
Platform for Autonomous Service Composition

Krasimir Baylov, Dessislava Petrova-Antonova, Aleksandar Dimov
Department of Software Engineering

University of Sofia “St. Kliment Ohridski”
Sofia, Bulgaria

e-mail: krasimirb@uni-sofia.bg, d.petrova@fmi.uni-sofia.bg, aldi@fmi.uni-sofia.bg

Abstract — The increasing complexity of business processes
requires improved methods for composition of web services. In
order to fulfill this, it is difficult for administrators to keep up
with the growing demand and the enormous amount of
customizations required by the users. A possible solution that
will help in this situation is to develop methods and
technologies that support autonomous compositions of web
services. Such compositions should adapt dynamically to
changes in the requirements or the environment. This paper
describes a platform which implements such solution, based on
Quality of Service (QoS). The platform prototype, which is
presented here, is able to monitor web service QoS and
determine whether the service composition fulfils the overall
quality required by the end users.

Keywords - Quality of Service; Web services; SOA; Dynamic
web services composition

I. INTRODUCTION

Service Oriented Architectures (SOA) play an important
role in enabling integration of business with IT [25]. Services
are a key concept in SOA and they represent reusable entities
that should minimize the development effort and provide
means for information exchange for both service consumers
and providers. On the other hand, the complexity of business
problems is increasing and to solve them, users could
employ a number of services into a composition to execute a
business process. However, as business gets more and more
flexible today, consumers require additional functionality
and customizations towards the services they use. In other
words, a static composition is not capable to fulfill all user
requirements in a long term perspective. This makes service
providers search for ways to deal with the increasing number
of service demand while at the same time providing
personalized Service Level Agreement (SLA) management
[26].

A solution to this problem is to provide compositions that
are autonomic and are capable to adapt to changes in user
requirements or the environment. Such compositions can
adapt according to some measurable rules. Let us consider
that, for a composition, one should choose a service out of a
set of services that share similar functionality. To solve that,
it is possible to choose a service that offers the best Quality
of Service (QoS). Moreover, it would be better if the
composition is not static but changes dynamically according
to changes in the QoS of services (based on changes in
workload, number of requests, etc.) or in user requirements.

For example, if more users send requests to a service, its
response time may raise to an undesirable level, and then
another service should be found and integrated into the
composition. The goal is to make this with minimal human
intervention and implement the change dynamically and
transparently for the user.

This paper presents a platform for building autonomous
web service compositions based on QoS. The platform
provides means for gathering data for evaluation of service
QoS characteristics (like performance, availability,
reliability, cost, etc.). Such means include:

• An extended service registry, which is used as a
repository for collection of service QoS data and
enables easy web-services search and selection

• A model to calculate service QoS, according to the
data in the registry

• An algorithm to find and select the services that will
best meet the agreed SLA of the composition

• Automatically and transparently integrate selected
web services into a working composition

A key aspect of the proposed platform is that service
compositions are determined and updated dynamically at
runtime. This frees administrators and developers from
implementing any QoS related changes.

The rest of this paper is organized as follows: Section 2
makes an overview of the related work; Section 3 presents
the model that we use for evaluating the quality of web
service compositions and determining the best composition;
Section 4 introduces the design and implementation of our
platform for autonomous web service composition. Section 5
presents a simple case-study to illustrate usage of the
platform and validate it, and finally, Section 6 concludes the
paper and states directions for further research.

II. RELATED WORK

Quality attributes are very important in terms of design
and reasoning about of software systems. They are regarded
as key concerns in software architecture design [3] and
selection of relevant web services [9]. Many researchers
have also managed to solve the problem with formal
definition and management of software quality in general.
For example, there exist a lot of theoretical models for
evaluation of reliability [6][24], performance [2][7],
complexity, etc. However, such models tend to be relevant
only at theoretical level as they are either quite general and
have some unrealistic assumptions that make them

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

mailto:krasimirb@uni-sofia.bg
mailto:d.petrova@fmi.uni-sofia.bg
mailto:aldi@fmi.uni-sofia.bg

inapplicable in practice or too complex to be applied in a
broad range of domain areas.

