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Abstract—This article presents our concept of an artificial
hormone system for realizing a completely decentralized self-
organizing task allocation using self-X properties. Besides the
basics of the prior hormone concept and possible realizations
in soft- as well as hardware, we present latest results of
our research: evaluation of a completely AHS-controlled SoC
implementing the different approaches, verifying the work and
stability criteria, analysis of upper timing boundaries and
showing the improvement of the reliability of the system.
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I. INTRODUCTION

Because the performance of nowadays computational sys-
tems is still increasing rapidly within each generation, the
complexity to handle and manage such systems has grown
in a similar way, too. Today’s systems offer a high band-
width of functionality, considering an integration of large
numbers of distributed heterogeneous processing resources,
showing a highly dynamic behavior in time. Although the
architectural design of distributed systems differs strongly, a
common layer is still provided by Middleware, managing
the coordination of tasks on the corresponding resources
and also hiding the distribution from the application. To
be precise, Middleware is responsible for seamless task
interaction on distributed hardware. All tasks are controlled
by the Middleware layer and are able to operate beyond
processing element boundaries as if they would reside on
a single hardware platform. Besides complexity, other sys-
tem criteria like reliability have become important, too. In
consequence of the increasing integration density of today’s
SoCs, systems got likely open to system failure even during
the early stages of operation. Crashing of resources can be
caused, e.g., by radiation, aging or temperature hot spots.
Hence, in order to handle the complex task management as
well as the reliability problems of today’s and even more
future distributed systems, self- organizing and adapting
techniques are necessary. As the term ’self’ denotes, these
techniques must be achieved autonomously by the system
itself without any further external intervention (introduced
in [7][8]). In fact, a system should be able to find a suitable
initial configuration of task assignment by itself, to adapt or

optimize itself to changing environmental and internal con-
ditions, to heal itself in case of system failures or to protect
itself against attacks. In this paper, we present the solution
of an organic Middleware - implemented by an Artificial
Hormone System (AHS) - providing self-configuration, self-
optimization and self-healing for an autonomous decentral-
ized task assignment. Furthermore, the proactive task behav-
ior to prevent the system from arising failure conditions are
implemented. In Section II, we introduce the basic principles
of the AHS. Sections III and IV show theoretical constraints
and implementations of the approach, which are evaluated in
Section V. Topics of related work are presented in Section
VI. Finally, we conclude the paper with Section VII.

II. THE ARTIFICIAL HORMONE SYSTEM

According to organic endocrine systems, the AHS con-
siders elemental exchange of different hormone types for
special communication and controlling interaction. In fact, it
is the main function of the AHS to assign tasks to resources
without any further external intervention. The proper assign-
ment is handled in a self-organizing way, implemented via
simple resource competition upon tasks using three major
types of hormones:

• Eager value This hormone type represents the suit-
ability of a resource to execute a task. The higher the
hormonal value, the better the ability of the resource to
execute the task.

• Suppressor This hormone type lowers the suitability
of a task execution on a resource. Suppressors are
subtracted from eager values.

• Accelerator This hormone type favors the execution of
a task on a resource. Accelerators are added to eager
values.

These basic hormone types are divided in further sub-
types. Detailed information about these subtypes is presented
when needed because they are used for fine tuning of the
AHS and do not affect its basic understanding.

Keeping consistent formalism we introduce special nota-
tion, which distinguishes between received hormones, hor-
mones to be sent and also between tasks and processing
resources (like, e.g., processing cores). Therefore, tasks and
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Figure 1. Hormone based control loop

resources are referenced by different indices using Latin
letters such as i for tasks and Greek letters such as γ for
resources. The notation of raised Hiγ indents a hormone,
which will be received by resource γ, dedicated and effecting
task Ti. In turn subscript representation of Hiγ declares
resource γ and task Ti as emitter of the hormone, which is
send to other resources. Each resource periodically executes
the hormone based control loop presented in Figure 1. Each
iteration consists of three stages.

• Receive stage: Resource γ receives the modified eager
values Emiγ , suppressors Siγ and accelerators Aiγ for
each task Ti from each resource inside the network.
The communication between the different resources is
depicted by the dashed lines.

