
Coordinating Energy-aware Administration Loops
Using Discrete Control

Soguy Mak-Karé Gueye
LIG / UJF

Grenoble, France
soguy-mak-kare.gueye@inria.fr

Noël De Palma
LIG / UJF

Grenoble, France
noel.de_palma@inria.fr

Eric Rutten
LIG / INRIA

Grenoble, France
eric.rutten@inria.fr

Abstract—The increasing complexity of computer systems
has led to the automation of administration functions, in the
form of autonomic managers. One important aspect requiring
such management is the issue of energy consumption of
computing systems, in the perspective of green computing.
As these managers address each a specific aspect, there is a
need for using several managers to cover all the domains of
administration. However, coordinating them is necessary for
proper and effective global administration. Such coordination is
a problem of synchronization and logical control of administra-
tion operations that can be applied by autonomous managers
on the managed system at a given time in response to events
observed on the state of this system. We therefore propose to
investigate the use of reactive models with events and states,
and discrete control techniques to solve this problem. In this
paper, we illustrate this approach by integrating a controller
obtained by synchronous programming, based on Discrete
Controller Synthesis, in an autonomic system administration
infrastructure. The role of this controller is to orchestrate the
execution of reconfiguration operations of all administration
policies to satisfy properties of logical consistency. We apply
this approach to coordinate energy-aware managers for self-
optimization and self-regulation of processor frequency.

Keywords-autonomic computing, coordination of multiple
autonomic managers, modeling, synchronous programming,
discrete controller synthesis.

I. INTRODUCTION

A. Green computing and the need for administration loops

The increasing complexity of computer systems, integrat-
ing several distributed components operating in a hetero-
geneous and dynamic environment, had led to a problem
of hand administration to be time-consuming, expensive,
and error-prone. In response to this problem, many research
works contribute to the automation of administration func-
tions, in the form of autonomic managers.

One important aspect requiring such management is the
issue of energy consumption of computing systems, in the
perspective of green computing. Its dynamic management is
based on the fact that the deployment and configuration of
systems can modified in response to changes in workload,
infrastructure and resource availability, or power supply. A
variety of mechanisms can be designed for power-aware
administration, using the autonomic loop framework. For

example, they can contribute at the level of processor
frequency, or at the level of server provisioning.

When multiple loops run concurrently, their interactions
have to be managed themselves, in order to avoid side-effects
annihilating the management actions. Our work focuses on
this problem, and proposes a solution for the coordination
and synchronization of administration managers, seen them-
selves as manageable elements.

B. Autonomic administration loops

Autonomic computing [9] aims at providing self-
management capabilities to systems. As shown in Figure 1,
the managed system or resource is monitored through
sensors, and an analysis of this information is used, in
combination with knowledge about the system, to plan and
execute reconfigurations, through the administration actions
offered by the system API.

managed resource

autonomic manager

analyse

knowledgemonitor

plan

execute

sensor actuator

Figure 1. Architecture of an autonomic system

Typical self-management issues handled in this framework
are self-configuration, self-optimization, self-healing (fault
tolerance and repair), and self-protection. They are managed
in closed loop, for which one design methodology is to apply
techniques from control theory, continuous or discrete.

C. The problem of coordinating administration loops

Classically, an autonomic manager focuses on one specific
concern of system administration. Often, several autonomic

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

managers must be used concurrently to cover all the admin-
istration domain. However, using multiple autonomic man-
agers is not enough for ensuring a correct and efficient global
system administration. The administration policy followed
by each autonomic manager does not take into account
the objectives of others aspects: this can of course lead
to inconsistencies. In order to benefit from the re-use of
several existing autonomic managers, one has to care for
coordinating their executions, according to global criteria
and properties of their assembly. Most of the proposed
solutions for coordinating autonomic managers are based on
software infrastructures, which are in charge of ensuring a
global view of the managed system for all managers and
synchronizing managers’ operations.

However, coordination is a problem of synchronization
and logical control of administration operations that can be
applied by autonomic managers on the managed system at
a given time in response to events observed on the state
of this system. Therefore, its solution requires the use of
models with events and states, where properties on the order
of events or the mutual exclusion of parallel states can
be addressed. Such models are at the basis of reactive or
synchronous programming languages, and their compilation
and analysis tools, as well as discrete control techniques.

