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Abstract—Autonomic management depends on a feedback 
loop between the managed system and the autonomic 
manager.  Adding a learning component to the autonomic 
manager introduces a second feedback loop – between the 
manager and the learning agent.  In this paper, we describe 
a policy-based autonomic manager that makes use of a 
reinforcement learning agent.  The reinforcement learning 
model is based on a state-transition model formed from an 
active set of policies and the actions of the manager.  Based 
upon this model, this paper describes approaches for 
prediction of potential policy violations and examines the 
accuracy of the prediction approaches. Experimental results 
show that a prediction approach based on the likelihood of a 
violation performs better than a non-prediction approach 
and has a positive impact on avoiding policy violations. 

Keywords-autonomic management, prediction, policies, 
reinforcement learning. 

I. INTRODUCTION 

Autonomic systems are commonly conceived around 
the notion of a feedback loop, usually involving 
monitoring, analysis, planning and execution [1].   In 
some cases, this process may involve a learning 
component [2-6] which can enable an autonomic manager 
to adapt aspects of its behavior over time, e.g., to “learn” 
which actions are better than others in certain situations.  
Some of our previous work investigated the role of 
reinforcement learning [7, 8] as a key element in a policy-
based system for autonomic management.  

Policies are often used to specify the required or 
desired behavior of a system and its applications.  In 
autonomic systems, policies have been used as the basis 
for the management system to adjust application or 
system tuning parameters in order to meet operational 
requirements [2, 7], i.e., the policies are used to drive the 
feedback needed to change the system’s behavior.  When 
these policies are violated, the autonomic management 
system tries to identify the actions needed to take based 
on the policies or, in some cases, based on the past 
behavior of the system.  That is, the management system 
may incorporate some sort of learning in order to enhance 
the decisions. The general model of the approach is 
illustrated in Figure 1.  The autonomic management 
system makes adjustments to the system being managed.  
Actions taken by the management system and values of 

metrics are used by a learning component to determine 
the best actions in the future. 
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Figure 1. Feedback Loops for Autonomic Manager with Learning Agent 
 

In this paper, we consider how prediction might be 
considered in the context of such feedback control.  Our 
approach to reinforcement learning entails the 
construction of a “state model” based on an active set of 
policies.  In this case, the “state model” does not directly 
correspond to the states of the managed system, but rather 
captures the states representing the “health” of the system 
as dictated by the active set of policies.  In the simplest 
form, such a state may indicate that the system is “OK” or 
“not OK”, i.e., has or has not violated a policy.  Using 
this “state model” we look at approaches to prediction – 
one based on predicting a future state and one predicting 
whether the system will be “unhealthy”, i.e., in any 
“unhealthy state”.   We describe the approach and report 
on results of experiments for a system incorporating 
prediction. 

II. RELATED WORK 

A variety of different approaches to prediction in 
network and system management have been explored.  
Most of the techniques have dealt with prediction of 
faults or prediction of resource usage.  A fuzzy logic 
controller prediction method was in [9] to predict 
computational demand in a utility computing 
environment. 

The probabilistic framework of a Bayesian network 
has been used to do prediction in several research studies 
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[10-12]. The work in [10], for example, tries to predict 
network anomalies that typically precede a fault. 
Specifically, the authors propose an approach to predict 
node failure. The intelligent agent learns the normal 
behavior of each measurement variable and combines the 
information into a Bayesian network.  Work in [12] also 
used a Bayesian based algorithm to predict disk failures, 
while in [13], a specific analytical method is developed 
for fast detection of faults in I/O systems. 

Some approaches have looked at data mining and 
learning approaches learn and classify failure patterns as 
rules from historical data rather than generating 
probabilistic models ahead of time [14-16].   Sahoo, et al. 
applied association rules to predict failure events in a 
350-node IBM cluster [17].   Meta-learning [14, 16] 
methods have been investigated to explore the merits of 
combining various data mining techniques. The use of 
reinforcement learning in autonomic management [3-5, 7] 
has also attracted significant interest. 

Our work is similar to work that makes use of 
probabilistic approaches.  The key difference in our work 
from other work in the autonomic area is that we 
incorporate prediction based on the learned model.  Our 
work also differs in that our reinforcement learning model 
uses “policy” states rather than “system” states.  

III. MODEL OF REINFORCEMENT LEARNING 

A policy-based management system has been 
developed by Bahati [7] where reinforcement learning is 
used to determine the best use of a set of active (enabled) 
policies to meet different performance goals. The learning 
approach is based on the analysis of past experience of 
the system and the learning model is used to train the 
system to dynamically adapt the choice of actions for 
adjusting application and system tuning parameters in 
response to policy violations. 

