
A Methodology for Evaluating Complex Interactions between Multiple Autonomic

Managers

Thaddeus Eze, Richard Anthony, Chris Walshaw, and Alan Soper
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, C.Walshaw and A.J.Soper}@gre.ac.uk

Abstract — the very success of autonomic systems has inevitably

led to situations where multiple autonomic managers need to

coexist and/or interact directly or indirectly within the same

system. This is evident, for example, in the increasing availability

of large datacentres with multiple [heterogeneous] managers

which are independently designed. Potentially, problems can

arise as a result of conflict-of-interest when these managers

(components) coexist. There is a growing concern that the lack of

support for interoperability will become a break issue for future

systems. We present an architecture-based solution to

interoperability. Our approach is based on a Trustworthy

Autonomic Architecture (different from traditional autonomic

computing architecture) that includes mechanisms and

instrumentation to explicitly support interoperability and

trustworthiness. We posit that interoperability support should

be designed in and integral at the architectural level, and not

treated as add-ons as it cannot be reliably retro-fitted to systems.

In this work-in-progress paper, we analyse the issue of

interoperability and present our approach using a datacentre

multi-manager scenario.

Keywords- autonomic computing; interoperability; datacentre;

multi-manager

I. INTRODUCTION

Autonomic Computing has progressively grown to

become a mainstream concept. Earlier efforts were

fundamentally concerned with getting autonomic computing

to work and establishing fundamental concepts and

demonstrating viability. Many mechanisms and techniques

have been explored. Now that the concept of autonomic

computing is well understood and widely accepted (and

almost becoming commonplace), the focus has shifted to,

amongst other things, addressing issues of scale and

heterogeneity [1]. The increase in scale and size (of, e.g.,

datacentres) coupled with heterogeneity of services and

platforms means that more Autonomic Managers (AMs)

could be integrated to achieve a particular goal, e.g.,

datacentre optimisation. This has led to the need for

interoperability between AMs. Interoperability deals with

how to manage multi-manager scenarios, to govern complex

interactions between managers and to arbitrate when conflicts

arise. On the horizon these are the kind of challenges facing

the autonomic computing research community [1][3].

The challenge of multi-manager interactions can be

understandably enormous. This stems from the fact that, for

example, components (and indeed AMs) could be multi-

vendor supplied, upgrades in one manager could trigger

unfamiliar events, scalability can introduce bottlenecks, one

manager may be unaware of the existence of another, and

managers, though tested and perfected in isolation, may not

have been wired at design to coexist with other managers.

Multi-manager coexistence leads to potential conflicts. A

typical example is illustrated with a multi-manager datacentre

scenario: consider a datacentre with two independent AMs

working together (unaware of each other) to optimise the use

of the datacentre –a Performance Manager (PeM) optimises

resource provisioning to maintain service level agreement

(SLA). It does this by dynamically (re)allocating resources

and maintaining a pool of idle servers to ensure high

responsiveness to high priority applications. A Power

Manager (PoM) seeks to optimise power usage (as power is

one of the major cost overheads of datacentres [4]) by

shutting down servers that have been idle for a certain length

of time. Although each manager performs brilliantly in

isolation but by coexisting, the success of one manager

defeats the goal of another –one seeks to shutdown a server

that another seeks to keep alive. The (in)activities of one

manager affect the costs of provisioning (e.g., delay cost,

scheduling cost, competition cost etc.) for another in one way

or the other. One way of mitigating this conflict is to have an

external agent that can detect and diagnose the problem. The

problem with this is that it introduces more complexity (e.g.,

any AM addition will require rewiring of other AMs) as

system is scaled up (adding complexity in the process of

solving a complexity problem) which is not desirable.

We have in [5] proposed a Trustworthy Autonomic

Architecture (TAA). The TAA architecture, presented in

Section III, employs a nested control loop technique to

explicitly support run-time validation, dependability and

trustworthiness. The DependabilityCheck component of the

TAA provides a way of logically arbitrating between

coexisting AMs. We present our interoperability approach in

Section IV and conclude the work in Section V.

II. BACKGROUND

Kephart et al [2] presents a clear demonstration of the

need for interoperability mechanisms. In that work two

independently-developed AMs were implemented: the first

dealt with application resource management (specifically

CPU usage optimisation) and the second, a power manager,

dealt with modulating the operating frequency of the CPU to

ensure that the power cap was not exceeded. It was shown

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

that without a means to interact, both managers throttled and

sped up the CPU without recourse to one another, thereby

failing to achieve their intended optimisations and potentially

destabilising the system. We envisage widespread repetition

of this problem until a universally accepted approach to

interoperability is implemented.

