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Abstract—Stream Processing Engines are designed to deal with
real-time computing of massive data streams generated on social
networks, news feeding, satellite images, sensor devices, among
other sources. For example, in the context of the Internet of
Things and Smart Cities, a high volume of data it is expected
to be distributed geographically. In this context, the re-use of
processed stream enables resource optimization by avoiding re-
computation, enabling to provide aggregation and global data
visualization. We propose a self-organized architecture to share
data streams, which enables resource localization over a scalable,
fault-tolerant Distributed Hash Table structure. The Stream
Processing Engines are organized into a structured peer-to-peer
network and they exploit a Publish/Subscribe system to publish
and locate preprocessed streams, possibly in other geographic
regions. In order to deal with communication latency problems in
the peer-to-peer network, we propose a latency-aware algorithm
that estimates distance between the nodes in the system.

Keywords–Stream Processing; Peer-to-Peer networks; Large
Scale Computing; Publish/Subscribe.

I. INTRODUCTION

Large scale streams can be generated in domains like
meteorology, finance transactions, remote sensing, software
logs, wireless sensor network, social interactions, telecommu-
nications, just to mention a few. In order to process the amount
of data generated in these scenarios, the capacity of many
machines is required.

In the domain of the Internet of Things (IoT) or Smart
City platforms, Wireless Sensor Networks (WSN) are used
to monitor gas leaks, parking availability, traffic congestion,
pollution levels, the infrastructure’s health, and garbage levels
[1]. These platforms enable integrating and visualizing data in
order to make informed management decisions. The technolog-
ical improvements and lower costs of these pieces of hardware
provide an idea that in the future all the sensor information will
be unmanageable in a centralized infrastructure. Moreover, in
the domain of social networks and online interactions, there
is a continuous stream of events that is used for computing
trending topics or word counting. Such an analysis could
also be applied to all interactions occurring on the Internet.
Clickstream analysis and software logs are two examples of
Internet-scale data generated continuously. Considering that
massive data processing can be spread across geographically
distributed machines, processing could be aggregated using a
global large-scale infrastructure in real-time [2].

Stream Processing Engines (SPEs) are designed to deal
with real-time processing of high volume data streams. SPEs
have evolved from centralized solutions [3], to be able to
distribute queries among several nodes [4][5][6], to finally

distribute operators (or processing elements) that solve a query
across different nodes [7][8]. The latter type is especially
interesting since there are cases where a single machine cannot
cope with the processing of one operator.

SPEs use a graph-oriented paradigm, where vertices repre-
sent operators, also called Processing Elements (PEs), and the
edges represent flows of data. An application defines the PEs
and their interaction through a graph. The PEs can filter, map,
unite, aggregate data, or carry out more complex processing.
SPEs can cope with thousands of events per second, how-
ever, processing large geographically distributed data requires
movement of data across the network, increasing the traffic
and compromising the real-time results.

Processing large scale streams requires close to real-time
global responses and a highly scalable infrastructure. The
volume of data changes over time and the lost of a small
amount of data is not critical to the results. However, SPEs do
not provide tools that facilitate sharing and reuse of processed
stream between clusters that perform the same task. In this
work, we propose a model to share streams of geographically
distributed data in a scalable manner.

The contribution of this work is a model that organizes
SPEs into a Distributed Hash Table (DHT) structure in order
to maintain scalable localization of resources. The system uses
a Publish/Subscribe system to find and share streams and
avoid reprocessing the events. This is a scalable, fault-tolerant
and self-organized infrastructure, which maintains low latency
using locality aware techniques. The model enables users to
estimate latency before deciding whether to use the processed
stream found in the system. This is a Quality of Service (QoS)
measure, in order to cope with real-time restrictions.

The remainder of this article is organized as follows:
Section II presents our system model giving details about
each component and Section III details the processing steps.
We discuss related work in Section IV and finally, present
concluding remarks in Section V.