The work that relates to ours may be split into two main
directions: first one is related to models for calculation of
software QoS and second one – to methods for dynamic and
autonomous web service composition. Many research efforts
combine the two directions and use the overall QoS of a
service composition to determine whether it should change
or not [11][13]. There are a lot of models available that
consider the quality characteristics and based on them
provide the best service composition.

Liu et al. [22] proposed of QoS model that is open and
extensible. They provide an implementation of a QoS
registry that stores the web services QoS data and allows
consumers to search against it. A key point here is that such
data is obtained through user feedback, i.e., consumers that
use the services rate them and provide their feedback to the
QoS registry.

Ran [18] proposed a model for web service discovery
based on QoS. They argue that current web service registries
limit service discovery to functional requirements only and
non-functional properties should be paid more and more
attention. They extend the current web services registration
and discovery model by introducing a new role – Web
Service QoS Certifier. The concept of a certifier is also
covered in [12]. The certifier is responsible to certify/verify
the claimed non-functional properties of the web service
providers.

The DYSCO platform [15] provides a complex solution
for dealing with dynamic web service composition. The
platform allows automatic generation of executable business
processes and SLA for each web service. It also provides
mechanisms for monitoring the used web services and
updating the business process when SLA deviations are
discovered.

AgFlow [10] is a middleware platform that allows
quality-driven dynamic web services composition. The
platform provides a multidimensional QoS model that is
responsible for capturing the non-functional properties of the
web services. This work introduces two approaches for
selecting web services – local optimization and global
planning. An adaptive execution engine is responsible for the
runtime adaptation of the web services composition. It
replans the execution any time when any of the services is
unavailable or the quality properties exceed predefined
thresholds.

The web service composition algorithm proposed by Lu
et al. [19] is based on seven QoS properties – running cost,
runtime, success ratio, usability, trustworthiness, degree of
security and degree of semantic correlation. A limitation of
the algorithm is that only semantic (immeasurable) QoS
properties are considered. In addition, it is not clear how the
QoS properties are assessed. In contrast, Yu et al. [20] rely
on measurable QoS properties and especially on latency,
execution cost, availability and accuracy. The advantage of
the proposed solution is that it is applicable to data intensive
web service compositions. It combines the tabu search and
the genetic programming techniques. The last one is applied

also in the web service composition approach presented in
[1].

An approach for self-healing web service composition is
introduced by Aziz et al. [14]. It repairs the web service
composition when some of its components violate the QoS
constraints. The headers of the SOAP messages are extended
in order to provide information about QoS properties. The
approach includes three main phases: monitoring, diagnosis
and repairing. When QoS degradation is detected during
diagnosis phase, a repairing procedure is started. As a result
the failed web service is replaced with another one obtained
from the UDDI registry. A possible drawback of the
approach is that it relies on SOAP as communication
protocol and is not clear how it could be applied when the
composition includes REST web services.

The web service composition system presented by
Brahmi and Gammoudi [23] is based on cooperative agents.
The agents are organized as a social network and cooperate
to find the optimal composition with respect of QoS. The
approach proposed by Xia and Yang [21] is focused on QoS
optimization and redundancy removal. An advantage of the
approach is that it removes most of the redundant web
services minimizing total execution cost of the composition.
Unfortunately, the QoS optimization is based only on two
QoS properties – response time and throughput.

Birgit and Marchand-Maillet [5] solved the web service
composition problem partially by providing an algorithm for
QoS-aware selection. The algorithm uses a rank aggregation
instead of direct measures of QoS values. Its core includes so
called abstract voter that sorts the web services according to
a particular QoS property, named QoS factor. In [8], the web
service composition problem is formalized as problem of
traversing a Petri Net. The estimation of composition’s
quality is performed through utility function that aggregates
the functional, QoS and transactional properties of the web
services.

Currently, there is no universal approach for autonomous
management of dynamic web service composition based on
QoS. In this work, we propose a platform that deals runtime
with QoS monitoring, adaptation and discovery of web
services, in order to determine the best possible composition.
Another advantage of the approach presented here is that it is
compatible with the Business Process Execution Language
(BPEL) standard and is capable of implementing an
executable composition.

