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Abstract—In recent years, there has been a great research interest
in cooperative mobile robotics. An advancement in industrial
technology has seen the need for distributed applications in
robotic systems where teams of robots are required to solve
tasks intelligently and efficiently. Heterogeneity in robot teams
adds complexity to a cooperative system since each member in
the team varies in capability which determines its task abilities.
The objective of this research paper is to introduce the use of
a machine learning system to facilitate cooperation in multi–
robot teams. Tests were performed and simulated for mobile robot
cooperation in a material handling application during bottleneck
conditions.

Keywords–Multi–robot systems; cooperation; bottleneck; sup-
port vector machine; learning.

I. INTRODUCTION

Cooperation of Multi–Robot Systems (MRS) have drawn
increasing attention in the past two decades since these systems
have the ability to perform complex tasks more efficiently
compared to single–robot systems [1] [2]. An implementation
of a cooperative robot team in a manufacturing environment
can, for example, solve the issue of bottlenecks in a production
line, whereas the limitations of an individual robot can lead to
a lot of problems in terms of time wastage, loss of revenue,
poor quality products and dissatisfied customers.

Despite the advantages of MRS, there are still many chal-
lenges that exist such as task allocation, collision avoidance,
communication, coordinating actions and team reasoning [3].
These challenges together with changing environments and
robot heterogeneity, make it impossible for the MRS to predict
all of the likely scenarios and thereby act on them. An effective
solution to this problem is the incorporation of a learning
component to the intelligence of a MRS.

Behaviour-Based Systems (BBS) [4] [5] are learning mod-
els that are designed using a bottom–up approach where
survival behaviours, such as obstacle avoidance, constitute the
low–level robot control and exploration and path planning
make up the high–level control component; behaviours are
introduced to the model until the desired robot–environment
interaction is achieved. Behaviour selection is a key challenge
in BBS since it determines which behaviours(s) control the
robot at any given time; Reinforcement Learning (RL) has
successfully contributed in this regard and has become an area
of great interest in the research community [3].

Some other areas of learning mechanisms applied to MRS
are artificial neural networks [6] and genetic algorithms
[7] [8]. The focus of this paper is to discuss the use of

the Support Vector Machine (SVM) learning algorithm in
MRS. SVM learning is a supervised, classification or inductive
learning scheme where the computing system learns from the
database of past experiences to predict future outcomes; it has
been successfully implemented in many applications, such as
bioinformatics, and text and image recognition.

This paper aims to broaden its use in MRS applications
where cooperation among robot team members is a key re-
quirement. The remainder of the paper is structured as follows:
Section II discusses the background and theory of SVMs, in
particular, linear and non–linear classifiers, and some popular
SVM libraries that can be used in applications; Section III
discusses the design, implementation, and test results of the
SVM learning system in a material handling application;
Section IV concludes the paper and introduces further work
to the research.

II. SVM BACKGROUND

SVM learning is related to statistical theory [9] and was
first introduced as a classification method in 1992 [10]. It is
widely used in bioinformatics due to its accuracy and ability
to work with high–dimensional space data. The standard SVM
is a binary linear classifier (commonly referred to as the linear
SVM) which predicts whether an input belongs to one of two
possible classes; this is accomplished by first building a model
from a set of training examples, each consisting of input data
that are mapped to the corresponding class label. SVM non–
linear classifiers can be created by using non–linear kernel
functions, further discussed in Section II-B.

A. SVM linear classifiers
In order to gain an intuition on what support vectors

actually are and how they are used to create learning models
a few preliminary mathematical terms will now be introduced.
Given some training data set, D, with n points:

D = {(xi,yi),xi ∈ Rm,yi ∈ {−1, 1}}ni=1 (1)

The boldface x term is a vector with training example inputs xi;
each xi has an m–dimensional size of m features. The classifier
term, yi, is either -1 or 1 and indicates the class to which each
point xi belongs.

In Figure 1 (a), the training examples are classified into
positive and negative classes. The hyperplane, H, is the deci-
sion boundary that divides the regions between positive and
negative classes. The decision boundary is said to be linear
since the examples are linearly separable and a classifier with
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Figure 1. (a) Hyperplanes and margins. (b) Margin classifiers

a linear decision boundary is called a linear classifier. H1 and
H2 are lines that intersect the support vectors, these are the
training examples that are closest to the decision boundary and
they determine the margin (d1 and d2) at which the two classes
are separated from the hyperplane (or decision boundary). The
SVM algorithm is also termed as the large margin classifier
since its goal is to maximise the margin d for a set of classified
training examples.

