
A Round-Trip Engineering Method for Activity Diagrams and Source Code

Keinosuke Matsumoto, Ryo Uenishi, and Naoki Mori
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

email: {matsu, uenishi, mori}@cs.osakafu-u.ac.jp

Abstract—In the field of software development, many
implementation methods appear one after another. It is
necessary for them to be flexibly introduced into software.
Model driven development is regarded as one of the most
flexible development methods. It expects to generate source
code from the models. However, the models and the source
code generated from them will become out of sync if the code is
changed. In order to solve this problem, round-trip
engineering (RTE) has been proposed. RTE has a feature that
keeps the models synchronized with the source code. There are
some tools providing us with the RTE, but almost all of them
are applicable only for static diagrams. This research adapts
the RTE directly to activity diagrams as one of dynamic
diagrams, and proposes a method to realize the RTE for
activity diagrams and source code. A success transformation
rate of the models and source code has been confirmed. As a
result, it could be verified that the round-trip engineering
between activity diagrams and source code is successful.

Keywords-model; round-trip engineering; activity diagram;
model driven development; UML.

I. INTRODUCTION
Model driven architecture (MDA) [1][2] draws attention

as a technique that can flexibly deal with changes of business
logics or implementation technologies in the field of system
development. Its core data are models that serve as design
diagrams of software. It includes a transformation to various
kinds of models and an automatic source code generation
from the models [3][4][5].

Development standardization is advanced as model
driven architecture by Object Management Group (OMG).
However, the models and the source code generated from
them will become out of sync if the code is changed. In order
to solve this problem, round-trip engineering (RTE) [6][7]
[8][9] has been proposed. RTE has a feature that keeps the
models synchronized with the source code. Therefore, it is
possible to keep them consistent. There are some tools
providing the RTE, but almost all of them are applicable
only for static diagrams such as class diagrams, component
diagrams. Therefore, it is necessary to adapt the RTE to
dynamic diagrams.

This research adapts the RTE to activity diagrams as one
of the dynamic diagrams, and proposes a method to realize
the RTE for activity diagrams and source code [10][11].

Activity diagrams are defined in Unified Modeling Language
(UML), and describe flows of activities. They can also
express processes hierarchically and are used widely from
upper to lower processes of software development. Figure 1
shows a basic concept of the proposed method. In
transforming activity diagrams to source code, the proposed
method analyzes XML metadata interchange (XMI) [12] of
the activity entities. XML is a markup language that defines
a set of rules for encoding documents in a format which is
both human-readable and machine-readable. XMI is a
standard for exchanging metadata information. Conversely,
in transforming source code to activity diagrams, the
proposed method analyzes the abstract syntax tree (AST)
[13] of the source code. In mutual transformation of them, an
intermediate representation is used. It has hierarchical
structure, and corresponds to both activity diagrams and
source code. For this reason, you can easily transform
between XMI and AST. Describing conditional branches and
loop statements, activity diagrams use the same elements.
They cannot be transformed to source code as they are.
Therefore, a method for analyzing them and mutual
transforming is developed for distinguishing the conditional
branches and loop statements. A success transformation rate
of the models and source code has been confirmed. As a
result, it could be verified that the validity of the proposed
method.

The contents of this paper are shown below: Section II

describes related work. Section III explains the proposed
method of this research. Section IV shows the results of

Figure 1. Schematic diagram of the proposed method.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

application experiments in order to confirm the validity of
the proposed method. Finally, Section V describes
conclusion and future work.

II. RELATED WORK
This study uses related work called AST and RTE.

A. Abstract Syntax Tree
AST that belongs to Eclipse AST implementation is a

directed tree showing the syntactic analysis results of source
code. It is also used in order to create byte code from the
source code as internal expression of a compiler or an
interpreter. AST provides us with ASTParser class which
changes source code into AST. There are many kinds of
nodes defined by AST. An AST node can be searched by
using ASTVisitor class corresponding to one of design
patterns [14]. The visitor design pattern is a way of
separating an algorithm from an object structure on which it
operates. A practical result of this separation is the ability to
add new operations to existing object structures without
modifying those structures. An example of AST is shown in
Figure 2. Detailed analysis can be carried out by changing
AST levels.

B. Round-Trip Engineering
RTE refines intermediate results by editing requirement

definitions, design plans, and source code alternately.
Generally, if either models or code is changed, the RTE
automatically reflects the change on the other side. RTE has
a feature that keeps the models synchronized with the source
code. The outline of RTE is shown in Figure 3.

Some tools, like UML Lab [15] and Fujaba [16][17], are
proposed to maintain consistency of models and source code.
In these tools, a template for generating source code is
described by a template description language. Automatic
generation of source code can be carried out from models by
using the template. It enables to refactor source code and
static diagrams, such as class diagrams and component
diagrams, synchronously. It also does code generation and
reverse engineering in real time. However, it does not deal
with dynamic diagrams like activity diagrams which can
describe the behavior of a system. Although Fujaba
considers activity diagrams, the tool does not address them in
a direct way. On the other hand, our approach deals directly
with the activity diagrams.