III. A MODEL FOR AUTONOMOUS WEB SERVICE

COMPOSITION

In this section, we present the model we use for
autonomous web service composition. It includes analyzing
the quality data for each eligible web service and
determining the best composition that matches a predefined
set of quality requirements. The presented model is based on
[16] and [17], but adds the following additional features to
achieve the goal:

• Introduces the concept of a web service category as
an abstract entity that may refer to multiple web
services, providing the same functionality and
interface.

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

• Uses weight (i.e., priorities) of quality attributes to
determine the weight of actual user requirements.

• Analyzes all service compositions that may be
integrated in order to find the one that best matches
the user defined business process.

Moreover, the model introduces the concept of a web
service category. Each category is defined by common
functionality and an interface and may be associated with
multiple web services. Therefore, the presented model
requires that users define their business processes by
specifying the web service categories rather than the concrete
web service implementation. In other words, each business
process is considered as a composition of multiple web
service categories. Concrete web services are assigned after
the model is applied and the best composition is known.

Currently, to our best knowledge, there is no unified
standard for managing web service categories. For the
purpose of this research, we have used a central service
registry for discovering web service categories and
associated web service implementations for each of them.

The first step in our model is determining the set of web
service categories that build our business process. In this
case, we are not interested in the sequence of the particular
web service invocations but need to know the set of different
web service categories like

� � = {� � � � , � � � � , … , � � � � } (1)

WSCn refers a single web service category that is used in
the business process definition.

Additionally, we need to know the specific web service
implementations associated with each category

� � � � = {� � � � , � � � � , … , � � � � } (2)

In this case, WSC denotes a single service category and
WS denotes a particular web service implementation. A
single web service category WSC may include multiple web
service implementations WS.

We also need the set of quality requirements R and their
associated weights C.

R = {� � , � � , … , � � } (3)
C = {� � , � � , … , � � } (4)

Requirements and weights are set by the business process
designer. They should reflect the end user needs.
Requirements represent the quality characteristics under
consideration like performance, availability, throughput, etc.

Weights are measured by relative values ranging between
0 and 1. Naturally, the sum of all weights should be equal to
1. l represents the number of quality attributes under
consideration (performance, availability, etc.). Note that the
requirements and the weights are paired. For each
requirement � � , there is an associated weight � � .

Then, for each web service, the relevant quality data
should be presented in a matrix. Each row represents an

execution of the web service and each column represents a
quality attribute {� � , � � , … , � � }.

� � � � � = �

� � � � � � ⋯ � � �
� � � � � � ⋯ � � �
⋮ ⋮ ⋱ ⋮
� � � � � � ⋯ � � �

� , � = 1 ÷ � , � = 1 ÷ � (5)

In this matrix, k specifies the number of web service
calls. Each row in this matrix represents the different quality
characteristics for the related call like response time,
throughput, available or not, etc. The data in this matrix is
dynamic. It changes as new web service calls are invoked
and quality data is updated. Note that we may not need to
analyze the entire set of web service calls but only a subset
of them. For example, in many cases it may be more
practical to analyze only the last number of calls. This
number may be updated dynamically based on the platform
that uses the presented model.

The next step in this approach is to calculate the quality
attribute values and normalize them so that they could be
easily compared. For this purpose we need the average,
minimum and maximum values for each quality
characteristic from the � � � � �

matrix. This means that we need

separately process each column in the matrix. The average
value is the sum of all x values for a quality characteristic
divided by their number. The min and max values represent
the lowest and highest values respectively. Therefore, for
each column z (� = 1 ÷ �), we calculate the normalized
value for the quality characteristics.

� � � � � � � � � � � � � � � �
=

� � � � � � � � �

|� � � � � � � � � � � |
, � = 1 ÷ � (6)

Once we have the normalized quality characteristics
values, we should sum them in order to get a numeric
representation of the web service quality.