• Compute and decision stage: Resource γ computes the
modified eager values Emiγ for all of its tasks by
the following rule. The local static eager value Eiγ
indicates how suited γ is to execute task Ti. From
this value, all suppressors Siγ received by task Ti are
subtracted, and all accelerators received by task Ti are
added:

Emiγ = Eiγ −
∑

Siγ +
∑

Aiγ (1)

The modified eager value Emiγ of each task Ti is
finally broadcasted to the same task Ti on the other
resources in the send stage. In each iteration a single
task Ti is selected and the resource decides on alloca-
tion. For this purpose, it compares its own modified
eager value Emiγ with the received modified eager
values Emiγ (from all other resources) for this task. If
Emiγ > Emiγ is true for all received modified eager
values Emiγ , it decides to take the task. In case of
equality, a second criterion, e.g., the unique identifier of
the resources, is used to get an unambiguous decision.
Otherwise another resource has the highest modified
eager value for Ti and γ decides to not take it.
In the next iteration step the resource selects another
task and decides whether it will be taken. A resource

selects the tasks in a cyclic way, i.e., each task will
be selected in each mth iteration, if m tasks have
to be assigned. By selecting only one task at each
iteration, the suppressors and accelerators can take
effect. Otherwise, the decision of taking a task would
happen instantaneously and the hormones would have
no effect.

• Send stage: As already mentioned above, resource γ
broadcasts the modified eager values Emiγ to each task
Ti on the other resources. The strength of these values
depends on the results of the computation in the last
phase.
If a task Ti is taken on resource γ, it also broadcasts
suppressors Siγ dedicated to the same task on all
other resources. On one hand sending the suppressors
indicates the resource has taken the task, and on the
other hand, it limits the number of further allocations
of the same task somewhere else.
Furthermore, the resource multicasts accelerators Aiγ
to its neighbored resources to attract tasks cooperating
with task Ti to neighbored resources, thus forming
clusters of tasks.

Our approach is completely decentralized, each resource is
responsible for its own tasks and the communication to other
resources is realized by a unified hormone concept. The AHS
offers the following so called self-X properties:

• The approach is self-organizing, because no external
influence controls the task allocation.

• It is self-configuring, an initial task allocation is found
by exchanging hormones. The self-configuration is fin-
ished as soon as all modified eager values become zero,
meaning no more tasks have to be taken.

• The self-optimization is done by re-offering tasks for
allocation. The point in time for such an offer is
determined by the task or by the resource.

• The approach is self-healing: In case of a task or re-
source failure, the emission of related hormones stops.
This results in an automatic reassignment of the task
to the same resource (if it is still active) or to another
resource.

In addition, the self-configuration, self-optimization and self-
healing is real-time capable. Tight upper time bounds are
given for self-configuration, these are presented in detail in
[2][4][12].

III. IMPLEMENTATION CONSTRAINTS

Additional to the theoretical concept of Section II, the real
implementation of AHS has to consider further aspects of
the environmental system surrounding. Based on the primary
decentralized control loop mechanism of Section II, every
resource or processing element holds its own local instance
of the AHS during runtime. In fact today’s SoCs offer the
significant opportunity of an dual realization of the AHS in
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Figure 2. Simply buffered solution of the hormone cycle implementation
using self-synchronization of cycles

both domains of soft- as well in hardware. Obviously this
is reducible to the likely natural representation of hormone
signals in terms of simple coded messages easily delivered
between tasks and resources.

First a total hormone buffered solution, using a local mem-
ory backing up all received hormones for each task within
each cycle, is traced. This approach keeps the advantage
of no further required modifications of the origin hormone
cycle and its steps, retaining a still asynchronous behavior
during run time. Due to the hormone memory, jitter effects
can be compensated. Duplicate hormones can be identified
and eliminated while missing hormones can be bridged by
previous values. But the approach also considers a high
effort of required management, controlling those hormone
memories, for, e.g., keeping them consistent. In cause of this,
the real implementation uses a simplified second approach
discarding the complex hormone memory and exploits the
accumulation character of the hormones as described in
Section II (adding accelerators and subtracting suppressors
from eager values). As shown in Figure 2, hormone values
of the current cycle are just accumulated and the overall
sum of the previous cycle is stored in a register. Instead
of storing many hormone values for each task within each
cycle, just the last recent accumulations for accelerators and
suppressors as well as the highest modified eager value are
kept. Considering this, the approach takes a high benefit and
requires a less level of buffering complexity than the first
approach. But due to the asynchronous processing resources
the risk of evaluating inconsistent hormones remains.

