used in instruction-set-architecture
migration [4][5][13][18], binary instrucmentation [6], dynamic
optimizations [2][11], software security, and fast arhitecture
simulation [15], [17]. The Neon and VFP coprocessors [1]
are extensions to the ARM architecture. They are designed
for applications with SIMD and floating-point instructions to
meet the growing demand of computing power in embedded
systems, such as multimedia, 2D/3D graphics, and gaming.

Existing binary translators, such as QEMU (quick emula-
tor), support vector and floating-point instructions with naive
software simulation (using scalar, integer, and shift operations)
[3]. The result is poor performance. In this paper, we attempt
to make use of the vector and floating-point hardware on
the host platform, if present, to execute the Neon and VFP
instructions. Furthermore, all the related exceptions and flags
in the floating-point environment are taken care of properly.
Our system is built on top of MC2LLVM, a retargetable
static/dynamic/hybrid binary translator developed in our lab
in the past few years. The resulting performance is the key
issue in our design.

We leverage the existing LLVM backend (low-level virtual
machine) to build a high-performance and retargetable binary
translator. In this research, the emulation of Neon and VFP
architectures is layered on the top of an LLVM backend.

To be fully compliant with Neon and VFP instruction set
architectures, we need to know the details of the machine
features [1] in the Neon and VFP architectures, including
the flush-to-zero mode, the default NaN (Not a Number)
mode, and the floating-point exceptions. These details can
affect the behaviors of the Neon and VFP instructions. Our
implementation must faithfully mimic these features. We also
propose new methods to detect floating-point exceptions if the
IR layer of a binary translator does not provide the relevant
information.

To achieve a high degree of reliability, we also developed a
verification framework for testing all the emulated instructions
in Neon and VFP in order to gain confidence in the correctness
of our approaches. Verification is performed automatically.

The remainder of this paper is organized as follows: Section
2 lists the related work and background knowledge, including
Neon and VFP architectures, and describes the related termi-
nology. In Section 3, we describe the implementation details.
Section 4 illustrates the verification of the implementation.
Section 5 discusses the experimental results. Section 6 con-
cludes this paper.

II. BACKGROUND AND RELATED WORKS

In this research, we attempt to translate the Neon and VFP
instructions into LLVM IR. In this chapter, we will introduce
background knowledge and related works about the Neon and
VFP architectures, including their machine features related to
binary translation.

MC2LLVM (Machine Code To LLVM) is a process-level
binary translation system based on LLVM developed in our lab
in the past few years. It adopts the approach of the modern
compiler techniques which separate the translation process
into a frontend and a backend. The frontend translates the
guest binary into LLVM IR and then uses the existing LLVM
backend to generate the host binary from LLVM IR.

Figure 1 shows the flow of dynamic binary translation in
MC2LLVM. The emulation manager maintains and manipu-
lates the progress of the emulation, such as handling the control
transfer between translated basic blocks in code cache and
invoking the translator to translate a target basic block that
has not yet been translated. In this research, we will focus on
the translator module, which is also employed in the static and
hybrid modes.

QEMU [3] is an open source binary translation system
which supports full system emulation and, unlike MC2LLVM,
always runs in the DBT mode. QEMU has its own IR, known
as Tiny Code Generator (TCG) [3], to implement a two-stage

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Figure 1. Structure of MC2LLVM.

translation. It is able to emulate several ISAs, such as x86,
PowerPC, ARM, and Sparc, etc.

Neon is a SIMD (Single Instruction Multiple Data) proces-
sor integrated into the ARM chip. Neon provides a 64/128-bit
SIMD instruction set that provides acceleration for multimedia
and signal processing applications, such as compressed video
decoding, image processing, 2D/3D graphics, sound synthesis,
etc.

VFP is a vector floating-point processor integrated as a part
of the ARM chip. VFP provides a single-precision and double-
precision floating-point instruction set that is fully compliant
with IEEE 754 [9]. (Neon is not fully compliant with IEEE
754.)

Neon and VFP share the same extension register bank,
which is distinct from the ARM core register bank.

The Neon and VFP extensions have a shared register
space for system registers. Only the system register known
as Floating-Point Status and Control Register (FPSCR) in
this space is accessible in the application programs. FPSCR
contains the arithmetic status flags as well as the bit fields for
controlling the floating-point unit. Table I shows the bit fields
of the FPSCR register.