� � � � � =
∑ � � � � � � � � � � � � � � � �

.�
� � � � �

�
(7)

RWS represents the normalized quality value of the j-th
web service from category i. It is important to consider the
weight/priority of each quality attribute. Therefore, the value
representing the overall quality for a single web service
would be the sum of the normalized quality values for each
quality characteristic multiplied by the relevant weight
factor.

By now, we should have a numeric representation of the
quality of each web service. Next we analyze all
combinations of web services in the composition to find the
best one. For each possible composition we calculate the
related quality by summing the quality values for each
service that builds it.

� � � = ∑ � � � � �
(8)

Once the quality value for each web service composition
QBP is calculated, we analyze them and select the one that

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

has achieved the highest score. As a result, a single web
service composition is selected. This is the one that best
meets the user requirements according to the model.

This model allows us to find the best web service
composition based on a predefined set of quality
requirements and their associated weights. It could easily be
applied to any number of web services and extended to
support various types of quality attributes. This model is
applied in the implementation of our autonomous service
composition platform. The technical implementation of the
platform is presented in Section 4.

IV. QOS BASED PLATFORM FOR AUTONOMOUS SERVICE

COMPOSITION

In this section, we present the design and implementation
of our platform. It is based on the model described in the
previous section and follows the architecture presented on
Figure 1. The model for determining the best service
composition is implemented in the BPEL Extension
component. The current platform allows runtime updates to
the deployed service compositions with no human
supervision.

Our platform also provides an extended web service
registry that allows consumers to search for the services they
need and also inquire information for their QoS
characteristics. Finally, all these data are processed by a
BPEL extension tool which is part of our previous work and
it allows dynamic binding of the selected web services in the
defined composition [4]. The platform consists of the
following components:

1. BPEL Extension – extension deployed on business
process server allowing to perform the runtime
composition of web services and adjust to the
quality requirements of each user.

2. Extended Service Registry – a standard service
registry with a DB extension for persisting quality
attributes data for the web services. Access to this
data is exposed as part of the registry interface
allowing service consumers to use it for their
composition analysis.

3. Web Service Interceptor – tool that is able to
intercept any web service call and collect the
needed quality attributes data. This data is then
stored in the extended service registry and made
available of other service consumers.

In the next subsections, we provide a detailed description
for each of the platform components.

A. BPEL Extension

Our BPEL extension allows updating a BPEL process at
runtime. It is developed according to the BPEL extension
specification and can be deployed and plugged in any BPEL
compliant server. In this work, the WSO2 BPS server is
used to test the extension.

B. Extended Service Registry

The extended service registry provides the standard
UDDI (Universal Description, Discovery and Integration)
interface. Already existing Apache jUDDI v.3.0.4 registry is
used for this purpose. All web services that the platform can
work with are registered there.

As stated in the name of the component it provides
extended functionality. We have deployed a database that
stores the quality characteristics for each web service
invocation. This data is stored in raw format so that it can be
used with various models. To make this data accessible we
have developed Apache jUDDI-like services
(https://juddi.apache.org/), so that consumers could obtain
the quality data they need for building their service
composition. Those web services are exposed as SOAP
services.

In order to make the extension as loosely coupled to the
UDDI registry we have implemented it as a separate tool
that end users could integrate with. Figure 2 represents our
design approach.

This approach allows service consumers to use the
UDDI registry in a standard way and only those who are
interested in the QoS data could trigger the relevant queries
against the extension. In addition, our extension is aware of
the service categories.

A key point here is that we try to avoid the concept of
using a web service QoS certifier. We would not let service
providers publish any QoS data for their web services.
Rather, we would expect every provider that is interested in
providing such data to install the so-called web service

Figure 2. Extended service registry design approach

C

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems
interceptors that we provide. They will store the relevantFigure 1. Architecture of the platform for dynamic web service
composition

33opyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

data in the extended registry. This way the interceptors
(presented in the next section) act like a certified web
service QoS data provider.

C. Web Service Interceptor

The web service interceptor is a module, responsible for
gathering quality related data for each web service
invocation. This module is deployed on each server that
hosts the implemented web services. Because there are
multiple technologies for implementing and exposing web
services we have limited ourselves to using the Apache Axis
2 framework. It provides mechanisms for extensibility and
we could easily integrate our custom logic. What's more the
Apache framework design includes mechanisms for
developing custom handlers for the supported web services.