D. Our proposed approach

Our approach is to consider the coordination as a synchro-
nization management problem, and to design an additional
layer, as shown in Figure 2, above the individual administra-
tion loops, which constitutes a coordination controller. This
relies upon access to information about local controllers,
such as their current state or execution mode, their con-
trollable features (e.g., suspendability), and relevant events.
We will build this hierarchical controller using models of
reactive systems, which are automata-based, and Discrete
Controller Synthesis to generate automatically the correct
coordination constraint, so that logical coherence invariants
are enforced.

sizing manager ...

coordination manager

managed system and resources

dvfs manager

Figure 2. Coordination architecture of multiple loops

In this paper, we apply this approach to the case of the
coordination of energy-aware controllers, which manage re-
spectively Sizing (server provisioning) and Dvfs (processor
frequency).

%CPU

%CPU Average
(Moving Average)

node

Cluster

&& not maximum_node
> maximum_threshold

< minimum_threshold
&& not minimum_node

Turn one
node on running node off

Turn one

Figure 3. Optimization controller

The rest of the paper is organized as follow. In section
II, we present two energy-aware autonomic managers. In
section III, we present the tools used in our approach for
designing an efficient and correct coordination controller for
autonomic managers. In section IV, we present the design
of the coordination controller for the managers presented in
Section II with our approach. In section V, we present a
simulation of the generated coordination controller. Section
VI presents the integration of the generated controller into
a real system. In section VII, we discuss background and
related work. Finally, in section VIII, we conclude the paper
and outline directions for future work.

II. UNCOORDINATED CONTROL LOOPS

We present two controllers dealing with energy opti-
mization and performance of a system. They are developed
independently. They try to optimize the energy consumption
of a system while preserving a good performance. They are
based on performance thresholds that describe an optimal
performance region where the system must be depending
on its workload.

A. Optimization controller: Sizing

This controller is for replicated servers based on a load
balancer scheme. Its role is to dynamically adapt the degree
of replication according to the system load. It dynamically
turns cluster nodes on when the load of the system cannot
be handled by resources it uses before the overload. When
the system is underloaded, it turns cluster nodes off to save
power under lighter load.

Figure 3 shows the execution scheme of the optimization
controller. The controller analyzes the nodes CPU usage
to detect if the system load is in the optimal performance
region. It computes a moving average of collected load
monitored by sensors. When the controller receives a notifi-
cation from sensors, if the average exceeds the maximum
threshold and the maximum number of replication (max
node) is not reached, it increases the degree of replication by
selecting one of the unused nodes. If the average is under the
minimum threshold and the minimum number of replication
is not reached, it decreases replication by turning a node off.

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

B. CPU-frequency controller: Dvfs

This controller targets single node management. Its role is
to dynamically adapt the CPU-frequency of a node according
to the load this node receives. It dynamically increases or
decreases the CPU-frequency depending on the load.

%CPU Average
(Moving Average)

> maximum_threshold

< minimum_threshold

&& not min_frequency

&& not max_frequency

%CPU Average

CPU
(Frequency / Voltage)

Single node

Decrease CPU
(freq/volt)(freq/volt)

Increase CPU

Figure 4. CPU-frequency controller

Figure 4 shows the execution scheme of this controller.
The controller analyzes the node CPU usage monitored by
sensor. If the observed load exceeds the maximum threshold
and the maximum CPU frequency is not reached, it increases
the CPU frequency. If the load is under the minimum
threshold and the minimum CPU frequency is not reached,
it decreases the CPU frequency. This controller is local to
the node it manages and is implemented either in hardware
or software. The one we use is a user-space software and
follows the on-demand policy.

C. Uncoordinated execution

Here, we analyze the control of replicated servers com-
posed of both controllers Sizing and Dvfs described above.
Sizing deals with the whole system while Dvfs deals with
each node separately.

When adding self-management capabilities to a system,
one can use these two controllers to manage the energy
consumption. The objective of using these two controllers
together could be to optimize the energy consumption lo-
cally on each used node by acting on the CPU frequency
and globally by managing the degree of replication. The
objective is to optimize the energy consumption, without any
coordination, however in some case this objective is not met.
For example, when the system is overloaded, it is detected
by Sizing and an upsizing operation is performed. But the
system is overloaded means that some or all nodes that
compose this system are overloaded, which implies CPU-
frequency increase operation on nodes that are overloaded. If
increasing the CPU frequency of these overloaded resources
could be enough to restore the system performance to the
optimal performance region, the upsizing operation become
irrelevant, useless and leads to waste of energy since a
new node is added while the previous nodes were able to
handle the load received by the system after increasing the
frequency of their CPU. There is a need to delay as long as

possible upsizing operations when CPU-frequeny increase
can be done.