II. SYSTEM MODEL

In traditional stream processing systems, each application
is independent and works isolated from other applications
producing data re-processing, which wastes resources. We
propose a system model to process massive data streams in
a distributed and collaborative manner. Our goal is to provide
an infrastructure capable of dealing with the overwhelming
amount of data available from diverse sources. Participants
may share the pre-processed data streams, in order to avoid
reprocessing of same data by other participants. We claim that
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this solution can be helpful for building complex applications,
which exploits the output data streams of smaller applications.
Small applications could provide their results as an input to
more complex applications, enabling a more efficient use of
processing. This scenario is presented in Figure 1. In the figure,
application 2 (App 2) is a complex application, which can be
built on top of the data pre-processed and shared by application
1 (App 1) and 3 (App 3).

Figure 1. Stream processing and pre-processed data sharing

The most important challenges of implementing a large-
scale SPEs infrastructure are: (1) scalability, the system must
be able to process a large amount of data over several
geographically distributed SPEs; (2) low latency, due to the
real-time nature of SPEs, latency must be minimal despite
the SPEs location; (3) fault tolerance, the system must be
capable of dealing with failures and changing conditions of
the communication network (latency, partitions, etc.).

We consider a scenario where multiple SPEs, geographi-
cally distributed around the world, collaborate by publishing
their processed streams within the community. In our system,
SPEs are organized into a DHT structure in order to maintain
a scalable localization of resources. The system uses the Pub-
lish/Subscribe paradigm to publish and share data streams with
remote SPEs. Data streams are identified by a description file,
which provides detailed i stream treatment nformation. Pub-
lish/Subscribe has become a popular communication paradigm
that provides a loosely coupled form of interaction among
many publishing data sources and many subscribing data
sinks. In Publish/Subscribe paradigm, messages are published
into channels or topics asynchronously, without knowing the
subscribers. On the other hand, the subscribers state their
interest in one or more topics, and receive messages without
knowing the publishers. This decoupling of publishers and
subscribers enables greater scalability and a dynamic network
topology.

A. Layered view
We propose an architecture composed of SPEs organized

over a DHT-based P2P network where peers or SPEs share
their resources in order to reduce data re-processing. From
now onwards, we consider a peer as an instance of a SPE.
The proposed architecture is composed of 4 layers: the overlay

Figure 2. Distributed SPE (DSPE) architecture

network, a stream sharing system, the stream processing engine
and a latency aware tool. The first component provides efficient
data localization. The second is responsible of publishing the
available pre-processed streams. The third is able to process
streams, and finally, the fourth component is in charge of
estimating the latency of the data movement when sharing the
streams. Figure 2 presents the proposed architecture, which is
detailed below.

B. Overlay Network

The DHT network is implemented using Pastry [9]; how-
ever, any other DHT, such as Chord [10], can be used in
its place. Pastry is a well-known KBR (key-based routing),
which provides scalable and efficient data localization. Pastry
routing can efficiently locate data in a logarithmic number of
routing hops logN , where N is the number of peers in the
network. DHT-based overlays like Pastry can manage millions
of participants without compromising performance, providing
the substrate to build large scale systems.

Every peer in Pastry [9] is assigned a unique node ID in
a space of 128-bit identifiers generated using a cryptographic
hash SHA-1. The neighbors of a peer in Pastry are stored in
the leafset that contains the L numerically closest peers, L/2
clockwise and L/2 counterclockwise. Pastry routing algorithm
is a prefix-based algorithm that routes a message to the
numerically closest peer of a given key k, we call this peer
the responsible for k. The Pastry routing table stores on the
nth row the IP address of peers whose nodeIDs share the first
n digits with the nodeID of the present peer. The algorithm
forwards the messages to a peer chosen from its routing table
that shares at least one more digit with the key k than the
current peer. If no such peer can be found and the current
peer does not know any other peer that is numerically closer
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to k, then the current peer is responsible for k and the routing
ends.

Pastry has the advantage over other DHTs of including a
neighbor list, which maintains contacts to peers close in terms
of a metric, for example latency. In our case this improves
routing and performance.