Figure 1 (b) is an extension to (a) and shows the training
examples on a two dimensional feature space with features
x(1) and x(2). A linear classifier is based on a linear function
of the form:

f(x) = wTx+ b (2)

where w is commonly known as the weight vector and b is the
bias. The product between w and x is known in linear algebra
as the dot product and is defined as wTx =

∑
i wixi. The

equation for the hyperplane is:

H : wTx+ b = 0 (3)

where the purpose of the bias can be seen as moving the plane
away from the origin, i.e., if b=0 the hyperplane would go
through the origin. Equations (4) and (5) are related to planes
H1 and H2:

H1 : wTx+ b = 1 (4)

H2 : wTx+ b = −1 (5)

and are equated to 1 and -1 respectively due to the definition
of the classifier term, yi in (1). Using geometry and referring
to Figure 1 (b), the margin between H and H1 is 1/‖w‖, where
‖w‖ is the length of the vector w and is given by

√
wTw;

hence the margin between H1 and H2 is 2/‖w‖. In order to
maximise the margin, ‖w‖ must be minimised subject to the
following constraints which are added to prevent data points
falling into the margin:

wTxi + b ≥ 1, {for yi = 1} (6)

wTxi + b ≤ −1, {for yi = −1} (7)

Equations (6) and (7) can be combined to form:

yi(w
Txi + b) ≥ 1, {for 1 ≤ i ≤ n} (8)

Minimising ‖w‖ subject to (8) is a constrained optimisation
problem and solving it requires using the method of Lagrange

multipliers. A method that can be used to obtain a dual
formulation, expressed in terms of αi variables [11]:

maximise α:
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj (9)

subject to:
n∑

i=1

yiαi = 0, αi ≥ 0 (10)

The dual formulation also defines the weight vector in terms
of the training examples:

w =

n∑
i=1

yiαixi (11)

B. SVM non–linear classifiers
In most SVM classification problems, the data set is not

linearly separable. Literature [10] solves this challenge by
mapping the original finite dimensional space into a higher
dimensional space making the separation much easier in that
space, as illustrated in Figure 2.

Figure 2. Non-linear classification mapping

The mapping is achieved by the use of Kernel functions
and the dot product property in the linear SVM algorithm.
The xT

i xj terms in (9) are replaced by the kernel function, K:

K(xi,xj) = ϕ(xi)
Tϕ(xj) (12)

which can represent (among others) a polynomial, gaussian,
or hyperbolic function [12]. The linear classifier is also known
as the linear kernel.

C. Multi–class SVM
SVMs are inherently binary classifiers however, there are

many applications where multiple classifications are required.
The common method of solving the M-class problem is to
divide it into multiple binary classification problems [13]:

• One-vs-All: This method constructs N binary SVM
classifiers, where N represents the number of classes.
Every i-th SVM is trained to differentiate the training
examples of the i-th class from the examples of the
other classes. At the classification phase, samples are
classified in accordance to the highest output function
among all the SVMs.

• One-vs-One: This strategy constructs one SVM for
every pair of classes, hence for an M-class problem of
N classes, N(N-1)/2 SVMs are trained. A maximum-
wins voting concept is used where each SVM classifier
assigns the sample to one of the two classes and
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the number of votes for the assigned class increases
by one; in the end, the class with the most votes
determines the classification of the sample.

Another approach to the M-class problem, which avoids the
use of multiple binary classification problems, involves the
application of a single optimisation model [14].

D. SVM software libraries
Over the past two decades there has been a wide interest

in SVM algorithms which has led to the development of many
solvers for SVM optimisation problems. Two popular open
source solvers are LIBSVM [15] and SVMlight [16]. These
solvers form excellent tools for researchers since they eliminate
the vast quantity of time that could be spent on the complex
software development of SVM optimisation algorithms and
thus allow the scientist to focus on the primary components of
the research. The LIBSVM library was used in this research.