Reinforcement learning is a learning paradigm [19-20] 
where an agent learns how to best map situations to 
actions through trial and error interaction with its 
environment.  It uses a “reward and punishment” 
approach, where, for each action, a numeric reward is 
generated by the agent which indicates the desirability of 
the agent being in a particular state. The only way to 
maximize this reward is to discover which action 
generates the most reward in a given state by trying them. 
The learning agent must also consider a trade off between 
whether it should use its current knowledge to select the 
best action to take (exploit) or to try new, untried, actions 
(explore) in order to improve its performance. 

We assume that policies are used to specify desired 
behavior and are of the form of event-triggered, 
condition-action rules [7]. An event triggers the 
evaluation of a rule of the form “if [conditions] then 
[actions]”. An event is generated when some condition 
about the state of a system becomes true. The appropriate 
action is chosen from the policy specification for that 

event.  A policy consists of one or more conditions and an 
ordered list of actions which can be used by the 
management system to make adjustments to system 
tuning parameters.  Table 1 illustrates examples of 
polices; these form the basis for the discussion in this 
paper. 

In Table 1, p1 illustrates a policy where different 
actions can be taken when the Apache response time 
(ART) is greater than 2000 ms and the trend of the 
response time (ARTT) is increasing. Action a1, for 
example, indicates that the limit on the maximum number 
of active Apache clients should be increased by 25. 

TABLE  1. EXAMPLES OF POLICIES 

p1: If Apache’s response time (ART) > 2000ms and the 
       trend of the Apache response time (ARTT) ) > 0, then 
a1: Increase MaxClients by 25, or 
a2: Decrease MaxKeepAliveRequests by 30, or 
a3: Decrease MaxBandwidth by 128 
 
p2: If Apache’s response time <  250 ms, then 
a4: Decrease MaxClients by 25, or 
a5: Increase MaxKeepAliveRequests by 30, or 
a6: Increase MaxBandwidth by 64 

 
The following introduces a number of key terms and 

concepts related to how we model learning; a more 
detailed and formal description can be found in [7]. A 
policy p is a pair <C, A>, where C  is a finite set of 
conditions, C = c1, . . . , cm, and A = a1, . . .  ak is an 
ordered set of actions.   Each condition, ci ε C, is defined 
by a tuple ci = <metricName, operator, >, where 
metricName is the name of a metric measured/monitored 
by the management system, operator is a relational 
operator, and , is a constant threshold value.  The set of 
active policies at any time within the management system 
is then P = {p1, . . . , pn}. 

To model the dynamics of the environment from an 
active set of policies, we define a set of states whose 
structure is derived from the metrics associated with the 
active policies.  The set of metrics that must be monitored 
to support an active set of policies P = {p1, . . . , pn} is 
then M = {m1, . . . , mt}, such that: 

 pj = <Cj, Aj> ε P,  M = ci ε Cj
 {ci. metricName}. 

The set M is the set of all metrics occurring in any of 
the active policies.  For each metric in this set, there are a 
finite number of threshold values to which the metric is 
compared; these can be ordered to form “regions”.   For 
each metric mi ε M, let the set σmi

 = {1, 2, . . ., k} be 

the set of thresholds from the conditions associated with 
metric mi, such that, i, < j, if i < j.  Then, σmi

 induces a 

set of metric regions associated with metric mi: 

 Rmi
 = {R1

mi
 , R2

mi
 , . . . ,  Rk+1

mi
}, where R1

mi
= (-∞, 1), 

 R2
mi

 = (1,2 ), etc., and Rk+1
mi

  = (k, ∞). 
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In essence, for any metric, a measured value of the 

metric can be mapped uniquely onto one of the regions 
(i.e., intervals) as defined by the thresholds of the policy 
conditions.  For example, if σmi

 = {1, 2}, then there 

would be three regions: 
 

R1
mi

 = (-∞, 1),   R
2

mi
 = (1, 2 ),  and R3

mi
  = (2, ∞). 

 
We also define a weighting function f over metrics and 
their regions where f(Rj

mi
 ) → R, which assigns a numeric 

value to the jth region, Rj
mi

 , such that, f(Rj
mi

 ) > f(Rk
mi

),  if 

k < j.  An example of such a mapping, which we make 
use of in our current implementation, is defined by: 
 

f(Rj
mi

 ) = 100 - (100/(n - 1)) x (j - 1), 

where n is the total number of regions in Rmi
. 