III. SYNCHRONOUS PROGRAMMING AND DISCRETE
CONTROLLER SYNTHESIS

For our contribution, we use the language BZR [3]. This
language allows to describe reactive systems by means
of generalized Moore machines, i.e., mixed synchronous
dataflow equations and automata [11], with parallel and
hierarchical composition. The basic behavior is that at each
reaction step, values in the input flows are used in order
to compute the values in the output flows for that step.
Inside the nodes, this is expressed as a set of declarations,
which takes the form of equations defining, for each output
and local, the values that the flow takes, in terms of an
expression on other flows, possibly using local flows and
values computed in preceding steps (also known as state
values).

Idle Wait

e r and c/s

delayable(r,c,e) = a,s

Active
c/s

r and not c
a = false

a = true

a = false

node delayable(r,c,e:bool) returns (a,s:bool)
let
automaton
state Idle
do a = false ; s = r and c
until r and c then Active

| r and not c then Wait
state Wait
do a = false ; s = c
until c then Active

state Active
do a = true ; s=false
until e then Idle

end
tel

Figure 5. Delayable task in graphical and textual syntax.

Figure 5 shows a small program in this language. It
programs the control of a task, which can either be idle
or active. When it is idle, i.e., in the initial Idle state, then
the occurrence of the input r requests the launch of the
task. Another input c (which will be controlled further by
the synthesized controller) can either allow the activation, or
temporarily block the request and make the automaton go to
a waiting state. When active, the task can end and go back to
the idle state, upon the notification input e. This delayable
node has two outputs, a representing activity of the task, and
s being emitted on the instant when it becomes active : this
latter is connected to the OS with the task starting operation.

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

The main feature of the BZR language is that its com-
pilation involves discrete controller synthesis (DCS). DCS
allows to compute automatically a controller, i.e., a function
which will act on the initial program so as to enforce a given
temporal property. Concretely, the BZR language allows the
declaration of controllable variables, the value of which are
not defined by the programmer. These free variables can be
used in the program to describe choices between several
transitions. These variables are then defined, in the final
executable program, by the controller computed by DCS.
DCS produces, when it exists, the maximally permissive
constraint on the values of controllable variables, such that
the resulting inhibited behavior satisfies the objective.

twotasks(r1, e1, r2, e2) = a1, s1, a2, s2

enforce not (a1 and a2)
with c1, c2

(a1, s1) = delayable(r1, c1, e1)

(a2, s2) = delayable(r2, c2, e2)

Figure 6. Mutual exclusion enforced by DCS in BZR.

Figure 6 shows an example of use of these controllable
variables. This example consists in two instances of the
delayable node, as defined in Figure 5. These instances run
in parallel, defined by synchronous composition: one global
step corresponds to one local step for every equation, i.e.,
here, for every instance of the automaton in the delayable
node. Then, the twotasks node so defined is given a
contract composed of two parts: the with part allowing
the declaration of controllable variables (c1 and c2), and the
enforce part allowing the programmer to assert the property
to be enforced by DCS, using the controllable variables.
Here, we want to ensure that the two tasks running in parallel
will not be both active at the same time. Thus, c1 and c2 will
be used by the computed controller to block some requests,
leading automata of tasks to the wating state whenever the
other task is active.

IV. MODEL-BASED COORDINATION

We propose a coordination solution, based on such re-
active models, to avoid inconsistencies induced by these
controllers running in parallel. This solution consists of de-
signing a coordination controller on top of these controllers.
This coordination controller is responsible of controlling
the execution of Sizing and Dvfs in order to prevent any
execution which may lead to inconsistencies.