C. Sharing Streams
Stream sharing is achieved by exploiting a Pub-

lish/Subscribe mechanism specially suited for DHT networks,
called Scribe. Scribe [11] is a topic-based system built on top
of Pastry [9] that creates a multicast tree, which contains all the
peers subscribed to a given topic. The multicast tree is essential
to notify subscribers about updates on the given topic.

Each topic is referenced to by an identifier and the Pastry
node with the closest identifier to the topic becomes its
responsible peer. A multicast tree is built for each topic, rooted
at the corresponding responsible peer. In Scribe when a new
node subscribes to a subject, its subscription is routed by Pastry
to the corresponding responsible peer. The nodes in the path
towards the responsible peer update the tree structure in order
to include the new subscriber in a distributed manner. When an
event is published for a subject or topic, a message is routed
through Pastry to the peer responsible for that subject. The
responsible peer is addressed by the subject’s identifier.

DSPEs can publish their streams identifying them using the
stream data source. Then any operator or subset of operators
related to that data source will be published at the same peer.
Subscribers can join the group by performing the subscribe
operation using the data source of their interest.

When an event arrives at the responsible peer for a given
topic, a matching process among the description files of the
streams is performed in order to find streams that match the
query. Then, the references to the candidates’ streams are
returned.

D. Stream Processing
Stream processing has generated the attention of scientific

community in the last years, arising as a promissory solution
to process the huge amount of data generated nowadays. Many
SPEs have been developed, systems like S4 [7], Storm of
Twitter [8], TimeStream [12], StreamCloud [13], SEEP [14],
D-Stream [15], MillWheel [16], Kinesis [17] among others,
are systems proposed to process massive data in real-time. In
this work, we focus on the Apache solution, called Simple
Scalable Streaming System (S4).

S4 [7] is a general-purpose, distributed, scalable, event-
driven, modular platform that allows programmers to easily
implement applications for real-time processing of continuous
unbounded streams of data. SPEs like S4 have a graph-oriented
programming model where nodes represent operators, also
called processing elements (PE), and the edges represent data
flows. A query defines the PEs and their interaction. PEs can
filter, map, unite, aggregate data, or carry out more complex
processing. PEs are the basic computational unit in S4. They
consume events on the basis of keys and may generate results
as events. PEs are executed on Processing Nodes (PN), which
are machines in a cluster. A special type of PEs called adapters
associate tuples with keys.

S4 can be deployed on commodity hardware achieving
low latencies in communication. S4 uses a push model where
events are pushed to the next PE as fast as possible. In case
a PE becomes overloaded, S4 uses load shedding and, in
case of failure, S4 provides state recovery via uncoordinated
checkpointing, using a coordinated communication system to
detect node failures and notify nodes.

E. Low Latency
In P2P systems, participants are distributed all over the

world, experiencing different communication latencies. Neigh-
bors on a DHT can have greater communication latency
compared to farther located peers on the DHT.

Due to the online nature of stream processing it is essential
to reach low latency responses. For this reason, is important to
provide information about pre-processed data latency in order
to make the decision of exploiting such information or re-
processing it locally.

Applications have to meet different QoS requirements,
furthermore the access to remote pre-processed streams experi-
ence different latencies. Applications must be able to evaluate
the performance of using pre-processed data as an input
stream. To cope with this requirement, our model provides
a QoS module that estimates latency based on the Vivaldi
algorithm [18].

Vivaldi [18] is an algorithm to estimate distance between
peers in a fully distributed manner. It is based on the principle
of spring relaxation to find minimal energy configurations
in the system measuring latencies. Vivaldi presents a fully
distributed lightweight algorithm that assigns synthetic coor-
dinates to nodes in such a way that the distance between the
coordinates of two nodes accurately predicts the communica-
tion latency between the nodes.

Vivaldi does not require a fixed network infrastructure
or especial nodes to compute distances. Instead, any node
can compute good quality coordinates by collecting latency
information from only a reduced number of nodes. To col-
lect information, Vivaldi piggybacks data on communication
messages enabling traffic reduction while keeping other nodes
informed on latencies experienced. The use of communication
messages to spread information enables Vivaldi to scale to a
large number of nodes.