The DN bit controls the default NaN (not-a-number) mode,
which affects the behavior of the floating-point operations
involving one or more NaNs. The NaN processing follows the
IEEE 754 standard if the DN bit is 0. A floating-point operation
involving one or more NaNs returns the default NaN if the DN
bit is 1.

The FZ bit controls the flush-to-zero mode, which affects
the behavior of the floating-point operations. If the FZ bit is 0,
the behavior of a floating-point operation in VFP follows the
IEEE 754 standard. If the FZ bit is 1, the flush-to-zero mode
is enabled. In the flush-to-zero mode, denormalized numbers
(in the IEEE 754 standard [9], denormalized or denormal
numbers are very small numbers whose exponent fields are 0.
They are used to fill the gap between zero and the minimum
normalized number) will be flushed 0. The flush-to-zero mode
also changes the criteria for the floating-point exceptions to
occur (described in a later section). Neon always uses the flush-
to-zero mode, regardless of the value of the FZ bit.

IDC, IXC, UFC, OFC, DZC, and IOC are input denormal,
inexact, underflow, overflow, division by zero, and invalid
operation cumulative exception flags, respectively. These flags
show abnormalities during floating-point operations. A cumu-

Figure 2. Translation from guest binary to host binary.

lative exception bit is set to 1 when the corresponding floating-
point exception occurs. However, it is not reset to 0 when
the corresponding exception does not occur automatically.
These flags are usually used in applications with high safety
requirements.

III. DESIGN AND IMPLEMENTATION

The implementation of the emulation of the Neon and VFP
extensions, including the Neon and VFP registers, instructions,
and machine features, is discussed in detail in this section.

Figure 2 shows the translation flow of MC2LLVM. The
translator uses LLVM MCDisassembler [10] to disassemble
binary instructions into MCInst (the IR of MCDisassembler).
MCInst is translated by the functions we provided for each
guest instruction into LLVM IR. The LLVM IR is organized
as LLVM functions. The LLVM optimizer performs target-
independent optimizations before code generation.

A. Flush-to-Zero Mode Emulation
The flush-to-zero mode [1] is a special processing mode

that replaces denormalized operands, intermediate results, and
final results with zero while reserving the sign bit. It is used to
avoid handling denormalized numbers, thus saving execution
time. Because supports for denormalized numbers increase the
complexity in hardware design, floating-point units often save
hardware cost by simply delegating supports for denormalized
numbers to software.

The flush-to-zero mode is not compliant with IEEE 754. It
also changes the behavior of a floating-point operation and the
criteria for the floating-point exceptions in three ways: (1) In
the flush-to-zero mode, a floating-point operation can cause the
input denormal exception, which is not included in IEEE 754.
(2) The inexact exception would not be raised when a result
is rounded to zero or flushed to zero. (3) If the result of an
operation is rounded to zero or flushed to zero, the underflow
exception would be raised.

There are two operations in the flush-to-zero mode: flush-
input-to-zero and flush-output-to-zero. Each floating-point op-
eration must go through the preprocessing in LLVM IR in
which denormalized numbers are detected and replaced with
zero before a floating-point operation is performed. This is the
flush-input-to-zero operation, shown in Figure 3.

According to the definition of the flush-to-zero mode, if
the intermediate result of a floating-point operation that is

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

TABLE I. Floating-Point Status and Control Register format

bit(s) 31 30 29 28 27 26 25 24
meaning N Z C V QC AHP DN FZ

bit(s) 23:22 21:8 7 6:5 4 3 2 1 0
meaning RMode reserved IDC reserved IXC UFC OFC DZC IOC

1. procedure FP32_FlushInputToZero
(operand)
2. if (IsDenormal(operand))
3. SetIDC(); // input
denormal exception
4. flush operand;
5.
6. function IsDenormal(op)
7. if (abs(op) < 0x00800000 &&
abs(op) > 0)
8. return TRUE;
9. return FALSE;

Figure 3. Algorithm for flush-input-to-zero.