We take advantage of this functionality and we have
developed custom handlers that intercept the web service
invocations. There are two types of handlers – message flow
handlers and error flow handlers. The message flow
handlers process the standard web service invocation while
the error flow ones are activated when the web service fails.
Figure 3 shows how the interceptors fit into the process of a
web service invocation.

For each web service invocation we get the following
data – SOAP message size, processing time and
identification data like operation correlation ID, IP
addresses, etc. This data is then stored in our database and
exposed for calculation of quality data.

One of the major design goals for web services
interceptor module is modularity. Therefore, it is
implemented in an easy to configure and customize way. The
interceptor module itself is packaged as a “.mar” (module
archive) file. This file is deployed on the servlet container by
creating a folder named “modules” in the
“webapps/axis2/WEB-INF” directory.

V. EXPERIMENTS

In order to show the benefit of the Autonomous Service
Composition Platform, this section presents experiments

that show how it performs in selection of the best (by QoS)
web service. The current implementation is still a prototype
and additional validation will be made when it matures. The
experiment focuses on two quality characteristics –
performance and availability. We have set the weight for
each for the quality characteristics to 0.7 for performance
and 0.3 for availability. For the purpose of this experiment,
we have defined three web service categories, each
representing a mathematical operation – Multiply, Power
and Add. For each category we have developed a set of three
web services with the same functionality and interface but
simulating different quality characteristics – standard, slow
and randomly available.

To make the experiment we created a business process
that uses the three web service categories. Each of them is
called one after another. In this case, we are not interested in
the final result of the calculation but we pay close attention
to the quality characteristics of the executed business
process. Figure 4 represents the business process we use in
our experiments.

From a m
presented in th

� � =

After a ser
regarding the
Table 1 presen

TABLE I.

Category

Multiply M

M

Power

Add

In this ca
could be bui
different value
select the one
graphics of

Figure 3. Intercepting web services invocation

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems
odel perspective, our composition can be
is way

{� � � � � � � � � � , � � � � � � � , � � � � � } (9)

ies of service invocations we collected data
quality characteristics of each web service.
ts the obtained average values.

AGGREGATED QOS DATA FOR EXPERIMENTAL SERVICES

Web service Avg.
performance

Avg.
availability

Multiply Slow 0.493 1

ultiply Available 0.243 0.64

ultiply Standard 0.239 1

Power Slow 0.539 1

Power Available 0.231 0.65

Power Standard 0.225 1

Add Slow 0.543 1

Add Available 0.253 0.67

Add Standard 0.246 1

se, there are 27 possible compositions that
lt. However, each composition will have
for the entire quality and the platform should

that has the highest score. Figure 4 presents a
the calculated values for the quality of

Figure 4. Experimental business process

34

compositions for the possible combinations. To run this
simulation we have set the weights for performance and
availability to 0.5 and 0.5. The composition on the top of the
graphics has highest score compared to the rest. This is the
composition {Multiply Standard, Power Standard, Add
Standard}.

Figure 5. Scores for the Quality of Analyzed Compositions

When the experiment started our platform analyzed the
defined business process and the associated quality goals.
Based on the defined web service categories the relevant
service implementations were discovered and the final
composition was set. Table 2 presents the web services that
were selected as a result of our experiment QoS data for
selected services after experiment.

TABLE II. QOS DATA FOR SELECTED SERVICES AFTER EXPERIMENT

Category Web service Avg.
performance

Avg.
availability

Multiply Multiply
Standard

0.239 1

Power Power Standard 0.225 1

Add Add Standard 0.246 1

Total Quality 0.71 1

The total time for the execution of the business process
is 0.71 seconds and the availability remains 100%. This is
the best possible composition that fits the predefined quality
requirements and the associated weights for each of them.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a platform for
autonomous web service compositions. This platform is able
to monitor the web services execution and gather data for
evaluation of service quality characteristics. This data is

available through web service registry extension. The paper
also proposes a model for analysis of the quality data and
determining the best service composition. A key aspect of
this model is the introduction of web service category as an
abstract way of defining a set of services providing the same
functionality and interface.

