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Abstract — the very success of autonomic systems has inevitably 

led to situations where multiple autonomic managers need to 

coexist and/or interact directly or indirectly within the same 

system. This is evident, for example, in the increasing availability 

of large datacentres with multiple [heterogeneous] managers 

which are independently designed. Potentially, problems can 

arise as a result of conflict-of-interest when these managers 

(components) coexist. There is a growing concern that the lack of 

support for interoperability will become a break issue for future 

systems. We present an architecture-based solution to 

interoperability. Our approach is based on a Trustworthy 

Autonomic Architecture (different from traditional autonomic 

computing architecture) that includes mechanisms and 

instrumentation to explicitly support interoperability and 

trustworthiness. We posit that interoperability support should 

be designed in and integral at the architectural level, and not 

treated as add-ons as it cannot be reliably retro-fitted to systems. 

In this work-in-progress paper, we analyse the issue of 

interoperability and present our approach using a datacentre 

multi-manager scenario. 
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I.  INTRODUCTION 

Autonomic Computing has progressively grown to 

become a mainstream concept. Earlier efforts were 

fundamentally concerned with getting autonomic computing 

to work and establishing fundamental concepts and 

demonstrating viability. Many mechanisms and techniques 

have been explored. Now that the concept of autonomic 

computing is well understood and widely accepted (and 

almost becoming commonplace), the focus has shifted to, 

amongst other things, addressing issues of scale and 

heterogeneity [1]. The increase in scale and size (of, e.g., 

datacentres) coupled with heterogeneity of services and 

platforms means that more Autonomic Managers (AMs) 

could be integrated to achieve a particular goal, e.g., 

datacentre optimisation. This has led to the need for 

interoperability between AMs. Interoperability deals with 

how to manage multi-manager scenarios, to govern complex 

interactions between managers and to arbitrate when conflicts 

arise. On the horizon these are the kind of challenges facing 

the autonomic computing research community [1][3].  

The challenge of multi-manager interactions can be 

understandably enormous. This stems from the fact that, for 

example, components (and indeed AMs) could be multi-

vendor supplied, upgrades in one manager could trigger 

unfamiliar events, scalability can introduce bottlenecks, one 

manager may be unaware of the existence of another, and 

managers, though tested and perfected in isolation, may not 

have been wired at design to coexist with other managers. 

Multi-manager coexistence leads to potential conflicts. A 

typical example is illustrated with a multi-manager datacentre 

scenario: consider a datacentre with two independent AMs 

working together (unaware of each other) to optimise the use 

of the datacentre –a Performance Manager (PeM) optimises 

resource provisioning to maintain service level agreement 

(SLA). It does this by dynamically (re)allocating resources 

and maintaining a pool of idle servers to ensure high 

responsiveness to high priority applications. A Power 

Manager (PoM) seeks to optimise power usage (as power is 

one of the major cost overheads of datacentres [4]) by 

shutting down servers that have been idle for a certain length 

of time. Although each manager performs brilliantly in 

isolation but by coexisting, the success of one manager 

defeats the goal of another –one seeks to shutdown a server 

that another seeks to keep alive. The (in)activities of one 

manager affect the costs of provisioning (e.g., delay cost, 

scheduling cost, competition cost etc.) for another in one way 

or the other. One way of mitigating this conflict is to have an 

external agent that can detect and diagnose the problem. The 

problem with this is that it introduces more complexity (e.g., 

any AM addition will require rewiring of other AMs) as 

system is scaled up (adding complexity in the process of 

solving a complexity problem) which is not desirable.  

We have in [5] proposed a Trustworthy Autonomic 

Architecture (TAA). The TAA architecture, presented in 

Section III, employs a nested control loop technique to 

explicitly support run-time validation, dependability and 

trustworthiness. The DependabilityCheck component of the 

TAA provides a way of logically arbitrating between 

coexisting AMs. We present our interoperability approach in 

Section IV and conclude the work in Section V. 

II. BACKGROUND 

Kephart et al [2] presents a clear demonstration of the 

need for interoperability mechanisms. In that work two 

independently-developed AMs were implemented: the first 

dealt with application resource management (specifically 

CPU usage optimisation) and the second, a power manager, 

dealt with modulating the operating frequency of the CPU to 

ensure that the power cap was not exceeded. It was shown 
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that without a means to interact, both managers throttled and 

sped up the CPU without recourse to one another, thereby 

failing to achieve their intended optimisations and potentially 

destabilising the system. We envisage widespread repetition 

of this problem until a universally accepted approach to 

interoperability is implemented. 

Richard et al [3] evaluates the nature and scope of the 

interoperability challenges for autonomic systems, identifies a 

set of requirements for a universal solution and proposes a 

service-based approach to interoperability to handle both 

direct and indirect conflicts in a multi-manager scenario. In 

this approach, an Interoperability Service (IS) interacts with 

autonomic managers through a dedicated interface and is able 

to detect possible conflicts of management interests. In this 

way the IS manages all interoperability activities by granting 

or withholding management rights to different autonomic 

managers as appropriate. [3] discusses two types of conflicts 

in a multi-manager scenario: Direct conflicts occur where 

AMs attempt to manage the same explicit resource while 

indirect conflicts arise when AMs control different resources, 

but the management effects of one have an undesirable impact 

on the management function of the other. This latter type of 

conflict, in our opinion, is the most frequent and problematic, 

as there are such a wide variety of unpredictable ways in 

which such conflicts can occur. 