1. procedure FP32Mul_FlushOutputToZero(op1,
op2, result)
2. if (isDenormal(result))
3. SetUFC(); // underflow exception
4. flush result;
5. else if (isZero(result) &&
!isZero(op1) && !isZero(op2))
6. SetUFC(); // underflow exception
7. else if (isMinNorm(result))
8. multiply op1’s and op2s
fractions with leading 1 to A;
9. if(A has 23 consecutive 1s
starting at the most significant 1)
10. SetUFC();
11. flush result;

Figure 4. Algorithm for flush-output-to-zero for single-precision
floating-point multiplcation.

produced before rounding satisfies the following condition:

(1) 0 < abs(result) < +MinNorm

where MinNorm is the minimum normalized number of the
destination precision, that intermediateg result is flushed to
zero before the rest of the floating-point operation. However, an
LLVM floating-point operation can only produce a result after
rounding. The intermediate result produced after the floating-
point operation but before rounding is invisible. Therefore, the
flush-input-to-zero operation may produce an incorrect result if
the intermediate result has already been rounded to MinNorm
or to zero. Hence the flush-output-to-zero operation, shown
in Figure 4, is introduced to flush the intermediate and final
results of a single-precision multiplication to zero.

If both operands of a floating-point multiplication are not
zero but the result is zero, the result must have been rounded
to zero. Obviously, the multiplication causes an underflow
exception. Only when the intermediate result that is produced

before rounding satisfies the following condition:

(2) +MaxDenorm < abs(result) < +MinNorm

where MaxDenorm is the maximum denormalized number
(that is, the exponent field is all 0s and the fraction field is all
1s) of the destination precision, the result could be rounded to
MaxDenorm or MinNorm. In this case the after-rounding
result may be a normalized number but it should be flushed
to zero. We can reproduce the before-rounding intermediate
result by (integer-)multiplying the two operands’ fractions. If
the intermediate result has 23 (if single precision) consecutive
1s starting from the most significant 1, that is, condition (2)
above, the result should be flushed to zero and an underflow
exception should be raised.

Different floating-point instructions come with different
emulations of the flush-output-to-zero operation. For example,
for floating-point additions, it is not necessary to consider the
two special cases (rounding to zero or to MinNorm) because
a floating-point addition is always exact (i.e., without loss of
precision) when the result is a denormalized number.

B. Floating-Point Exception Emulation
Floating-point exceptions are emulated with two methods.

The first method is by checking the exception flags in the
underlying hardware (based on C++11 Standard Library) and
the second method is by employing additional test code. The
second method is complete and more efficient than the first.
We will explain both methods in this section.

Although LLVM supports many floating-point operations,
it does not provide any information related to floating-point
exceptions. The developers of LLVM may consider that ac-
cessing the floating-point environment is unlikely to happen
and supporting them would diminish the performance because
the implicit data dependencies that might occur in the floating-
point environment. For example, setting floating-point excep-
tion flags or trapping the floating-point exceptions for further
processing may unnecessarily restrict the LLVM optimizer and
make the LLVM optimizer more complex. So we have to detect
the floating-point exceptions with additional code.

The first method for detecting floating-point exceptions
is to check the exception flags in the underlying hardware
with the fetestexcept function in the C++11 Standard
Library. Because the exception flags in the underlying hard-
ware may be changed inadvertently by the emulation manager,
translator, or other modules in MC2LLVM or LLVM during
execution, it is necessary to clear the exception flags with the
feclearexcept function before executing every floating-
point operation in order to avoid these outside disturbances.

The first method comes with several drawbacks. First,
MC2LLVM adopting this method becomes much slower than
QEMU. We used a benchmark that repeats single-precision ad-
dition one billion times. The resulting execution time is shown
in Figure 5. Furthermore, we wrote two new functions in x86

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Figure 5. Execution time of single-precision floating-point addition.
MC2LLVM adopts the first method for emulating floating-point exceptions.

assembly to replace fetestexcept and feclearexcept
to make emulation of floating-point operation even faster;
they are still a little (about 0.5 seconds) slower than QEMU
evaluated by the benchmark. Second, the LLVM optimizer may
reorder the instructions, which causes unexpected results.

The second method is to use additional code in LLVM IR
to detect floating-point exceptions based on the operands and
results of a floating-point operation. Normally, floating-point
exceptions are detected at various instants during the execution
of a floating-point operation. For example, the occurrence of
the underflow and inexact exceptions is determined based on
the before-rounding intermediate values of a floating-point
operation. However, we cannot obtain any intermediate values
from an LLVM floating-point operation. We could reproduce
the intermediate values with software but this would incur
high overhead. Alternatively, we use some tricks which we
will discuss in details later for better efficiency, for ex-
ample, employing other floating-point operations to test the
occurrence of floating-point exceptions and bypassing useless
detection of floating-point exceptions. We will use floating-
point additions and multiplications to illustrate this approach.
Other floating-point operations (vcvt, vdiv, vcge, vcmpe,
etc.) are handled similarly. MC2LLVM adopting this second
method is twice as fast as QEMU according to our benchmarks
(for floating-point additions) mentioned earlier. Therefore, we
decide to use this second method in our binary translator. In
what follows we will discuss the emulation of each floating-
point exceptions.