Richard et al [3] evaluates the nature and scope of the

interoperability challenges for autonomic systems, identifies a

set of requirements for a universal solution and proposes a

service-based approach to interoperability to handle both

direct and indirect conflicts in a multi-manager scenario. In

this approach, an Interoperability Service (IS) interacts with

autonomic managers through a dedicated interface and is able

to detect possible conflicts of management interests. In this

way the IS manages all interoperability activities by granting

or withholding management rights to different autonomic

managers as appropriate. [3] discusses two types of conflicts

in a multi-manager scenario: Direct conflicts occur where

AMs attempt to manage the same explicit resource while

indirect conflicts arise when AMs control different resources,

but the management effects of one have an undesirable impact

on the management function of the other. This latter type of

conflict, in our opinion, is the most frequent and problematic,

as there are such a wide variety of unpredictable ways in

which such conflicts can occur.

Other works focus on bespoke interoperability solution

[6], direct AMs interactions at the level of autonomic

elements to ensure that management obligations are met [7],

hierarchical relationship to autonomic element interactions [8]

and MAPE architecture modification [9] where it is suggested

to separate out the Monitoring and Analysis stages of the

MAPE loop into distinct autonomic elements, with designed-

in interactions between them.

The research community has made valuable progress

towards AM interoperability but this progress is yet to lead to

a standardised approach. Although the current state of

practice is a significant step, an equally significant issue is

that they do not tackle the problem of unintended or

unexpected interactions that can occur when independently

developed AMs co-exist in a system [3]. Further from that,

and more realistically, AMs may not need to know about the

existence of other managers –they are designed in isolation

(probably by different vendors) and operate differently (for

different goals) without recourse to one another. So, to have

close-coupled interoperability (i.e., where specific actions in

one AM react to, or complement those of another), the source

code and detailed functional specifications of each AM must

be available to all AMs. This is near impossible and where

possible, requires a rewiring of each AM whenever a new AM

is added. These are why we look to the autonomic

architecture to provide us a solution –hence, our architecture-

based approach. We posit that to avoid introducing further

complexity through solving the interoperability problem, the

autonomic architecture should envision (and provide for)

interoperability support from the scratch. This is to say that

the autonomic architecture should be dynamic enough to

accommodate expected and unexpected developments.

III. THE TRUSTWORTHY AUTONOMIC ARCHITECTURE

TAA is an autonomics architectural framework that

integrates three critical engine blocks (AC –

AutonomicController, VC –ValidationCheck and DC –

DependabilityCheck) in a modular fashion to lend autonomic

systems extended (and robust) behavioural scope and

trustability. These building blocks are implemented as

modular components which are then connected to give the

required trusted and dependable structure. To summarise the

workings of TAA (see Figure 1), a system performs basic

functions (to achieve its fundamental objectives) without any

intelligent control of its activities. An autonomic manager

(AC) is introduced to add some smartness by intelligently

controlling the decision-making of the system. The actions of

the manager are validated (VC) for correctness before they

are actuated. A longer term control (DC) considers the

behaviour of the manager over a period of time (after a certain

number of decisions) to determine the effect of the manager’s

intervention on the system and to take corrective action

(arbitrate) if need be. VC and DC can inhibit the decisions or

actions of AC. For complete details of TAA see [5].

In most of the autonomic systems, autonomic components

are almost satisfactorily sufficient to provide required

autonomic solution but in the longer term (e.g., as in multi-

manager scenario), these rely on external supervision

(typically by human) to extend their behavioural scope and

trustability. This is resolved by the DC component. We rely

on this component to address the interoperability problem as

explained in Section IV. One of the powers of autonomics is

its contextual generic implication and adaptation of terms and

technologies. These are tailored to suit context and

operational requirements. This quality allows us to adapt the

TAA components (especially the DC) which can define, as

necessary, stability and interoperability goals etc.