In addition, our platform is based on open source
software and is designed for easy extendibility and
modifiability. In the long term such an approach could save
a lot of administrative work and increase the level of
customer satisfaction. The platform provides means for
autonomously adapting the running business processes
based on predefined user goals in terms of SLA. However,
we can state the following directions for future research, in
order for the platform to provide a fully functional end-to-
end solution:

1. Extending the scope of the web service
interceptor – currently, we support Apache Axis2
based web services but we plan to develop
interceptors for other web service frameworks that
can be extended.

2. Extending the number of quality attributes –
currently, we have focused our research on
performance, availability and throughput. We
consider extending the number of supported quality
attributes within the interceptors and the extended
web service registry.

3. Improving the model for selecting best web
service composition – a weak point for our model
is the selection of the best web service
composition. It is expected that all possible
compositions are analyzed and then the best one is
selected. As a point of improvement, we consider
optimizing the selection algorithm to work in a
more efficient way.

4. Perform detailed validation of the platform –
The presented platform is still a prototype. As the
platform gets more mature, additional validation
and experiments should be performed.

ACKNOWLEDGEMENT

The research presented in this paper was partially
supported by the DFNI I02-2/2014 (ДФНИ И02-2/2014)
project, funded by the National Science Fund, Ministry of
Education and Science in Bulgaria.

REFERENCES

[1] A. Silva, H. Ma, and M. Zhang, “A GP Approach to QoS-
Aware Web Service Composition and Selection”, G. Dick et
al. (Eds.): SEAL 2014, LNCS 8886, 2014, pp. 180–191.

[2] A. Machado and C. Ferraz, “Guidelines for performance
evaluation of web services”, In Proceedings of the 11th
Brazilian Symposium on Multimedia and the web (WebMedia
'05), Renata Pontin M. Fortes (Ed.). ACM, New York, NY,
USA, 2005, pp. 1-10.

[3] L. Bass, P. Clemens, and R. Kazman, Software Architecture
in Practice, Addison Wesley, 2013.

0 2 4 6 8

Quality of Composition Score

C

o

m

p

o

s

i

t

i

o

n

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

[4] K. Baylov, D. Petrova-Antonova, and A. Dimov, “Web
service QOS specification in BPEL descriptions”, In
Proceedings of the 15th International Conference on
Computer Systems and Technologies (CompSysTech '14),
Boris Rachev and Angel Smrikarov (Eds.). ACM, New York,
NY, USA, 2014, pp. 264-271.

[5] H. Birgit and S. Marchand-Maillet, “Rank Aggregation for
QoS-Aware Web Service Selection and Composition”, 6th
IEEE International Conference on Service-Oriented
Computing and Applications, 2013, pp. 252-259

[6] B. Buhnova, S. Chren, and L. Fabriková, “Failure data
collection for reliability prediction models: a survey”, In
Proceedings of the 10th international ACM Sigsoft
conference on Quality of software architectures (QoSA '14).
ACM, New York, NY, USA, 2014, pp. 83-92.

[7] R. Douglas, D. F. Pigatto, J. C. Estrella, and K. Branco,
“Performance evaluation of security techniques in web
services”, In Proceedings of the 13th International Conference
on Information Integration and Web-based Applications and
Services (iiWAS '11), ACM, New York, NY, USA, 2011, pp.
270-277.

[8] E. Blanco et al., “A Transactional-QoS Driven Approach for
Web Service Composition”, Z. Lacroix and M.E. Vidal
(Eds.): RED 2010, LNCS 6799, 2012, pp. 23–42.

[9] L. O'Brien, P. Merson, and L. Bass, “Quality Attributes for
Service-Oriented Architectures”, In Proceedings of the
International Workshop on Systems Development in SOA
Environments (SDSOA '07), IEEE Computer Society,
Washington, DC, USA, 2007, pp. 3-

[10] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services
Composition”, IEEE Trans. Softw. Eng. 30, 5 (May 2004),
2004, pp. 311-327.