Other works focus on bespoke interoperability solution 

[6], direct AMs interactions at the level of autonomic 

elements to ensure that management obligations are met [7], 

hierarchical relationship to autonomic element interactions [8] 

and MAPE architecture modification [9] where it is suggested 

to separate out the Monitoring and Analysis stages of the 

MAPE loop into distinct autonomic elements, with designed-

in interactions between them.   

The research community has made valuable progress 

towards AM interoperability but this progress is yet to lead to 

a standardised approach. Although the current state of 

practice is a significant step, an equally significant issue is 

that they do not tackle the problem of unintended or 

unexpected interactions that can occur when independently 

developed AMs co-exist in a system [3]. Further from that, 

and more realistically, AMs may not need to know about the 

existence of other managers –they are designed in isolation 

(probably by different vendors) and operate differently (for 

different goals) without recourse to one another. So, to have 

close-coupled interoperability (i.e., where specific actions in 

one AM react to, or complement those of another), the source 

code and detailed functional specifications of each AM must 

be available to all AMs. This is near impossible and where 

possible, requires a rewiring of each AM whenever a new AM 

is added. These are why we look to the autonomic 

architecture to provide us a solution –hence, our architecture-

based approach. We posit that to avoid introducing further 

complexity through solving the interoperability problem, the 

autonomic architecture should envision (and provide for) 

interoperability support from the scratch. This is to say that 

the autonomic architecture should be dynamic enough to 

accommodate expected and unexpected developments. 

III. THE TRUSTWORTHY AUTONOMIC ARCHITECTURE  

TAA is an autonomics architectural framework that 

integrates three critical engine blocks (AC –

AutonomicController, VC –ValidationCheck and DC –

DependabilityCheck) in a modular fashion to lend autonomic 

systems extended (and robust) behavioural scope and 

trustability. These building blocks are implemented as 

modular components which are then connected to give the 

required trusted and dependable structure. To summarise the 

workings of TAA (see Figure 1), a system performs basic 

functions (to achieve its fundamental objectives) without any 

intelligent control of its activities. An autonomic manager 

(AC) is introduced to add some smartness by intelligently 

controlling the decision-making of the system. The actions of 

the manager are validated (VC) for correctness before they 

are actuated. A longer term control (DC) considers the 

behaviour of the manager over a period of time (after a certain 

number of decisions) to determine the effect of the manager’s 

intervention on the system and to take corrective action 

(arbitrate) if need be. VC and DC can inhibit the decisions or 

actions of AC. For complete details of TAA see [5]. 

 

 

 

 

 

 

 

 

 

 
 

In most of the autonomic systems, autonomic components 

are almost satisfactorily sufficient to provide required 

autonomic solution but in the longer term (e.g., as in multi-

manager scenario), these rely on external supervision 

(typically by human) to extend their behavioural scope and 

trustability. This is resolved by the DC component. We rely 

on this component to address the interoperability problem as 

explained in Section IV. One of the powers of autonomics is 

its contextual generic implication and adaptation of terms and 

technologies. These are tailored to suit context and 

operational requirements. This quality allows us to adapt the 

TAA components (especially the DC) which can define, as 

necessary, stability and interoperability goals etc.  

IV. THE ARCHITECTURE-BASED INTEROPERABILITY 

Let us consider, in more details (Figure 2), the multi-

manager datacentre example presented earlier in Section I: the 

datacentre comprises a pool of resources Si (live servers), a 

pool of shutdown servers Ši (ready to be powered and restored 

to Si as need be), a list of applications Aj, a pool of services Ṳ 

(a combination of applications and their provisioning servers), 

and two AMs (performance manager PeM and a power 

manager PoM) that optimise the entire system. Aj and Si are, 

respectively, a collection of applications supported (as 

services) by the datacentre and a collection of servers 

Figure 1: Detailed trustworthy autonomic architecture 
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available to the manager for provisioning available services 

according to request. As service requests arrive, PeM 

dynamically populates Ṳ to service the requests. Ṳ is defined 

by: 

         

         

 

      
  

Where n is the number of application entries into Ṳ. (1) 

indicates that a server can be (re)deployed for different 

applications. All the servers i in Si are up and running 

(constantly available –or so desired by PeM) waiting for 

(re)deployment. The primary performance goal of PeM is to 

minimise oscillation and maximise stability (including just-in-

time service delivery) while the secondary performance goal 

is to maximie throughput. The goal of PoM, on the other hand, 

is to optimie power consumption. This task is simply 

achieved by shutting down any server that has been idle for 

time Ts. Figure 2 details how TAA is used to manage 

interoperability between PeM and PoM. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 shows the communications and control within the 

components of the proposed architecture. The managers take 

performance decisions which are then validated by their 

respective VC (VCpom and VCpem) for correctness. A CF is 

generated if validation fails and with this feedback, the 

manager adjusts its decisions. The DC takes a longer term 

view of the managers’ behaviour and either allows a manager 

to carry on with its actions (if check passes) or generates a RF 

otherwise. DC contains other subcomponents (K), e.g., 

interoperability, stability etc. [1] but for brevity, we will 

concentrate on the interoperability subcomponent here. 