III. PROPOSED METHOD
This section proposes a transformation method from

activity diagrams to source code and from source code to
activity diagrams. Activity diagrams mainly describe the
behaviors of a system using nodes and edges. A content of
action is described in a node. The flow of a series of actions
is expressed by connecting nodes by edges. An activity
diagram is described for each method in class diagrams in
the proposed method.

A. Transformation from Activity Diagram to Source Code
A concrete transformation flow from activity diagrams to

source code is as follows:
1) XMI Analysis of Activity Diagram: An activity

diagram is expressed in XMI form as an UML file. It begins
with a start node and ends with a final node, following some
nodes or groups through edges. Nodes have information on
actions or controls of the activity diagram. Edges have
information on control flows as some attributes and
subelements. Group is a tag that has nodes and edges of a
subactivity as subelements. Each tag is given an id for
discriminating from other tags. Table I shows nodes used by
an activity diagram.

2) Transformation from XMI to Intermediate
Representation: Node and edge tags have a transition
starting id and targeting id respectively. Using these ids, you
can extract the flow of actions of an activity diagram as a
sequence of ids. It can be transformed to an intermediate
representation by replacing ids with corresponding nodes

TABLE I. NODES USED BY AN ACTIVITY DIAGRAM.

Tag Node

Node tag

ActivityInitialNode
ActivityFinalNode

CallBehaviorAction
CallOperationAction

DecisionNode
LoopNode
MergeNode

OpaqueAction
Group tag StructuredActivityNode
Edge tag ControlFlow

Figure 2. An example of AST.

Figure 3. Outline of RTE.

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

extracted from XMI analysis. The intermediate
representation is a sequence of nodes as the flow of actions.
The reason for introducing the intermediate representation is
because it makes it easy to transform both XMI and source
code into one another. Figure 4 shows a metamodel of
intermediate representation, and Figure 5 shows the image
of this transformation.

3) Transformation from Intermediate Representation to
AST: Analyzing the flow of the actions of an intermediate

representation, you can transform it into AST. The inter
mediate representation is analyzed in order from the
beginning. According to corresponding nodes, it is
necessary to extract information, such as a branch and loop,
from the representation structure. For example, a branch has
a structure embraced by Decision node and Merge node, but
a loop has a structure embraced by Decision nodes. In order
to distinguish such structures, a stack which stores ids of
Decision nodes is created. If a Decision node comes out, the
id is pushed to the stack at once. It is a branch if a Merge
node comes out before a Decision node comes out next. If a
Decision node comes out and its id is the same id pop from
the stack, then it is a loop. Otherwise, a new Decision node
comes out and its id is stacked. Figure 6 shows this
transformation.

4) Transformation from AST to Source Code: Target
source skeleton code is transformed from class diagrams by
using Acceleo templates for classes. Acceleo [18] is the
Eclisp Foundation’s open-source code generator which
provides us with templates for skeleton code. Transformed
activity diagrams and classes of a target source skeleton
code are expressed by AST. A method whose name is
identical with that of an activity diagram can be searched by
using ASTVisitor class. The method code transformed from
AST of the activity diagram is added to the method body to
which corresponds in the target source skeleton code for
every activity diagram.

B. Transformation from Source Code to Activity Diagram
A concrete flow of transforming from source code to

activity diagrams is as follows:
1) AST Analysis of Source Code: ASTParser class

transforms source code into AST, and ASTVisitor class
searches AST nodes to deal with. These are defined as AST
library. The structure of source code is analyzed by using
these classes.

2) Transformation from AST to Intermediate
Representation: Required information is extracted by
analyzing AST. Whenever an AST node is searched, the
information on the AST node is saved in detail. Required
AST nodes are DeclarationStatement node (like variables,
call of methods), IfStatement node, WhileStatement node,
ForStatement, and so on. The flow of the processing is
almost the same as that of the transformation from XMI of
an activity diagram to intermediate representation. Figure 7
shows this transformation.

3) Transformation from Intermediate Representation to
XMI: A sequence of ids could be extracted from nodes,
groups, and edges in the transformation from activity
diagrams to source code. If this transformation is carried on
in reverse, nodes, groups, and edges are generated by
analyzing the flow of actions. Specifically, nodes or groups
are generated for each action of the intermediate
representation. They are transformed to XML according to Figure 6. From intermediate representation to AST.

Figure 5. From XMI to intermediate representation.

Figure 4. Metamodel of intermediate representaion.