The design of such a coordination controller is based
on the synchronous approach. We use the synchronous
programming to model the behavior of each controller.
The models represent all the states in which they can be
during their execution, with some control on transitions. The
composition of these models describes the parallel execution

UpDown

Up
Down

Adding

adding =false

adding =false

adding =false

adding =true

node_added

node_added
and max_node /

and not max_node /

min_node /

CPU_avg > Max_threshold

and not delay /

CPU_avg > Max_threshold

and not delay /

add_node

add_node

CPU_avg < Min_threshold/

remove_node

CPU_avg < Min_threshold/

remove_node

Sizing_control(...) = add_node, remove_node,adding

Figure 7. Optimization controller

of the controllers, which means both desired and undesired
behaviors. We use discrete control synthesis techniques
to automatically compute and generate the coordination
controller based on the composition of the models and a
coordination policy. The coordination policy is expressed as
properties that should be enforced by the desired behaviors.

A. Optimization controller model

The model of this controller is composed of two automata.
Figure 7 represents the automaton for Sizing, where we

add a control of the upsizing operations. The control is
represented by the Boolean delay, upsizing operations are
possible only when this variable is false. The outputs of this
automaton are three Booleans, add_node and remove_node
being signals allowing the controller to request the resuming
or suspension of a node, adding being true whenever an
adding operation is performed.

The initial state is UpDown, both upsizing and downsiz-
ing operations are possible. When the CPU average reaches
the maximum threshold and the upsizing operations are
allowed, the controller requests a new node, and goes to
the Adding state, where it awaits for the new node to be
actually available. In this Adding state, nodes can neither be
added nor removed. When node_added occurs, the controller
can either go back to UpDown, or if there is no more
nodes able to be resumed, go to the Down state where only
downsizing operations can be performed. This Down state is
left once one node is suspended. The Up state is used when
no node can be removed, i.e., when the minimum number
of replication is reached. In the Up state, only the upsizing
operations can be applied.

Figure 8 represents how the Sizing manager can be
controlled, by inhibiting add_node operations in some global
states. The output of this automaton is the Boolean delay,
which enables upsizing operations when it is false. This
output feeds the input delay in Figure 7. Initially, the
automaton is in the state Idle where upsizing operations are

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

delayed. When c is true, it goes to the state Active where
upsizing operations are allowed. It stays there until c is false.

Active

Idle

delay= false

delay= true

c /not c/

Delay_control(c) = delay

Figure 8. Upsizing operations control

B. CPU-frequency controller model

In our coordination problem, it is not necessary to control
the execution of local dvfs controllers. We only need their
current state in order to allow/deny upsizing operations.
Therefore, a global observer is used for collecting informa-
tion about current state of the set of Dvfs, each Dvfs provides
two outputs, min being true when it can not decrease the
CPU-frequency and max being true when it can not increase
the CPU-frequency. This observer is a sensor that monitors
the global state of set of local Dvfs. It has two outputs,
one corresponding to the conjunction of all min outputs
and the others to the conjunction all max outputs. Figure 9
represents the automaton for the observer. The outputs of
this automaton are two booleans, max_freq being true when
all local Dvfs reach the maximum frequency and min_freq
being true when all local Dvfs reach the minimum frequency.

The inital state is Normal where max_freq and min_freq
are false. In this state, at least one of the set of Dvfs
can apply both CPU-frequency increase and CPU-frequency
decrease operations. When all nodes are in their maximum
CPU-frequency, the observer goes to the state Max. If all
nodes are in their minimum CPU-frequency, the controller
goes to the state Min. In the state Max, all Dvfs can only
apply CPU-frequency decrease operations. In the state Min,
they can only apply CPU-frequency increase operations.

min_freq = false

max_freq= true

min_freq = true

max_freq= false

min_freq = false
max_freq= fasle

Normal

Min

Max

not minimum /

 minimum /

not maximum /

maximum /

Dvfs_control(minimum, maximum) = min_freq, max_freq

Figure 9. CPU-frequency controller

When the observer is in the state Max or the state Min,
it stays there until at least one of the nodes is neither in its
maximum CPU-frequency nor its minimum CPU-frequency.

C. Coordination policy

Finally, we present the coordination controller design.

c / not c /

Active

Idle

UpDown

Down Up

Adding

Normal

Min

Max

With c

enforce (max_freq and not delay) or (not max_freq and delay)

Main (...) = ...

delay= false

delay=true

...

... and not delay/

... and not delay/

...