Therefore, this approach considers a modification of the
origin cycle scheme tracing an active self-synchronization
of the hormone cycles. This feature is simply achieved by
using the received hormones for synchronization. To be
precise, each cycle holds a waiting period right after startup,

send
hormone

(S)
decide

(D)tSD

tDS  or hormone received

tDS  + tSD or hormone 
received

Start

Figure 3. Self-synchronized approach of the hormone cycle using waiting
period after startup

before emitting hormones to other resources. This waiting
period ends after the total hormone cycle time or the receipt
of a hormone from another resource, whatever happens
first. So, one resource will be the first and the others will
follow when receiving the hormones from the first resource.
The same happens after each loop period. This keeps all
resources synchronized within the maximum communication
time tk between the resources. Figure 3 shows a detailed
timing schedule of the hormone cycle, where tDS denotes
the maximum time span between the decision and sending
stage and vice versa tSD between the stage of sending and
decision. Hence the maximum total cycle time is set up
by accumulation of tSD + tDS . To specify both spans as
constraints, the maximum time displacement between the
earliest cycle evaluating resource Pγ and the latest one Pδ ,
which is the already mentioned maximum communication
time tk between Pγ and Pδ , must be considered. In order
to satisfy the receipt of a hormone sent by the later Pδ
to the earlier Pγ , tSD must be at least 2 ∗ tk (tk needed
for the communication + tk as maximum time displacement
between Pδ and Pγ). The definition of tDS is rather simple.
To guarantee a synchronized restart of both the early Pγ
and the late Pδ , tDS has to be at least tk. Due to tolerances
caused by timers on local resources, an additional jitter
compensation factor4tSD has to be considered. So tDS has
to be at least tK+tSD, which guarantees a synchronous start
of the next hormone cycle on every resource. Finally the total
time of the self-synchronized hormone cycle is set up by the
accumulation of both constraints to at least 3 ∗ tK +4tSD.

In summary, the major advantage of the self-synchronized
approach is the feature of hormone consistency. Within each
cycle, resources are capable to take correct decisions right
after the receipt of all necessary hormones sent by other
resources. Furthermore this modification does not influence
the already taken assumptions about other self-X properties
like healing or configuration, unless the basic processing
procedure of the hormone cycle will not be modified. As
a disadvantage, it causes a hormone cycle time increase
by tK + 4tSD compared to the asynchronous hormone
buffered solution, which requires only 2 ∗ tk as cycle time
(see [3]).
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IV. IMPLEMENTATION

Because the AHS is intended to control a decentralized
assignment of tasks in software- as well as in hardware
related domain, specific implementations regarding different
system environments are required. In fact, two implementa-
tions of the AHS have been developed, providing a specific
realization of the prior hormone loop for the processing of
software and hardware tasks.

AHS Interface

AHS
Hormone Communication

AHS
Task Management

AHS Message
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AHS Log
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AHS
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AHS
Basic OS Support

AHS Basic
Communication Support

Input 
Stage

Accumulation
 Stage

Cycle 
Stage

Output 
Stage

A

B

Figure 4. Structure of software (A) and hardware (B) implemented AHS,
coded in ANSI-C and VHDL

A. AHS on software-level

In order of compatibility reasons and platform indepen-
dence, the AHS features a pure coded ANSI-C implementa-
tion. Considering this, the implementation possesses a high
level of reusability and achieves the goal of platform inde-
pendent Middleware. This fact also leads to a usability in the
domain of low-performance microcontroller computing. The
implementation of AHS is set up by different modules and
interfaces related to the AHS kernel as well as the attached
Operating System (OS) and distributed application. The
implementation structure is shown in Figure 4A. Starting
on the lower operating system level, elementary modules for
task handling and I/O communication are supported. In case
of platform porting, these modules must be implemented.
Regarding this abstraction, the approach takes high benefit
and requires less effort in modification and maintenance.
Upon OS modules, the main kernel of the AHS takes place,
isolated of the attached platform depended components.