• Emulation of the Invalid Operation Exceptions
• Emulation of the Division by Zero Exceptions
• Emulation of the Overflow Exceptions
• Emulation of the Input Denormal Exceptions
• Emulation of the Inexact Exceptions
• Emulation of the Underflow Exceptions

Figure 6 summaries the emulation of a floating-point opera-
tion. Note that not all floating-point operations will go through
all the steps shown in the figure. The emulation of floating-
point operations involves many details and is error-prone for
implementation. Therefore, a good verification technique is
required for every implementation.

Figure 6. Emulation of a floating-point operation.

IV. VERFICATION OF THE BIANRY TRANSLATOR

Testing is a crucial building block in order to achieve a high
degree of reliability. It is difficult to identify the mistranslated
instructions generated by a binary translator because there are
so many translation functions in a binary translator and, due
to the complex interdependencies inherent in a floating-point
operation, it is almost impossible to determine whether an in-
struction is functionally equivalent to its translated instructions
directly.

Mistranslated instructions may produce wrong values, or
fail to raise status flags such as the cumulative exception flags
(IXC, UFC, etc.) and the cumulative saturation flag in FPSCR,
in different combinations of modes, such as the flush-to-zero
mode and the default NaN mode. Running a few benchmarks
correctly is far from being correct for a binary translator
because of low instruction coverage (an application usually
makes use of less than 5% of the 1240 instructions in Neon
and VFP), neglect of floating-point exceptions, and no mode
switching in applications. Therefore, we developed a black-
box testing framework for a binary translator, shown in Figure
7.

V. EXPERIMENTS

In order to show the performance of our translation system,
we compare the execution time of the guest binary with
and without Neon and VFP instructions on MC2LLVM and
QEMU, respectively. Since MC2LLVM can run in three differ-
ent modes, we always use the pure dynamic translation mode
in this experiments.

A. Environment
The experimental hardware is equipped with the Intel

Core i7-4770 and 8GB memory, running 32-bit Ubuntu ver-

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

Figure 7. A verification framework.

(a) Performance comparison for options A and B.

(b) Performance comparison for MC2LLVM and QEMU.

Figure 8. Performance comparison.

sion 14.04. We use SPEC CPU2006 and LINPACK as our
benchmarks. All of the benchmarks were compiled into ARM
statically linked binaries with GNU GCC version 4.4.6 and
linked with uClibc library 0.9.30.2. The version of QEMU we
used is 2.1.50. MC2LLVM is layered on top of LLVM version
3.2.

We compiled SPEC CPU2006 with two configurations:
Option A (-O3 -march=armv5 -mfloat-abi=softfp -mfpu=neon
-ftree-vectorize) to tell the compiler to try to generate Neon and
VFP instructions, and Option B (-O3 -march=armv5 -mfloat-
abi=soft) to tell the compiler not to generate Neon and VFP
instructions. The LINPACK benchmark was compiled with -
O3 -march=armv5 -mfloat-abi=softfp -mfpu=vfpv3.

Among 12 integer benchmarks (CINT2006) in SPEC
CPU2006, perlbench cannot be compiled and both MC2LLVM
and QEMU failed to run gcc, a benchmark in CINT2006.
Among 17 floating-point benchmarks (CFP2006) in SPEC
CPU2006, both MC2LLVM and QEMU failed to run gromacs,
cactusADM, and sphinx3, and only MC2LLVM failed to run
tonto and games (some bugs happened when emulating them
even with Option B, without Neon and VFP support).

B. Performance
Figure 8 (a) and (b) show our comparative approaches.

Figure 9 shows the execution time ratio of SPEC CINT2006
compiled with Option A and Option B running on MC2LLVM

Figure 9. Execution time ratio of Option B/Option A on translating SPEC
CINT2006.

and QEMU, respectively. The geometric means of the execu-
tion time ratio for MC2LLVM and QEMU are 1.174 and 1.052
respectively. The results imply that MC2LLVM could process
the Neon and VFP instructions more effectively than QEMU
on average.

VI. CONCLUSION

We have finished the Neon and VFP extensions in our
binary translator MC2LLVM:

1) 1240 translations of the Neon and VFPv3 instructions
are emulated.