Figure 10. BZR program for coordination policy

Figure 10 is the coordination program built with the
BZR language. The three automata presented before are
composed in parallel, and a contract is added to enforce
the coordination policy. Here, we want that the upsizing
operations to be delayed when CPU-frequency increase
operations can be performed. This coordination policy is
stated by (max_freq and not delay) or (not max_freq and
delay). The variable c is declared as a controllable.

V. COORDINATION CONTROLLER SIMULATION

The generated controller behavior can be simulated be-
fore its integration in the system with the SIM2CHRO
chronogram tool (Verimag). It allows to test if the generated
program reaction, represented by its outputs, respects the
coordination policy expressed as logical invariant whatever
the inputs are. Figure 11 represents a snapshot example of
the complete simulation.

It shows a scenario illustrating the generated coordination
controller in action. The input and output variables are
Booleans. The input minimum notifies that all used nodes

Figure 11. coordination controller simulation

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

are in their minimum CPU frequency and maximum notifies
that all used nodes are in their maximum CPU frequency.
The input overload represents the condition CPU_avg >
Max_threshold and underload the condition CPU_avg
< Min_threshold. node_added notifies that the previous
adding node request have been treated succesfully. At the
beginning, all used nodes are neither in their maximum CPU
frequency nor in their minimum CPU frequency and the
upsizing operations are not allowed (output delay).

At step 5, the input overload becomes true. This event
should trigger an upsizing operation but, since all nodes are
not in their maximum CPU frequency (output max_freq),
this operation is not performed. An upsizing operation is
performed only after the step 11 where all nodes are in their
maximum CPU frequency.

VI. IMPLEMENTATION

A. Integrating the synchronous program into the system

The automata are composed in one BZR program. It is
compiled and the generated code has two main functions:
reset and step. The reset function allows to initialize the
program and step to compute a reaction to events that
correspond to the inputs of this function. The generated
program is a reactive one. It has to be encapsulated into
a loop that is responsible of executing the function step
periodically or when an event occurs to get a reaction.

The coordination controller corresponds to the loop that
encapsulates the BZR program. We have designed a program
that is responsible of getting events from sensors for average
load and Dvfs state, calling the function step with these
events and transmitting the outputs of this function step to
managers.

 Probe Dvfs Probe CPUs

Dvfs

CPUs usage

Managed resources

local dvfs state
Actuator

Sizing

Interface

synchronous program

Coordination controller

add / remove

commandsSizing state

call step results

CPUs_avgglobal state

Figure 12. Integration

Figure 12 represents the architecture of a system in which
the coordination controller is integrated. Since the role of
this coordination controller is to control which manager
should react or not to events, all sensed information is
transmitted to the coordination controller instead of the
managers. The outputs of the coordination, in reaction to
events, are forwarded to the controlled managers i.e., in this

case the manager Sizing. The interface allows interaction
between the synchronous program, the sensors and the
manager.

B. Connecting the automata

The automata are connected to the system by its input
events, and by outputs which are commands to be applied
in the system.

The automata represent the current state of a part of the
system, which the coordination controller needs in order to
make a decision when events occur. The inputs of automata
have to be fed with events occurred in the system for making
them evolve and their outputs have to be applied to the
system for acting on its state.

The automaton Dvfs_control informs about the global
state of the set of local Dvfs and its outputs serve only
for the decision the controller has to make. The inputs
of this automaton correspond to the outputs of the probe
Dvfs. The automaton Sizing_control manages Sizing exe-
cution. It describes the current state of Sizing and deci-
sion it takes in response to events. The input CPU_avg
corresponds to the average of system load. The inputs
max_node and min_node correspond to the capability for
Sizing to apply operations, max_node informing about the
capability to perform an upsizing operation and min_node
a downsizing operation. The output add_node respectively
remove_node are triggering the operations Sizing per-
forms when CPU_avg is over Max_threshold respectively
CPU_avg is under Min_threshold. add_node being true
respectively remove_node being true means Sizing has to
add a new node respectively remove a node. The automaton
Delay_control has one input which is managed by the
generated controller. Its output is used as input for the au-
tomaton Sizing_control, in order to control some transitions
Sizing_control can take.

C. Implementation architecture

This approach has been implemented for the management
of a clustered web server. The managed system consists of
one server Apache and replicated servers Tomcat.