III. MULTI-ROBOT COOPERATION APPLICATION

The multi–robot cooperation research was tasked for ad-
vanced manufacturing environment applications where dissim-
ilar (or heterogeneous) mobile robots are used in discrete
processes. The idea of cooperation between robots when
there is a need can prevent bottlenecks, improve material
flow and thus contribute to the upkeep of a good supply
chain management system. The objective of the research is
to aid any member in a team of heterogeneous robots in task
decision making. Each robot in the system must be capable
of moving autonomously in the known environment while
avoiding obstacles and maintaining a teamwork approach in
the resolution of common goals. An essential component of
the design is the machine learning algorithm which is used to
predict suitable goal destinations for each mobile robot, given
a set of input parameters.

Figure 3. Mobile robot hardware used for the research

The three mobile robots (Figure 3) used in the research
were the Performance PeopleBot, the Segway RMP200, and
the Segway RMP400. The platforms were chosen on the basis
of their availability; they are mainly used for research purposes
and not suited for manufacturing environment applications,
which is acceptable for the research since the objective is to

establish the concept of a cooperating team of heterogeneous
mobile robots, irrespective of their abilities and functionality.

A. Material handling application description
The objectives of this research were tested in a material

handling application, as illustrated by the Supervisory Control
and Data Acquisition (SCADA) screenshot shown in Figure 4.
The application shows a resource buffer (“R”), a storage buffer
(“S”), 6 process buffers (“B1”–“B6”), 3 machines (“M1”–
“M3”), and a conveyor; it was designed in this manner
to demonstrate the cooperative ability of the system during
bottleneck and fault conditions. The application was set up
for the PeopleBot to transport material from “R” to “B1”, the
RMP200 move material from “B4” to “B5”, and the RMP400
to finally move the end product from “B6” to “S”.

Figure 4. Material handling application for the research

The numbers within the blocks shown in Figure 4 represent
the quantity of material in the buffer and the buffer levels
are illustrated as a percentage of their total capacity, thus the
bottlenecks in the process can be seen at a glance during
production. The calculations for the quantity of material, buffer
capacities, and machine process rates are all done in the
simulation program which is located in the SCADA component
of the system, the details of which are beyond the scope of
this paper.

During the implementation and debug phase of this re-
search, bottleneck conditions were intentionally created by
altering: 1) the material handling capacities of the robots, 2) the
machine efficiencies, and 3) the buffer capacities.

B. Design overview
Figure 5 shows the design overview of the Mechatronic

system. The scope of the design consists of an integration of
the following components:

• Robot hardware
• Middleware
• Agent program
• SCADA

The robot hardware comprises of the mechanical robot
(PeopleBot, RMP200, RMP400), the sensors (LRF, sonars),
and the actuators (drives, motors). The middleware layer is
necessary since it is responsible for interpreting the high level
(agent program) commands and presents them to the sensors
and actuators through the use of low level software driver
modules.
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Figure 5. Design overview of the Mechatronic system

The agent program is the robot’s decision making compo-
nent in the system design as it determines which task (primary
or secondary) is required by the robot at a specific point in
time. In addition to the localisation and cognition modules, the
agent program contains the machine learning module which
was incorporated in the system design due to the following
benefits:

• Robot heterogeneity and task taxonomy: due to the
different capabilities of each robot together with the
variations in tasks, the system is required to identify
whether or not a particular robot can perform a
secondary task when required. An integrated learning
system will ensure that each robot goes through an
engineering teaching process so that the robot “agent”
can identify itself as a helping agent when the need
(bottleneck) arises.

• Manufacturing environment reconfiguration: changes
in the environment, caused by the manufacturing of
different products or the implementation of new ma-
chinery, will have a minimal impact on the cooperative
function of each robot since the learning module
ensures that robot agents are re-taught accordingly. A
further advantage is the saving of money and resources
that would have been required to reconfigure the
robots to adapt to the new environment.

The agent program also comprises a communication interface
which sends, receives and processes data packets to/from the
plant SCADA system. The SCADA is a vital component in
the manufacturing plant automation system since it makes
process information available to operators and engineers for
the purpose of monitoring and control.