The interoperability component is implemented using 

knowledge-based technology. It learns and keeps track of the 

system’s state following the passed decisions of the manager. 

If after a number of decision instances the manager senses a 

conflict with its decisions (based on expected versus actual 

system state), another RF is generated (a) to retune the 

manager’s decisions. Take for instance, if after some time 

PoM notices that the same set of servers it has shutdown have 

constantly come back live without it powering them, there is 

only one conclusion: another operation (probably a human, 

another manager, etc.) is not ‘happy’ with PoM’s decisions. 

So, PoM’s DC generates a RF with an appropriate tuning 

parameter value (β) to throttle the size of Ts (2). By sensing 

the effects of its actions and dynamically throttling Ts within 

an acceptable boundary, PoM is able to coexist with any other 

manager. Notice that the two managers do not need to know 

any details or even the existence of each other. In real life, 

this is typical of two staff that share an office space but work 

at different times. If both return next day and find the office 

rearranged, they will both adjust in their arrangement of the 

office until an accepted structure is reached. This can be 

achieved without both getting to meet. DC provides extra 

capacity for a manager to dynamically throttle its behaviour to 

suit the goal of the system. 
 

Ts = (Ts  β)         (2) 

 

There are costs associated with the operations of a 

datacentre. These costs are affected in one way or the other by 

the actions of the managers. We identify three costs (Table I) 

which are used in our experiment –this is not exhaustive.  
 

TABLE I: OPERATION COSTS 
Cost Description 

Delay  Server booting and configuration time. Affects 

application performance 

Scheduling  Reconfiguration and rescheduling time. Resource is 
unavailable during this time 

Competition  One application has all resources and the other suffers  

 

Apart from the costs mentioned in Table I above, other 

measurables from our experiment for analysing the 

performances of the managers include: 

- Tracking SLA: service level will be measured as 

service delivery ratio (ratio of service delivery to 

service request) with an optimised value of 1.  

o Values above 1 indicate over provisioning which 

comes at a cost 

o Values below 1 indicate proximity to SLA 

o Server provisioning can be throttled to track SLA 

- Impact of the manager on the above metrics over time 

Figure 3 is a front-end snapshot of the system (still under 

design) which models our multi-manager datacentre case 

scenario example and analyses the performances of the 

managers. The system allows for the simulation of three 

different scenarios of coexisting managers. This provides for 

three coexisting options for PoM and PeM: in the first option 

(with AC component), the managers operate autonomously 

without any interoperability support; the second option (with 

AC and VC components) introduces local run-time validation 

within individual manager and without any interoperability 

support; the third option (with AC, VC and DC components) 

introduces, amongst other controls, interoperability support. 

(1) 

       A1: (S11, S12, S13, …, S1i) 

       A2: (S21, S22, S23, …, S2i) 

             …    …    …     … 

        An: (Sn1, Sn2, Sn3, …, Sni) 

 

Ṳ = 

 

              Key  

        Recalibration feedback (RF) 

           Control feedback (CF) 

           Switch control 

           Switch touchpoint  

           Direct comm/control/mgt. 

           Two way control 

VC 

      Figure 2: The DC component provides interoperability management 
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The third option is the main focus of this work. Other 

simulation options are also possible, e.g., selecting only PeM 

and running the above three options. On running the 

simulation, a script generates service requests. The service 

requests are measured in MIPS (million instructions per 

second). In the end, the performances of the managers (with 

and without interoperability support) are analysed against the 

listed measurables. This will identify, amongst other things, 

the effect/impact of our interoperability solution on the 

coexistence of the two managers. 

V. CONCLUSION  

We have presented, in this work-in-progress paper, an 

architecture-based interoperability solution. The solution is 

based on our earlier proposed trustworthy autonomic 

architecture. The architecture, which can be adapted to 

support several autonomic solutions, includes mechanisms 

and instrumentation to explicitly support run-time validation, 

interoperability and trustworthiness. We posit that to avoid 

introducing further complexity through solving the 

interoperability problem, the autonomic architecture should 

envision (and provide for) interoperability support from the 

scratch. This is to say that the autonomic architecture should 

be dynamic enough to accommodate expected and unexpected 

developments.  

We analysed a multi-manager datacentre case example 

that represents a typical scenario of coexisting managers that 

leads to potential conflicts. This evaluates the nature and 

scope of the interoperability challenge and the need for a 

solution. We have also introduced an application that models 

the case example scenario. The next line of action is to run 

series of experiments once the case example application is 

fully completed. Results, analysis and further details will be 

published subsequently. 
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Figure 3: Multi-manager datacentre application 
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