Sizing

Apache

mod_jk

actuator actuator

Dvfs Dvfs

Probes

Switch

Tomcat 1 Tomcat 2

Coord

 Dvfs

 load

add/remove
Client requests

State

node 0

node 1 node 2

Figure 13. Experimental platform: architecture

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

The experimental platform, as shown in Figure 13, con-
sists of a network of three nodes. Node 0 hosts the Apache
server, each of node 1 and node 2, one Tomcat server. Ini-
tially, only one Tomcat server is active. Both Tomcat servers
are active when the requests received cannot be handled by
one. Unlike to the execution without coordination, where
undesired behaviors have been observed, we observe that the
coordination execution follows the defined policy. Upsizing
operations are performed only when all active nodes hosting
a server Tomcat are in their maximum CPU frequency.

In order for this controller to work well, it is important
that it runs sufficiently frequently compared to the load
dynamics : for every load peak to be detected and managed,
the frequency of sampling and the communication must be
fast enough.

VII. RELATED WORK

Concerning energy control, many works addressed energy
management on datacenters. Some of these researches are
based on (i) hardware with voltage and frequency control
(e.g., DVFS [6]), (ii) resource allocation: Reducing power
consumption by reducing the clock frequency of the pro-
cessor has been widely studied [7] [18], Flautner et al.
[5] explored a software managed dynamic voltage scaling
policy that sets CPU speed on a task basis rather than
by time intervals. [4] proposes a power budget guided
job scheduling policy that maximizes overall job perfor-
mance for a given power budget. [1] [13] [14] focused
on dynamic resource provisioning in response to dynamic
workload changes. These techniques monitor workloads or
other SLA (Service Level Agreement) metrics experienced
by a server and adjust the instantaneous resources available
to the server. Depending on the granularity of the server
(single or replicated), the dynamically provisioned resources
can be a whole machine in the case of replicated servers.
Energy efficiency is achieved using a workload-aware, just-
right dynamic provisioning mechanism and the ability to
power down subsystems of a host system that are not
required.

While these works are relevant, they did not adress the
problem of coordinating multiple energy managers. Our
work is complementary since it can be used to build a
system that includes more that one of the previous ap-
proaches. Few works have also investigated manager coor-
dination for energy efficiency. Kumar [10] proposes vMan-
age, a coordination approach that loosely couples platform
and virtualization management to improve energy savings
and QoS while reducing VM migrations. Kephart [2] ad-
dresses the coordination of multiple autonomic managers for
power/performance tradeoffs based on a utility function in
a non-virtualized environment. Nathuji [12] proposes Virtu-
alPower to control the coordination among virtual machines
to reduce the power consumption. These works involve
coordination between control loops, but these loops are

applied to the managed applications. However, these work
propose adhoc specific solutions that have to be implemented
by hand. If new managers have to be added in the system
the whole coordination manager need to be redesigned.

In contrast with [15], which relies on formal specifi-
cation to derive a formal model that is guaranteed to be
equivalent to the requirements, our work can be related to
the applications of control theory to autonomic or adaptive
computing systems [8]. In particular, Discrete Event Systems
in the form of Petri nets models and control have been
used for deadlock avoidance problems [17]. Compared to
these works, we rely on synchronous programming and
discrete controller synthesis. Once an autonomic manager is
modeled as automata, inserting this autonomic manager with
other pre-existing just require to update the coordination
invariants. The new coordination manager is automatically
generated from the managers models and the coordina-
tion invariants. In contrast with [16], which addresses the
management of datacenters based on thermal awarness
with external sensing infrastructure for energy and cooling
efficiency, the work, presented in this paper, focuses on
coordinating multiple workload-aware managers to ensure
an energy efficiency.

VIII. CONCLUSION AND FUTURE WORK

One major challenge in system administration is the
coordination of multiple autonomic managers for correct and
coherent administration. In this paper we presented an ap-
proach for coordinating multiple self-management modules
in a consistent manner to manage a system. This approach,
based on synchronous programming and Discrete Controller
Synthesis, has the advantage of generating the required
controller to enable the correct by construction coordination
of multiple autonomic managers. The advantages of this
approach are following:

• High-level of programming
• Correctness of the controller
• Automated generation/synthesis of the controller
• That is maximally permissive
We have tested this approach for coordinating two energy-

based self-management modules: Sizing, which manages
the degree of replication for a system based on a load
balancer scheme, and Dvfs, which manages the level of CPU
frequency for a single node. In this case, the coordination
policy was to allow Sizing to add new node only when
all Dvfs modules cannot apply increase operations at all in
response to the increasing load the system receives.