IV. THE ARCHITECTURE-BASED INTEROPERABILITY

Let us consider, in more details (Figure 2), the multi-

manager datacentre example presented earlier in Section I: the

datacentre comprises a pool of resources Si (live servers), a

pool of shutdown servers Ši (ready to be powered and restored

to Si as need be), a list of applications Aj, a pool of services Ṳ

(a combination of applications and their provisioning servers),

and two AMs (performance manager PeM and a power

manager PoM) that optimise the entire system. Aj and Si are,

respectively, a collection of applications supported (as

services) by the datacentre and a collection of servers

Figure 1: Detailed trustworthy autonomic architecture

fa
il

fa
il

pass
VC DC

pa
ss

Sensor

Actuator

recalibration feedback

control feedback

AC

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

available to the manager for provisioning available services

according to request. As service requests arrive, PeM

dynamically populates Ṳ to service the requests. Ṳ is defined

by:

Where n is the number of application entries into Ṳ. (1)

indicates that a server can be (re)deployed for different

applications. All the servers i in Si are up and running

(constantly available –or so desired by PeM) waiting for

(re)deployment. The primary performance goal of PeM is to

minimise oscillation and maximise stability (including just-in-

time service delivery) while the secondary performance goal

is to maximie throughput. The goal of PoM, on the other hand,

is to optimie power consumption. This task is simply

achieved by shutting down any server that has been idle for

time Ts. Figure 2 details how TAA is used to manage

interoperability between PeM and PoM.

Figure 2 shows the communications and control within the

components of the proposed architecture. The managers take

performance decisions which are then validated by their

respective VC (VCpom and VCpem) for correctness. A CF is

generated if validation fails and with this feedback, the

manager adjusts its decisions. The DC takes a longer term

view of the managers’ behaviour and either allows a manager

to carry on with its actions (if check passes) or generates a RF

otherwise. DC contains other subcomponents (K), e.g.,

interoperability, stability etc. [1] but for brevity, we will

concentrate on the interoperability subcomponent here.

The interoperability component is implemented using

knowledge-based technology. It learns and keeps track of the

system’s state following the passed decisions of the manager.

If after a number of decision instances the manager senses a

conflict with its decisions (based on expected versus actual

system state), another RF is generated (a) to retune the

manager’s decisions. Take for instance, if after some time

PoM notices that the same set of servers it has shutdown have

constantly come back live without it powering them, there is

only one conclusion: another operation (probably a human,

another manager, etc.) is not ‘happy’ with PoM’s decisions.

So, PoM’s DC generates a RF with an appropriate tuning

parameter value (β) to throttle the size of Ts (2). By sensing

the effects of its actions and dynamically throttling Ts within

an acceptable boundary, PoM is able to coexist with any other

manager. Notice that the two managers do not need to know

any details or even the existence of each other. In real life,

this is typical of two staff that share an office space but work

at different times. If both return next day and find the office

rearranged, they will both adjust in their arrangement of the

office until an accepted structure is reached. This can be

achieved without both getting to meet. DC provides extra

capacity for a manager to dynamically throttle its behaviour to

suit the goal of the system.

Ts = (Ts β) (2)

There are costs associated with the operations of a

datacentre. These costs are affected in one way or the other by

the actions of the managers. We identify three costs (Table I)

which are used in our experiment –this is not exhaustive.

TABLE I: OPERATION COSTS
Cost Description

Delay Server booting and configuration time. Affects

application performance

Scheduling Reconfiguration and rescheduling time. Resource is
unavailable during this time

Competition One application has all resources and the other suffers

Apart from the costs mentioned in Table I above, other

measurables from our experiment for analysing the

performances of the managers include:

- Tracking SLA: service level will be measured as

service delivery ratio (ratio of service delivery to

service request) with an optimised value of 1.

o Values above 1 indicate over provisioning which

comes at a cost

o Values below 1 indicate proximity to SLA

o Server provisioning can be throttled to track SLA

- Impact of the manager on the above metrics over time

Figure 3 is a front-end snapshot of the system (still under

design) which models our multi-manager datacentre case

scenario example and analyses the performances of the

managers. The system allows for the simulation of three

different scenarios of coexisting managers. This provides for

three coexisting options for PoM and PeM: in the first option

(with AC component), the managers operate autonomously

without any interoperability support; the second option (with

AC and VC components) introduces local run-time validation

within individual manager and without any interoperability

support; the third option (with AC, VC and DC components)

introduces, amongst other controls, interoperability support.