Vivaldi can be applied on P2P systems in a straightforward
manner. Dabek et al. have applied Vivaldi over a Chord
[10] infrastructure to reach a low latency service over a P2P
network [19]. Steiner and Bliersack have analyzed Vivaldi’s
performance [20], reinforcing Vivaldi authors’ claims about the
accuracy and the ability to scale of the algorithm. However,
they also conclude that Vivaldi is not suitable for selecting
close-by peers (within the same ISP). Round-trip time is
composed of three elements: propagation delay, transmission
delay, and queuing delay. On close-by peers RTT is small
and become masked by the other components inducing noise
to the estimation process degrading the estimation accuracy.
This is not the case of our work since our scenario considers
worldwide distributed SPEs.

QoS module estimates latency for the candidate streams
provided by Scribe. Once latency is estimated, the stream
processing layer can decide whether to exploit the remote pre-
processed data or to start the reprocessing of data locally.
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III. PROCESSING MODEL

Given a DSPE requiring processing a distributed data
stream, the processing model follows 4 steps:

1) Stream Publication
DSPEs process data streams generating an output re-
sult. This output is a stream that can be shared as pre-
processed data to be exploited by other applications.
The sharing process relies on publishing data about
the output streams in order to allow another SPE to
know if this is the data it needs.
The data about the stream to be shared is:

• Data source
• Description of the processing
• IP address of the SPE.

The identifier of the stream is defined by the data
source or input stream the application receives.
The Publish/Subscribe mechanism sends the stream
data to a responsible peer which stores all the
streams related to that same identifier or topic, us-
ing SHA(identifier). Additional information or
metadata could be published in order to facilitate
the matching process and also to determine QoS
characteristics based on the DSPE localization or
bandwidth.
Figure 3 presents an example of the publica-
tion of a pre-processed stream which identifier is
the string twitter (data source). Scribe com-
putes the SHA(twitter) and routes the data
of the stream, description and IP address to the
peer closest to the result of that computation.
The peer uses Scribe.publish(identifier,
IP, description) in order to publish the
stream.
The responsible peer R multicasts a message with this
data to all the subscribers of the data source, to new
subscribers and in case of updates.

2) Resource Discovery
DSPEs can locate SPEs that process the data of a
specific stream subscribing the topic built for the data
source. When the peer is subscribed to the data source
it can receive new data about SPEs that are working
on this data. Scribe.join(identifier) sub-
scribes the peer to the correspondent multicast tree.
Each time a new stream is published, subscribed SPEs
are notified of the updates in the topic. The node can
decide locally if it is interested in one SPE output.
Figure 3 shows peer P joining the group of the data
source, called twitter, using Scribe.

3) Data Sharing and Processing
Data processing involves processing data either lo-
cally or exploiting pre-processed data from a remote
DSPE.
A SPE that process a stream that is required
by several others, builds a Scribe multicast
tree with the subscribers that need this output
stream (Scribe.create(IP,data_source)).
This same node is the root of the multicast tree and
the requesters use the IP address of the peer in order
to subscribe to the stream. In this way, the source
node does not send the stream directly to all the
subscribers, but it uses the multicast tree to balance

the load.
Figure 3 shows this step where the peer P joins the
multicast tree of the stream generated by DSPE.

4) Latency Estimation
Once one stream is selected, the peer estimates the
latency that the peer will experience during the re-
trieval of the stream from that remote DSPE. Latency
is critical for online processing, however applications
have different QoS requirements which should be
considered. If it does not achieve the expected latency
compared to the direct use of the data source, then
the remote pre-processed data is discarded and the
peer P should leave the DSPE group.

Figure 3. Distributed sharing-based model for stream processing

In Figure 3, the distributed stream sharing process is
presented. The first step consists in checking the published
streams. Secondly, the matching process between the query
and the available streams are performed in order to select the
candidate streams. Third, candidate streams are returned to the
querying DSPE. Then, latency estimation takes place in order
to discard or take preprocessed streams. Finally, the selected
candidate stream is retrieved from the remote DSPE.