B. AHS on hardware-level

Porting the basic hormone concept to real hardware im-
plementation takes the approach one step further. Against
pure software implementation, the entire hormone loop
mechanism is spread up into 4 different pipeline stages
(Figure 4B). Each stage represents a single isolated hardware
component, which implements a specific step of the proper
hormone loop shown in Section II. Further, this pipeline has
currently been fully implemented on register transfer level

by hardware description using Very High Speed Integrated
Circuit Hardware Description Language (VHDL). Within
each single hormone cycle all stages of the pipeline are
passed, issuing the decision whether task Ti is taken by
the corresponding resource or not. Because the current
hardware implementation realizes the self-synchronized vari-
ant of AHS only, an cycle stage is attached for buffering
already accumulated hormone values, avoiding the use of
heavy weighted local memories. This stage also confirms the
criteria of taking correct decisions upon consistent hormone
data by delaying progress of the current evaluation cycle
until all necessary hormone data of all other resources is
received. To avoid everlasting stall of the pipeline due to
missing data, this stage is passed lately after the timing
constraint of TSD ≥ 2∗ tk (shown in Section III) is expired.

V. EVALUATION

As next step, an evaluation to show the increase of
dependability using the hormone system for task assignment
in a distributed system is conducted. To achieve full insights
in hormone processing, a hormone cycle accurate hormone
simulator for the AHS has been developed [13]. Besides
the capability of simulating a dynamic processing grid,
containing multiple mixed signal resources, the provision
of self-X properties is ensured. We used the grid of 16 het-
erogeneous resources with 16 different tasks to be executed.
This simulation focuses on self-healing of dynamic failures
during runtime. As a reference, we first run a simulation
with deactivated self-healing. This means, after the self-
configuration process the hormone cycle was deactivated.
Failures caused by single event upsets, aging and tempera-
ture effects have been created by a stochastic process accord-
ing to corresponding failure models described. In the first
simulation, transient and permanent failures leading to task
or core crashes are considered. Figure 5 shows the result.
Initially, all 16 tasks are allocated by self-configuration.
This process is finished at hormone cycle 6, so at that
time the system is operational. Already at hormone cycle
7 the first failure, a single event upset, crashed one task.
More task crashes due to single event upsets followed at
hormone cycles 25, 37, 47 and 51 further reducing the
number of active tasks. No aging or temperature based
failures occurred up to that point in time. So, starting from
hormone cycle 7 the system is no longer operational as can
be seen by the linearly increasing system downtime (violet
line) resulting in a downtime ratio of 50/51 = 0.98 = 98%
at hormone cycle 51. Figure 6 shows the same scenario
with self-healing activated by the hormone cycle. To be
comparable, the stochastic process creating the failures was
initialized with the same random seed to produce identical
events. Again, the system comes operational by allocating
all 16 tasks at hormone cycle 6 while at hormone cycle 7
the first single event upset occurred crashing a task. This
caused the corresponding task suppressor to vanish. Due to
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Figure 5. Behavior of 16 AHS resources with deactivated self-healing
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Figure 6. Behavior of 16 AHS resources with reactive self-healing

the resulting hormone imbalance, this task is reallocated at
cycle 8 bringing the system back online. The same happens
for the following failures. Every time a task is crashed by
a failure, the hormone system compensates this event by
task reallocation or reassignment∗. Beginning at hormone
cycle 81, aging and temperature based crashes occur as well
and are compensated. Even so the system downtime still
increases due to these crashes, it increase much slower and
the system always comes back online, as long as enough
cores are available to take all tasks (either by other cores
or regeneration of the crashed cores). The downtime ratio is
23/158 = 0.14 = 14% at hormone cycle 158.