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

the kind of actions. Simultaneously, edges which connect
between nodes or groups are generated. A transition starting
id and targeting id are generable from the sequence of
intermediate representation. Generating Decision or Merge
nodes expressing branches or loops, a stack which is similar
to that of the transformation from activity diagrams to
intermediate representation is used.

4) Adding XMI to Activity Diagram: Generated nodes,
groups, and edges are added to XMI file of an activity
diagram. In case of adding, you refer to the activity diagram
in the package where the source code is allocated. If the
diagram already exists, adding is performed after deleting
the contents of the existing file. Otherwise, adding is
performed after generating a new diagram.

IV. APPLICATION EXPERIMENTS
The proposed method is applied to a hunter game [19] to

confirm the effectiveness of the proposed method. We have
both activity diagrams and source code of the hunter game.
The number of AST nodes of original hunter game is 4971.
Mutual transformations of the activity diagrams and the
source code are carried out by the proposed method. As a
result, Figure 8 describes comparison results of the number
of AST nodes. Tables II and III show the comparison of the
number of XMI and AST nodes respectively.

The transformation rate is computed by comparing the
number of XMI nodes of activity diagrams. The objects to
compare are handwritten activity diagrams and the activity
diagrams automatically generated from the source code.

TABLE II. COMPARISON OF THE NUMBER OF XMI NODES.

XMI node Automatic Original Difference
group 47 47 0
guard 155 159 -4
edge 1137 1142 -5
node 1367 1369 -2

TABLE III. COMPARISON OF THE NUMBER OF AST NODES.

AST node Automatic Original
SwitchCase 0 4

SwitchStatement 0 1
CatchClause 0 8
TryStatement 0 8

VariableDeclaration 69 77
Block 364 315

 Figure 7. From AST to intermediate representation.

Figure 8. Comparison results of AST nodes.

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

The transformation rate is 99.6% (= generated XMI
nodes * 100 / original XMI nodes). XMI nodes which are not
transformed are shown in Table II. There are three kinds of
nodes: guard, edge, and node. A switch statement cannot be
described in an activity diagram, but the same processing can
be described by using if statements. Guard nodes decreases
in the same number of switch statements in generated
activity diagrams. The number of edges is also decreasing in
connection with it.

After adding change to source code, an activity diagram
is generated from the changed source code. It is verified
whether the generated activity diagram reflects the added
change. For example, original source code and activity
diagram of bubble sorting are shown in Figure 9. The source
code is changed as presented in Figure 10. The activity
diagram in Figure10 reflects the added change as intended.

A reverse transformation is investigated by generating
activity diagrams from handwritten source code and
transforming from these activity diagrams to source code.
The objects to compare are handwritten source code and the
automatic generated source code. The transformation rate is
99.8%. Except for switch statements and the positions of
block, they are almost similar. It is verified that the generated
source code is functionally equivalent to the handwritten
source code. The transformation rates for forward and
reverse transformation are not 100% because there is no
standard expression to describe switch and try-catch
statements in an activity diagram. They are not transformed
by the proposed method as shown in Table III.

Figure 10. Modified source code and activity diagram.

Figure 9. Original source code and activity diagram.

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

V. CONCLUSION
This paper has pointed out a problem in model driven

development and proposed a method of applying round-trip
engineering to activity diagrams in order to solve the
problem. The effectiveness of the proposed method is
verified by the application experiments for the source code
of a hunter game. Consequently, it has confirmed that the
round-trip engineering between activity diagrams and source
code is successful. The characteristics of the activity
diagrams accepted by this approach are as follows: They
consist of actions of the same granularity, not so many
multilayered group nodes.

Since activity diagrams cannot yet deal with switch and
try-catch statements, defining of these description methods
and increasing convertible elements are important as future
work.

ACKNOWLEDGMENT
This work was supported in part by JSPS KAKENHI

Grant Number 24560501.

REFERENCES
[1] S. J. Mellor, K. Scott, A. Uhl, and D. Wiese, MDA Distilled:

Principle of Model Driven Architecture, Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA, 2004.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development, Springer Berlin Heidelberg, 2005.

[3] A. Uhl, “Model-Driven Development in the Enterprise,” IEEE
Software, January/February 2008, pp. 46-49.

[4] R. F. Paige and D. Varró, “Lessons Learned from Building
Model-Driven Development Tools,” Software System Model,
Vol. 11, 2012, pp.527-539.

[5] N. Condori-Fernández, J. I. Panach, A. I. Baars, and T. Vos,
Ó. Pastor, “An Empirical Approach for Evaluating the
Usability of Model-Driven Tools,” Science of Computer
Programming, Vol. 78, No. 11, 2013, pp. 2245–2258.

[6] N. Medvidovic, A. Egyed, and D. S. Rosenblum, “Round-
Trip Software Engineering Using UML: From Architecture to
Design and Back,” Proc. of the 2nd Workshop on Object
Oriented Reengineering, 1999, pp.1-8.