For future work, we plan to evaluate this approach
for large scale coordination with more complex coordina-
tion policies and several managers, combining both self-
optimization and self-regulation frequency managers with
self-repair manager that heal fail-stop clustered multi-tiers
system.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

ACKNOWLEDGEMENT

This research is supported by ANR INFRA under a grant
for the project ctrl-Green.

REFERENCES

[1] Sara Bouchenak, Noel De Palma, Daniel Hagimont, and
Christophe Taton. Autonomic management of clustered
applications. In Cluster Computing, 2006.

[2] Rajarshi Das, Jeffrey O. Kephart, Charles Lefurgy, Gerald
Tesauro, David W. Levine, and Hoi Chan. Autonomic multi-
agent management of power and performance in data centers.
In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: industrial track,
AAMAS ’08, pages 107–114, Richland, SC, 2008.

[3] Gwenaël Delaval, Hervé Marchand, and Eric Rutten. Con-
tracts for modular discrete controller synthesis. In Pro-
ceedings of the ACM SIGPLAN/SIGBED 2010 conference
on Languages, compilers, and tools for embedded systems,
LCTES ’10, pages 57–66, 2010.

[4] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo
Valero. Optimizing job performance under a given power
constraint in hpc centers. In Proceedings of the International
Conference on Green Computing, GREENCOMP ’10, pages
257–267, Washington, DC, USA, 2010. IEEE Computer
Society.

[5] Krisztián Flautner, Steve Reinhardt, and Trevor Mudge. Auto-
matic performance setting for dynamic voltage scaling. Wirel.
Netw., 8:507–520, September 2002.

[6] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable network
services. In Proceedings of the sixteenth ACM symposium on
Operating systems principles, SOSP ’97, pages 78–91, New
York, NY, USA, 1997. ACM.

[7] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power cpu. In
MOBICOM’95, pages 13–25, 1995.

[8] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing Systems.
Wiley-IEEE, 2004.

[9] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. Computer, 36:41–50, January 2003.

[10] Sanjay Kumar, Vanish Talwar, Vibhore Kumar, Parthasarathy
Ranganathan, and Karsten Schwan. vmanage: loosely coupled
platform and virtualization management in data centers. In
Proceedings of the 6th international conference on Autonomic
computing, ICAC ’09, pages 127–136, New York, NY, USA,
2009. ACM.

[11] Jean louis Colaço, Bruno Pagano, and Marc Pouzet. A
conservative extension of synchronous data-flow with state
machines. In In ACM International Conference on Embedded
Software (EMSOFT’ 05, pages 173–182. ACM Press, 2005.

[12] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated
power management in virtualized enterprise systems. In
Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, SOSP ’07, pages 265–278, New
York, NY, USA, 2007. ACM.

[13] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and
Taliver Heath. Load balancing and unbalancing for power and
performance in cluster-based systems, 2001.

[14] Ivan Rodero, Juan Jaramillo, Andres Quiroz, Manish
Parashar, Francesc Guim, and Stephen Poole. Energy-efficient
application-aware online provisioning for virtualized clouds
and data centers. pages 31–45, 2010.

[15] Roy Sterritt, Michael Hinchey, James Rash, Walt
Truszkowski, Christopher Rouff, and Denis Gracanin.
Towards Formal Specification and Generation of Autonomic
Policies. In Embedded and Ubiquitous Computing, pages
1245–1254, 2005.

[16] Hariharasudhan Viswanathan, Eun Lee, and Dario Pompili.
Self-organizing sensing infrastructure for autonomic manage-
ment of green datacenters. Ieee Network, 25(4):34–40, 2011.

[17] Yin Wang, Terence Kelly, and Stéphane Lafortune. Discrete
control for safe execution of it automation workflows. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages
305–314, New York, NY, USA, 2007. ACM.

[18] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker.
Scheduling for reduced cpu energy. In Proceedings of
the 1st USENIX conference on Operating Systems Design
and Implementation, OSDI ’94, Berkeley, CA, USA, 1994.
USENIX Association.

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