C. SVM implementation
The LIBSVM library was used in the agent program for

the train and prediction algorithms, and the polynomial kernel
was chosen as the non–linear SVM kernel function. There are
two phases to the SVM algorithm:

• the learning phase, where agents are taught by the
system on the best goal location to follow. The teach-
ing process can take place in an offline (simulation)
environment, or online through the Graphical User
Interface (GUI) interface of the SCADA system.
The objective of the learning phase is to build a
knowledge database of SVM features with training
examples. Figure 6 is an extract of the “train.txt” file
that contains the training examples. The SVM features
in the file (labeled 1 to 8) are the buffers in the
manufacturing application and the training examples
(the values positioned to the right of the colons) are
the number of materials in each buffer. The (output)
goal location for the robot is the first number in each
line of the file.

Figure 6. Train.txt file extract with SVM features and training examples

• the train–prediction phase uses the data collated in the
learning phase (i.e., the data contained in the train.txt
file) to generate training models for each agent; the
goal output for each agent is then accomplished by
using the current data values (obtained from the data
packet) as inputs to the prediction algorithm. The
current data values represent the immediate status of
the manufacturing process; they are stored as a string
of data in the “test.txt” file which is used as an input
to the SVM prediction algorithm. Figure 7 illustrates
the entire process of training, building the model, and
predicting the goal output for each robot in the system.

Figure 7. Process of the SVM train–predict phase

D. Simulation results and discussion
This section produces the results of the tests performed

during the simulation of the system. Bottlenecks were created
by varying the load carrying capacities of the robots, however,
there were other options by which this could have been done,
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namely: 1) vary the machine or conveyor efficiencies, and
2) change the buffer capacities.

During the SVM teach phase of the tests, the PeopleBot
was taught to help the RMP200 at the bottleneck. Figure 4
showed a screenshot of the material handling application,
where the PeopleBot’s primary task is to move materials from
the resource buffer (“R” or “B0”) to “B1”, the RMP200 has
the single task of transporting material from “B4” to “B5”,
and the RMP400 also has a single task of moving the final
product from “B6” to the storage buffer (“S” or “B7”).

A bottleneck was created at “B4” by reducing the load
carrying capacity of the RMP200 from 20 materials to 5
materials. The capacity of the PeopleBot remained the same
(at 20 materials), this ensured that the material build up rate
at B4 was greater than the buffer process rate, resulting in a
bottleneck.

Four types of simulation tests were performed:
• normal operation: the load carrying capacities of the

robots were configured to prevent bottleneck condi-
tions.

• bottleneck condition: the load carrying capacities of
the robots were configured to promote bottleneck
conditions.

• cooperation at the bottleneck: a robot agent was al-
lowed to help another agent at the bottleneck.

• cooperation during a robot fault: a robot agent was
allowed to take over the tasks of the faulty robot so
that the possibility of the occurrence of a bottleneck
is reduced.

A discussion of all four types of tests is beyond the scope of
this paper, hence only the bottleneck condition and cooperation
at the bottleneck cases will be discussed.

Figure 8. Material distribution graph: bottleneck condition

The material distribution graph for the bottleneck condition
simulation test is given in Figure 8. The graph has three axes:
the x–axis represents the buffer locations, ranging from 0
(buffer B0) to 7 (buffer B7); the y–axis represents the time
(in seconds) of the simulation; the z–axis gives the number
of materials, in a percentage, at each buffer location. The
percentage is calculated by the following equation:

Bsize =
Bnum

Bcap
∗ 100 (13)

where Bnum is the number of materials in the buffer and Bcap

is a constant which represents the number of materials that the
buffer can contain, i.e., the buffer capacity.

The visual trend in the graph shows a decrease in material
count at the resource buffer (which was initialised with 100
materials) and an increase in material count at the storage
buffer, towards the end of the simulation. Table I gives more
detail to the bottleneck condition simulation and lists the
values of some test parameters such as the total simulation
(or production) time and the total operation time of each robot
agent.