[7] U. Aßmann, “Automatic Roundtrip Engineering,” Electronic
Notes in Theoretical Computer Science, vol. 82, 2003, pp. 33-
41.

[8] A. Henriksson and H. Larsson, “A Definition of Round-Trip
Engineering,” Technical Report, University of Linköping,
Sweden, 2003.

[9] M. Antkiewicz and K. Czarnecki, “Framework-specific
modeling languages with round-trip engineering.” in Model
Driven Engineering Languages and Systems, Springer Berlin
Heidelberg, 2006, pp. 692-706.

[10] A. K. Bhattacharjee and R. K. Shyamasundar, “Activity
Diagrams : A Formal Framework to Model Business
Processes and Code Generation,” Journal of Object
Technology, Vol. 8, No. 1, January-February 2009, pp. 189-
220 .

[11] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem,
and Mohamed F. Tolba “A Proposed Test Case Generation
Technique Based on Activity Diagrams,” International
Journal of Engineering & Technology IJET-IJENS Vol. 11
No. 3, 2011, pp. 35-52.

[12] XML metadata interchange. XMI: [Online]. Available from:
http://www.omg.org/spec/XMI/ 2015.3.18.

[13] I. Neamtiu, J. S. Foster, and M. Hicks., “Understanding
Source Code Evolution Using Abstract Syntax Tree
Matching,” ACM SIGSOFT Software Engineering Notes. Vol.
30. No. 4. ACM, 2005, pp. 1-5.

[14] E. Gamma, R. Helm, R. Johson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[15] Unified Modeling Language Lab. UML Lab: [Online].
Available from: http://www.uml-lab.com/en/uml-lab/
2015.3.18.

[16] U. A. Nickel, J. Niere, J. P. Wadsack, and A. Zündorf,
“Roundtrip Engineering with Fujaba,” Proc. of the 2nd
Workshop on Software-Reengineering (WSR), Bad Honnef,
2000, pp. 1-4.

[17] L. Geiger and A. Zundorf, “Tool Modeling with Fujaba,”
Electronic Notes in Theoretical Computer Science, vol. 148,
2006, pp. 173-186.

[18] Acceleo: [Online]. Available from:
http://www.eclipse.org/acceleo/ 2015.3.18.

[19] M. Benda, V. Jagannathan, and R. Dodhiawalla, “On Optimal
Cooperation of Knowledge Sources,” Technical Report, BCS-
G 2010-28, Boeing AI Center, 1985.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-405-3

ICAS 2015 : The Eleventh International Conference on Autonomic and Autonomous Systems

	I. Introduction
	II. Related Work
	A. Abstract Syntax Tree
	B. Round-Trip Engineering

	III. Proposed Method
	A. Transformation from Activity Diagram to Source Code
	1) XMI Analysis of Activity Diagram: An activity diagram is expressed in XMI form as an UML file. It begins with a start node and ends with a final node, following some nodes or groups through edges. Nodes have information on actions or controls of th...
	2) Transformation from XMI to Intermediate Representation: Node and edge tags have a transition starting id and targeting id respectively. Using these ids, you can extract the flow of actions of an activity diagram as a sequence of ids. It can be tran...
	extracted from XMI analysis. The intermediate representation is a sequence of nodes as the flow of actions. The reason for introducing the intermediate representation is because it makes it easy to transform both XMI and source code into one another. ...
	3) Transformation from Intermediate Representation to AST: Analyzing the flow of the actions of an intermediate
	representation, you can transform it into AST. The inter mediate representation is analyzed in order from the beginning. According to corresponding nodes, it is necessary to extract information, such as a branch and loop, from the representation...
	4) Transformation from AST to Source Code: Target source skeleton code is transformed from class diagrams by using Acceleo templates for classes. Acceleo [18] is the Eclisp Foundation’s open-source code generator which provides us with templates for s...

	B. Transformation from Source Code to Activity Diagram
	1) AST Analysis of Source Code: ASTParser class transforms source code into AST, and ASTVisitor class searches AST nodes to deal with. These are defined as AST library. The structure of source code is analyzed by using these classes.
	2) Transformation from AST to Intermediate Representation: Required information is extracted by analyzing AST. Whenever an AST node is searched, the information on the AST node is saved in detail. Required AST nodes are DeclarationStatement node (like...
	3) Transformation from Intermediate Representation to XMI: A sequence of ids could be extracted from nodes, groups, and edges in the transformation from activity diagrams to source code. If this transformation is carried on in reverse, nodes, groups, ...
	4) Adding XMI to Activity Diagram: Generated nodes, groups, and edges are added to XMI file of an activity diagram. In case of adding, you refer to the activity diagram in the package where the source code is allocated. If the diagram already exists, ...

	IV. Application Experiments
	V. Conclusion
	Acknowledgment
	References