(1)

 A1: (S11, S12, S13, …, S1i)

 A2: (S21, S22, S23, …, S2i)

 … … … …

 An: (Sn1, Sn2, Sn3, …, Sni)

Ṳ =

 Key

 Recalibration feedback (RF)

 Control feedback (CF)

 Switch control

 Switch touchpoint

 Direct comm/control/mgt.

 Two way control

VC

 Figure 2: The DC component provides interoperability management

DC

AC
PeM

 Resources

Resources

Si

Ṳ

Ši

Aj

VCpem K

VC

DC

AC
PoM VCpom K

(a)

(a)

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

The third option is the main focus of this work. Other

simulation options are also possible, e.g., selecting only PeM

and running the above three options. On running the

simulation, a script generates service requests. The service

requests are measured in MIPS (million instructions per

second). In the end, the performances of the managers (with

and without interoperability support) are analysed against the

listed measurables. This will identify, amongst other things,

the effect/impact of our interoperability solution on the

coexistence of the two managers.

V. CONCLUSION

We have presented, in this work-in-progress paper, an

architecture-based interoperability solution. The solution is

based on our earlier proposed trustworthy autonomic

architecture. The architecture, which can be adapted to

support several autonomic solutions, includes mechanisms

and instrumentation to explicitly support run-time validation,

interoperability and trustworthiness. We posit that to avoid

introducing further complexity through solving the

interoperability problem, the autonomic architecture should

envision (and provide for) interoperability support from the

scratch. This is to say that the autonomic architecture should

be dynamic enough to accommodate expected and unexpected

developments.

We analysed a multi-manager datacentre case example

that represents a typical scenario of coexisting managers that

leads to potential conflicts. This evaluates the nature and

scope of the interoperability challenge and the need for a

solution. We have also introduced an application that models

the case example scenario. The next line of action is to run

series of experiments once the case example application is

fully completed. Results, analysis and further details will be

published subsequently.

REFERENCES

[1] T. Eze, R. Anthony, C. Walshaw, and A. Soper, “Autonomic

Computing in the First Decade: Trends and Direction,” 8th Int’l

Conference on Autonomic and Autonomous Systems (ICAS, St.
Maarten 2012), pp. 80-85.

[2] J. Kephart, H. Chan, R. Das, and D. Levine, “Coordinating multiple
autonomic managers to achieve specified power-performance

tradeoffs,” 4th Int’l Conference on Autonomic Computing (ICAC,

Florida, USA, 2007).
[3] R. Anthony, M. Pelc, and H. Shauib, “The Interoperability Challenge

for Autonomic Computing,” 3rd Int’l Conference on Emerging

Network Intelligence (EMERGING, Lisbon, Portugal, 2011).
[4] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power

and Performance Management of Virtualized Computing

Environments via Lookahead Control,” 5th Int’l Conference on
Autonomic Computing (ICAC, Illinois, USA, 2008).

[5] T. Eze, R. Anthony, C. Walshaw, and A. Soper, “A New Architecture

for Trustworthy Autonomic Systems,” 4th Int’l Conference on

Emerging Network Intelligence (EMERGING, Barcelona, Spain,

2012).

[6] M. Wang, N. Kandasamyt, A. Guezl, and M. Kam, “Adaptive
performance control of computing systems via distributed cooperative

control: Application to power management in computing clusters,” 3rd

Intl. Conf. on Autonomic Computing (ICAC, Dublin, Ireland, 2006).
[7] M. Zhao, J. Xu, and J. Figueiredo, “Towards autonomic grid data

management with virtualized distributed file systems” 3rd Int’l

Conference on Autonomic Computing (ICAC, Dublin, Ireland, 2006).
[8] B. Khargharia, S. Hariri, and S. Yousif, “Autonomic power and

performance management for computing systems,” 3rd Int’l

Conference on Autonomic Computing (ICAC, Dublin, Ireland, 2006).
[9] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M.

Wolf, “Monalytics: Online monitoring and analytics for managing

large scale data centers,” 7th Int’l Conference on Autonomic
Computing (ICAC, Washington DC, USA, 2010).

[10] R. Anthony, “Policy-based autonomic computing with integral support

for self-stabilisation,” Int. Journal of Autonomic Computing, Vol. 1,

No. 1, 2009, pp. 1–33.

Figure 3: Multi-manager datacentre application

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-257-8

ICAS 2013 : The Ninth International Conference on Autonomic and Autonomous Systems