[11] L. Hideo, V. Nakamura, A. L. V. Cunha, J. C. Estrella, M. J.
Santana, and R. H. C. Santana, “A comparative analysis of
algorithms for dynamic web services composition with
quality of service”, In Proceedings of the 19th Brazilian
symposium on Multimedia and the web (WebMedia '13),
ACM, New York, NY, USA, 2013, pp. 217-224.

[12] M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A
QoS Broker Based Architecture for Efficient Web Services
Selection”, In Proceedings of the IEEE International
Conference on Web Services (ICWS '05), IEEE Computer
Society, Washington, DC, USA, 2005, pp. 113-120.

[13] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M.
Madeira, “Challenges and techniques on the road to
dynamically compose web services”, In Proceedings of the
6th international conference on Web engineering (ICWE '06),
ACM, New York, NY, USA, 2006, pp. 40-47.

[14] N. Aziz, J. Byun, and Y. Park, “A QoS-Aware Performance
Prediction for Self-Healing Web Service Composition”,
Second International Conference on Cloud and Green
Computing, 2012, pp. 799-803.

[15] D. Petrova-Antonova and S. Ilieva, “DYSCO: A Platform for
Dynamic QoS-Aware Web Service Composition”, IADIS
International Conference on Theory and Practice in Modern
Computing 2012, Lisbon, Portugal, July 17-19, 2012, pp. 91-
94.

[16] D. Petrova-Antonova and A. Dimov, “A QoS Driven
Approach for Probability Evaluation of Web Service
Compositions”, 6th International Conference on Software and
Data Technologies, Volume 1, Seville, Spain, 18-21 July,
2011, pp. 321-326.

[17] D. Petrova-Antonova, “Cost Dependent QoS-based Discovery
of Web Services”, Proceedings of International Conference on
Software, Services & Semantic Technologies, September 11-
12, 2010, Varna, Bulgaria, ISBN 978-954-9526-71-4, 2010, p.
152-159.

[18] S. Ran, “A model for web services discovery with QoS”,
SIGecom Exch. 4, 1 (March 2003), 2003, pp. 1-10.

[19] Y. Lu, Z. Gao, and K. Chen, “A Dynamic Composition
Algorithm of Semantic Web Service Based on QoS”, Second
International Conference on Future Networks, 2010, pp. 354-
356.

[20] Y. Yu, H. Ma, and M. Zhang, “A Hybrid GP-Tabu Approach
to QoS-Aware Data Intensive Web Service Composition”, G.
Dick et al. (Eds.): SEAL 2014, LNCS 8886, 2014, pp. 106–
118.

[21] Y. Xia and Y. Yang, “Web Service Composition Integrating
QoS Optimization and Redundancy Removal”, 20th IEEE
International Conference on Web Services, 2013, pp. 203-
210.

[22] Y. Liu, A. H. Ngu, and L. Z. Zeng, “QoS computation and
policing in dynamic web service selection”, In Proceedings of
the 13th international World Wide Web conference on
Alternate track papers & posters (WWW Alt. '04), ACM,
New York, NY, USA, 2004, pp. 66-73.

[23] Z. Brahmi and M.M. Gammoudi, “QoS-Aware Automatic
Web Service Composition based on cooperative agents”,
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2013, pp. 27-32.

[24] Z. Zheng and M. R. Lyu, 2013, “Personalized Reliability
Prediction of Web Services”, ACM Trans. Softw. Eng.
Methodol. 22, 2, Article 12 (March 2013), 2013, pp. 1-25

[25] J. Bih, 2006, “Service oriented architecture (SOA) a new
paradigm to implement dynamic e-business
solutions”, Ubiquity 2006, August, Article 4 (August 2006),
2006, pp. 1-1.

[26] V. Muthusamy, H. Jacobsen, T. Chau, A. Chan, and P.
Coulthard, “SLA-driven business process management in
SOA”, In Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research (CASCON
'09), Patrick Martin, Anatol W. Kark, and Darlene Stewart
(Eds.). IBM Corp., Riverton, NJ, USA, 2009, pp. 86-100.

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