TABLE I. SIMULATION RESULTS FOR THE BOTTLENECK CONDITION

Test parameter Value
Total simulation time 1763 sec
Agent 1 load capacity 20 materials
Agent 2 load capacity 5 materials
Agent 3 load capacity 100 materials
Agent 1 operation time 349 sec (19.8%)
Agent 2 operation time 1520 sec (86.2%)
Agent 3 operation time 93 sec (5.3%)
Buffer 2 @100% 282 sec (16.0%)
Buffer 3 @100% 594 sec (33.7%)
Buffer 4 @100% 936 sec (53.1%)

Agents 1, 2 and 3 are the PeopleBot, RMP200 and RMP400
respectively. The values within brackets in the table are the
percentages of the total simulation time. The large simulation
time for the bottleneck condition is due to the bottleneck at
buffer 4, where the RMP200 cannot transport the required
amount of material to keep up with the incoming rate at
the buffer. The bottleneck problem caused a cascaded effect
(depicted in Figure 8) to fill up buffer 3 and buffer 2. The
purpose of the bottleneck condition simulation was two–fold:
1) to emphasise the impact of the bottleneck on the production
system, and 2) to set the stage for an implementation of the
cooperative learning system in mitigating the bottleneck.

The cooperation at the bottleneck simulation was per-
formed by allowing the SVM–trained PeopleBot agent to
assist the RMP200 agent at the bottleneck (buffer 4), hence
the PeopleBot executes its primary task of transporting ma-
terial from B0 to B1 as well as “cooperates” by effecting
its secondary task of moving material from B4 to B5. The
material distribution graph in Figure 9 reflect the results of
the cooperative learning system.

Figure 9. Material distribution graph: robot cooperation at bottleneck
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An analysis of the SVM output results in the subplot of
Figure 10 gives an interesting perspective on the periods at
which the algorithm determines the assistance of the PeopleBot
at the bottleneck. The SVM outputs for the PeopleBot agent
are either “1” or “2”, representing the primary or secondary
task respectively. During the teach phase, the PeopleBot agent
was taught to assist at B4 when the size of B0 is low and
when the sizes of B4 and/or B3 are high. The effect of the
teaching exercise is clearly shown in Figure 10 since the SVM
predictions are “2” during conditions where the test parameters
of the SVM features (i.e., the buffer sizes) are approximately
the same as the SVM training examples.

Figure 10. PeopleBot SVM outputs: cooperation at bottleneck

TABLE II. SIMULATION RESULTS FOR THE COOPERATION AT THE
BOTTLENECK CONDITION

Test parameter Value
Total simulation time 809 sec
Agent 1 load capacity 20 materials
Agent 2 load capacity 5 materials
Agent 3 load capacity 100 materials
Agent 1 operation time 600 sec (74.2%)
Agent 1 primary task 62.5%
Agent 1 secondary task 37.5%
Agent 2 operation time 678 sec (83.8%)
Agent 3 operation time 91 sec (11.3%)
Buffer 3 @100% 42 sec (5.2%)
Buffer 4 @100% 138 sec (17.1%)

Table II lists the total simulation time of 809 seconds—
a 54% reduction in comparison to the previous simulation
case. The table also reflects the task distribution percentage
for agent 1: the SVM algorithm determined the secondary goal
for the PeopleBot 3 times out of a total of 8 iterations in the
simulation, i.e., the PeopleBot spent 37.5% of its operation
time on the secondary task and 67.5% on its primary task. The
simulation also resulted in an elimination of buffer 2 from the
bottleneck cascade and showed reduced buffer–full times of
buffer 3 and buffer 4 to 5.2% and 17.1%, respectively.

IV. CONCLUSION

The main objective of the research was the demonstration
of a cooperative robot system using a machine learning ap-
proach. This objective was achieved by the successful per-
formance of the SVM algorithm, where the bottlenecks were
alleviated by the cooperating agent, significantly improving the
manufacturing production times. The SVM learning algorithm
essentially predicts and determines the goal tasks of each robot
agent in the network by using a database of training examples.

The research discussed in this paper broadens the use of
SVM algorithms (and potentially other supervised learning
algorithms) in the area of multi–robot systems and manufactur-
ing applications. The attraction of a learning based system is
the semi–elimination of hard coded programmed solutions for
specific scenarios; the learning system can adapt to dynamic
environments and plant reconfiguration conditions.

Further work to this research will see the implementation
of a reinforced learning system where the agents dynamically
learn the “positive” and “negative” examples from the environ-
ment without going through a training exercise facilitated by
the robot operator. Another desired modification to the system
is the use of an automated selection of a training database in
a suite of databases, this is useful when an agent has to solve
a variety of problems, requiring the employment of multiple
sets of training data.
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