This function assigns a numeric value between 100 
and 0 for each metric's region in Rmi

 , starting from 100 

for the most desirable region and decrementing at equal 
intervals towards the opposite end of the spectrum, whose 
region is assigned a value of 0.  Here we assume that the 
smaller the values of f(Rj

mi
 ) are more desirable, though in 

general this is not a necessary requirement.  The idea is 
that regions of greater “desirability”, i.e., preferred 
quality of service, are assigned higher values.  Table 2 
illustrates the metrics and their regions from the example 
policies of Table 1. 

TABLE  2. METRIC AND REGION FROM SAMPLE POLICIES 

Metric Condition Region f(Rj
mi

 ) 

m1: ART ART < 250.0 
ART > 2000.0 

R1
m

1
 = (-∞, 250.0) 

R2
m

1
 = (250.0, 2000.0) 

R3
m

1
 = (2000.0, 250.0) 

100 
50 
0 

m2: ARTT ARTT > 0.0 R1
m

2
 = (-∞, 0.0) 

R1
m

2
 = (0.0, ∞) 

100 
0 

 
The key role of these regions is that they partition the 

space of values that a metric can take on with respect to 
the thresholds in conditions involving that metric.  We 
use these to define a state within our model.  A set of 
active policies, P, with metrics M, derives a set of states S 
= {si}, where si =  <P(si), A(si), M(si), μ)>, where: 

 P(si) is the set of policies that were violated when 
the system was in state si. 

 A(si) is the set of actions associated with the 
policies in P(si), plus the γ-action, representing 
the  “null” or “no-op” action. 

 M(si) is the set {(value1, Rr1m1
 , f(R r1m1

)), . . . , 

(valuen, Rrnmn
, f(Rrnmn

))), where valuej is the 

observed measurement of metric mj or its average 
value when state si is visited multiple times and 

Rrjmj
 = (1, 2 ), where  1 < valuej < 2 , i.e., the 

region of mi  in which the measured value valuej 

falls.  Essentially, each state has a unique region 
from each metric of M along with a measured 
value of that metric, i.e.,  for a set of policies with 
n metrics, each state would have n metrics { m1, 
m2, . . . , mn} and for each of those metrics there 
would be a single metric region. 

 μ defines the “health” of the state, that is, is either 
“violation” or “acceptable” depending, 
respectively, on whether or not there are any 
policies violated when visiting this particular 
state. 

Transitions are determined by the actions taken by the 
management system and labeled by a value determined by 
the learning algorithm.  A state transition, ti(sp, ap, sc), is a 
directed edge corresponding to a transition originating in 
state sp and ending at state sc as a result of taking action ap 
while in state sp and is labeled by <, Qti

(sp, ap)>,  where 

 is the frequency (i.e., the number of times) the 
transition has occurred and Qti

(sp, ap) is the action-value 

estimate from the reinforcement learning algorithm 
associated with taking action ap in state sp.  In our current 
implementation, this value is computed using a one-step 
Q-Learning [20] algorithm which has been described 
elsewhere [7]. 

For a set of active policies, P, the state-transition 
model can be defined by the graph GP = <S, T>, where S 
is a set of states and T is a set of state transitions.  The 
construction of states and transitions is naturally done at 
run-time (i.e., on-line) and not a priori given an active set 
of policies (though, this could be done).  In practice, 
many of the states may never occur, thus keeping the size 
of the model manageable. 

 

S0

S1

S2

S3

S4

[a0, 10, 10.05]

[a3, 53, 89.70]

[a3, 11, 13.78]

[a0, 22, 39.71]

[a0, 40, 53.45]

[a1, 21, 23.34]

[a2, 30, 44.45]

[a0, 20, 33.45]

 

Figure 2. State Graph 

 
Figure 2 shows several states, and for each transition 

the action taken, the number of times that action was 
taken, and a reward value as determined from the learning 
algorithm.  Action a0 represents the “null” action, that is, 
no action was taken, but the system moved from one state 
to another (e.g., S0 to itself).  State S4 (colored) is a 
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“violation” state.  After each management cycle, the 
system updates the state graph information either by 
adding a new state or by updating the previous state 
information which includes an update of the transition 
frequency and reward value of actions. 

 

IV. PREDICTION 

In this section, we outline our approaches for 
prediction based on the state-transition model introduced 
in the previous section.  We consider two different 
strategies for prediction - prediction of the next “state” 
within the state-transition graph and prediction of whether 
there might be some policy violation, i.e., move to an 
“unhealthy” state.  The first strategy is a straightforward 
approach given that our model is comprised of states and 
transitions with frequencies of occurrences included.  The 
latter, though, similar, originates from our specific 
interest in policy-based autonomic management and that 
the primary concern is to avoid policy violations.  As a 
result, this strategy tries to predict the likelihood of any 
policy violation or not. 