2) Emulation of the machine features of Neon and
VFPv3 architectures is included.

We enhance the translation capability and increase opportuni-
ties of using host SIMD and floating-point units to improve
performance in MC2LLVM. We also propose new methods by
diagnosing the input and output of a floating-point operation
to detect floating-point exceptions if the IR layer of a binary
translation system do not provide the relevant information
about their occurrences instead of emulating a floating-point
operation in software, which takes more processor time. We
also developed a verification framework for testing the em-
ulated instructions in Neon and VFP to gain confidence in
the correctness of our approaches. The experiment results
indicate that MC2LLVM is, in average, 1.24X and 2.27X
faster than QEMU on the SPEC CPU2006 integer benchmarks
and floating-point benchmarks, respectively, and have 3.36X
more throughput of the floating-point operations than QEMU
benchmarked by LINPACK.

ACKNOWLEDGMENT

The work reported in this paper is partially supported by
National Science Council (NSC), Taiwan, Republic of China,
under grants MOST 103-2221-E-009-105-MY3, NSC 100-
2218-E-009-009-MY3, and NSC 100-2218-E-009-010-MY3.

REFERENCES
[1] ARM Limited, ARM Architecture Reference Manual ARMv7-A and

ARMv7-R edition Errata Markup, ARM DDI 0406B, 2011.
[2] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a Transparent

Dynamic Optimization System,” ACM SIGPLAN Notices, 35, 5, pp.
1-12, 2000.

[3] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” In Proc.
2005 USENIX Annual Technical Conf., pp. 41-46, 2005.

[4] J.-Y. Chen, W. Yang, T.-H. Hung, H.-M. Su, and W.-C. Hsu, “A Static
Binary Translator for Efficient Migration of ARM based Applications,”
In Proc. 6th Workshop on Optimizations for DSP and Embedded
Systems, 2008.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

[5] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S.B.
Yadavalli, and J. Yates, “FX!32 - A Profile-Directed Binary Translator,”
IEEE Micro 18, 2, pp. 56-64, 1998.

[6] K. Hazelwood, G. Lueck, and R. Cohn, “Scalable Support for Mul-
tithreaded Applications on Dynamic Binary Instrumentation Systems,
In Proc 2009 International Symp. Memory management (Dublin, June
19-20, 2009), 2009.

[7] J.L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, 34, 4, pp. 1-17, 2006.

[8] C.A. Lattner, LLVM: An Infrastructure for Multi-Stage Optimization,
Master’s Thesis, Comp. Sci. Dept, Univ. Illinois at Urbana-Champaign,
2002.

[9] W. Kahan, IEEE Standard 754 for Binary Floating-Point Arithmetic,
Lecture Notes on the Status of IEEE 754, pp. 94720-1776, 1996.

[10] MCDisassembler, http://llvm.org/docs/doxy-
gen/html/classllvm 1 1MCDisassembler.html.

[11] R.W. Moore, J.A. Baiocchi, B.R. Childers, J.W. Davidson, and J.D.
Hiser, “Addressing the Challenges of DBT for the ARM Architecture,”
In Proc. 2009 ACM SIGPLAN/SIGBED Conf Languages, Compilers,
and Tools for Embedded Systems (LCTES 09), pp. 147-156, 2009.

[12] B.Y. Shen, J.Y. You, W. Yang, and W.-C. Hsu, “An LLVM-based Hybrid
Binary Translation System,” In Proc. 7th IEEE International Symp.
Indurstrial Embedded System (SIES 12, Karlsruhe, Germany, June 20-
22), 2012.

[13] B.-Y. Shen, J.-Y. Chen, W.-C. Hsu, and W. Yang. 2012. “LLBT: an
LLVM-based Static Binary Translator,” In Proc. 2012 International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES’ 12), pp. 5160, October 2012.

[14] R.L. Sites, A. Chernoff, M.B. Kirk, M.P. Marks, and S.G. Robinson,
“Binary Translation,” Communications of the ACM, 36, 2, pp. 6981,
February 1993.

[15] J.E. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, June 2005.

[16] Texas Instruments. Pandaboard. OMAP4430 SoC dev. board, revision
A2, 2012.

[17] VMware Inc, VMware Workstation, 2013.
[18] C. Zheng and C. Thompson, “PA-RISC to IA-64: Transparent Execu-

tion, No Recompilation,” Computer 33, 3, pp. 47-52, March 2000.

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