The behavior shown is a pure reactive self-healing pro-
cess. To allow proactive failure handling, additional sup-
pressors can be applied. By monitoring, e.g., failures and
temperature, suppressors can be emitted for resources with
high temperature or failure count. This favors reliable and
cool resources in comparison to unreliable and hot ones. The

∗In case of a permanent failure, the task is reallocated to another core.
In case of a transient failure, the task might be reallocated to another core or
reasigned to the same core. This depends on the hormone balance induced
by the current task distribution.
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Figure 7. Temperature proactive task behavior of a local AHS resource

major effect of this proactive reallocation behavior is shown
in Figure 7, where temperature suppressors are proportional
emitted to the raising temperature load. This successively
reduces the suitability (eagervalue) of the core until tasks
get migrated to other cores. As a result of the sinking
workload, the temperature and the temperature suppressor
are declining. The temperature and load are balancing at
a reasonable level. The proactive task assignment increases
the reliability by preventing cores from total failing, using a
rebalance of the workload via task distribution on different
cores. In conclusion, the evaluation shows the major advan-
tage of the hormone cycle for task assignment. Comparing
with the results of the first simulation the system achieves
an excellent enhancement in downtime optimization thus
improving dependability in a significant way.

VI. RELATED WORK

Currently, there exist only a few approaches of task
assignment in Middleware on future CMP based mixed-
signal SoCs. The approach of [11] traces the assumption
of a reliable multi-layered MPSoC architecture against ther-
mal issues due to increasing task processing. This concept
internalizes a proactive task migration on cooler resources
by an distributed hierarchical agent-based system. Like our
approach the system is widely capable handling single point
of failure within the exception of high-level agent errors,
which is resisted by hardware redundancy. Furthermore, the
system is restricted to thermal management domain on none
intermixed circuit technology only.

Another approach using also the assumption of an agent
distributed system is shown in [1]. The author presents an
algorithmic schedule for task distribution on a processing
grid. Against our solution, this approach uses centralized
elements, so called Group Manager’s (GM), responsible
for the internal controlling in a clustered bunch of tasks.
Unless a single GM-instance fails, there is no possibility
for restoring the corresponding group information, which
implies a single point of failure occurrence.
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In [9], two algorithms for task scheduling on heteroge-
neous systems are presented. Within both schedulings task
priorities are computed statically or dynamically. The first
algorithm, Fast Critical Path (FCP) uses dynamic increase
of priorities to ensure time constraints are kept. The second
approach, Fast Load Balancing (FLB) uses a workload
balanced task assignment to ensure every processor core will
be used. In contrast to our approach, both algorithms do not
regard crashing of cores and tasks.

Heiss and Schmitz [6] presented another approach for a
decentralized load balanced task assignment. The authors
consider a physical model where tasks are represented as
particles, which are influenced by forces like, e.g., load
balancing force (issued by the load potential of cores) or
communication force (intensities between tasks). Depending
on the resultant force action tasks are assigned to corre-
sponding cores.

Other approaches for workload balanced assignment are
presented in [5][10]. In summary, none of the concepts above
covers a decentralized assignment of tasks including the
spectrum of self-X properties and real-time conditions like
our approach.

VII. CONCLUSION AND FUTURE WORK

In summary, this paper presented an approach of a self-
adaptive organic Middleware solution for highly dependable
SoCs. The organic Middleware is represented by the AHS -
an artificial hormone system providing a decentralized self-
organized assignment of tasks on processing resources.

In prospection and future work, the whole project in-
vestigates further analysis of the reliability especially in
a field of real SoC computing, facing timing behavior on
real prototypes leaving the accomplished sector of sim-
ulation behind. Therefore, we intend the development of
a highly dependable mixed signal SoC. The prior AHS
is used in combination with a generalized core and task
concept to assign software and hardware tasks to suitable
mixed signal resources, so called processing elements (PEs).
Every PE represents a specific SoC function, which can be
any type of processor core like timer, memory, analog or
digital PE. Since different hardware tasks and analog PEs
are involved, the hormone controlled concept is extended
for time continuous processing of analog hormone signals.
The interconnection and communication throughout both
systems is realized by a common inter-core network with
redundant interfaces. Overall the interaction of the resultant
reliable mixed signal SoC has to be achieved facing a real
demonstrator application settled in the predestined area of
automotive driven assistance control. For this, the SoC is
admitted controlling a complex model helicopter.
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