IV. RELATED WORK

Recently, several platforms have built on top of SPEs to
provide more functionality, differing from sharing stream of
data among clusters of nodes. One of them is Trident [21],
which is a high level abstraction on top of Storm that simplifies
the process of building topologies using a micro-batching
processing model. Spark Streaming [22] is a framework that
similarly to Trident, that uses microbatch processing. Spark
receives data from different sources and includes stateful
operators to the SPE. Kafka [23] is a publish/subscribe system
that provides log functionality to SPEs, which is designed for
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real-time activity. The tuple Kafka-Storm or Kafka-Spark has
been proposed in order to guarantee fault tolerance. Below, we
discuss related work comparing their main characteristics with
our model.

Synergy [24] is a middleware for distributed stream pro-
cessing systems that uses an overlay mesh network for com-
munication. The distributed processing systems can use the
whole architecture and different processing elements can be
found at different nodes. They proposed the use of a DHT
structure to store and share stream, for this goal we use a
Publish/Subscribe system, which allows easy localization of
stream about the same topic. For QoS, Synergy uses a process
called impact projection in order to find a candidate set for
processing. We build our system using Vivaldi [18] in order
to maintain locality-aware stream processing.

SBON [25] is a layer between a stream processing system
and the physical network that manages operator placement
for stream processing. SBON uses space coordinate distance
between two nodes to represent the overhead of query place-
ment and the cost of routing data between them. In this case,
the participants in the distributed systems can place operators
of its own application to other nodes in the system. This is
a different scenario than the one targeted in our work. We
consider that different applications are communicated through
a DHT and share their streams through a Publish/Subscribe
system. Applications may belong to different owners and the
sharing process does not use more resources in processing.

SensWeb [26] is an infrastructure for geocentric exploration
of sensor data stream, which allows sharing data streams across
multiple applications. We follow this same goal, however we
aim at sharing processed streams produced as output of SPEs.
SensorWeb is focused on map visualization, which is achieved
through a coordinator and an indexing engine. Our work is
focused on distributed scalable infrastructure achieved with a
DHT and Publish/Subscribe middleware.

GATES [27] is a system that uses a grid middleware for
processing distributed data stream. GATES system uses Open
Grid Services Architecture (OGSA) to provide self-resource
discovering. Our work does not maintain grid boundaries, and
follows a P2P architecture to achieve the same.

In the grid category, we also found StreamGlobe [28],
a system that classifies peer as super-peers and thin-peers
to be able to manage and optimize large networks. Users
register subscriptions and data stream at these interfaces. The
StreamGlobe scheme uses a hierarchical architecture and uses
the same framework as GATES to achieve resource discovery.

Branson et al. propose CLASP [29], a middleware that
enables autonomous stream analysis systems to interoperate,
providing them with opportunities for data access. In CLASP,
applications that seek to cooperate, build virtual organizations
that formalize permissible interoperation, called common in-
terest policies (CIP). CIP specifies resources to share and each
virtual organization defines a manager, a planner and coordi-
nator process that support collaboration functions. CLASP can
complement our work, since it defines a collaboration protocol
and a system association. However, CLASP does not cover the
distributed infrastructure, or the efficient resource discovery.

V. CONCLUDING REMARKS

In this paper, we identified the need of a distributed
infrastructure to cope with the huge amount of data stream

generated by diverse streaming data sources. We propose
a distributed architecture, able to manage the data stream
processing in a scalable way. Our architecture relies on a DHT
network in which the SPEs communicate and coordinate their
actions in order to cooperate to process data. Cooperation
is done by sharing pre-processed data streams based on a
Publish/Subscribe mechanism.

It is well known that DHT infrastructures have to deal with
changing network conditions, affecting their communication
latency. We tackle this problem by providing information
about access latency to the pre-processed data resources. Such
information allows the remote processing engine to decide
whether to exploit the remote data stream or reprocess it
locally.

We have generated a prototype of the architecture proposed
in this article in the context of a Fondef IDEA grant, project
code CA12i10314. Our future work is mainly focused on
applying this architecture on data stream processing in the
context of disaster scenarios.
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