For our current work, we decided to predict two 
management cycles ahead – a single cycle ahead was “too 
close” while two cycles ahead seemed to be a good 
starting point, though more might be of more interest.  
This means that if we are currently at management cycle 
t, then we will try to predict whether there will be any 
policy violation at management cycle t+2 by predicting 
which state is most likely or by predicting the likelihood 
of some policy being violated.  As indicated, states in the 
reinforcement learning model contain frequency 
information as well as reward values generated from the 
learning algorithm.  We further consider prediction using 
the frequency values (probability approach) and one 
based on just using reward values (reward approach). 

A. Probability Approach 

The probability is calculated from the action 
frequency values (from the labels of each edge in the 
state-transition graph).  The action frequency value 
indicates the number of times that an action has been 
taken from a particular state.  From the frequency values, 
we can compute the probability of transitioning from a 
state to an adjacent state and then states two transitions 
away.  Considering Figure 2 and assuming that the system 
is in state S0, the probability of states two transitions 
away is presented in Table 3.  Multiple values in a single 
cell of Table 3 indicate multiple paths, e.g., from S0 to S1 
there are two paths and so there are two separate 
probability values. 

B. Reward Approach 

The reward approach only considers the action reward 
value (generated from the reinforcement learning 
algorithm) for prediction analysis.  The action reward 
values are summed for all states on paths two transitions 

away from the current state.  These are shown in Table 3, 
again, assuming that state S0 is the current state.  

C. Predicting State 

When we want to predict the state, we compute the 
probabilities of reaching each state two transitions away.  
The state with the highest probability is the chosen state 
and depending on whether that state is a “violation” state 
or not determines whether the prediction indicates a 
violation or not.  Similarly, in using reward, the sum of 
the reward values is used and the state reached with 
transitions that have the highest reward total is the state 
selected.  In the previous example, state S4 is selected 
based on using probabilities and state S3 is selected based 
on reward values.  

TABLE  3. PROBABILITIES AND REWARDS FOR STATES 

State 
(2 transitions from S0) 

Probability Reward 

S0 0.03 20.10 
S1 0.06 

0.14 
33.39 
77.90 

S2 0.08 54.50 
S3 0.24 

0.07 
113.04 
58.23 

S4 0.10 
0.28 

63.05 
97.90 

D. Predicting Likelihood of a Violation 

In contrast, predicting the “likelihood” of a violation 
involves computing a score for all “violated” states 
reachable in two steps from the given state.  In this case, 
we compute a score for “not violated” and one for 
“violation” states.  We do this by summing the 
probabilities or summing the rewards for states that are 
“not violated” and those that are “violated”. 

Using the probabilities and rewards from Table 3, the 
likelihood scores are shown in Table 4.  Here, we see that 
using approaches based on the probabilities and on the 
reward suggest that there is no expected violation.  This is 
consistent with the state graph of Figure 2. 

TABLE  4. PREDICTION OF FUTURE CONDITIONS 

Future 
Condition 

Likelihood 
(Probability) 

Likelihood 
(Reward) 

No Violation 0.72 420.21 
Violation 0.28 97.90 

 

V. EXPERIMENTAL RESULTS 

But, how accurate are these predictions?  In the 
following, we outline experiments to evaluate the 
prediction approaches. 

A. Experimental Environment 

The experimental environment consists of networked 
workstations.  A Linux workstation with a 2.0 GHz 
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processor and 2.0 Gigabytes of memory is used to host an 
Apache Web Server, the Knowledge Base and the 
MySQL database server. Three network workstations are 
used to run the traffic load tool for generating server 
requests.  The three workstations represent load for gold, 
silver and bronze users and their service classes. Linux 
Traffic Controller (TC) Tool is used to control the 
bandwidth associated with the gold, silver, and bronze 
service classes. Thus, given a ratio of bandwidth for each 
of the service classes, the bandwidth is shared 
accordingly; for our experiments this ratio was 85:10:5.  
A tuning parameter MaxBandwidth determines 
bandwidth which needs to be assigned to each service 
class.  Apache Jmeter is used as a traffic load generator. 
The Jmeter application runs in each of the workstations 
where each has a dynamic load testing plan.  All 
workstations generate traffic load using the same plan. 
The load plan contains dynamic requests which create 
situations where the system resource usage is increased at 
significant rate. 

B. Prediction Accuracy 

Experiments were run with the above experimental 
environment for 1 and 4 hours.  The accuracy of 
prediction results is present in Table 5. 

TABLE  5. PREDICTION ACCURACY 

Approach State 
(1 hour) 

State 
(4 hours) 

Violation 
(1 hour) 

Violation 
(4  hours) 

Probability 20.00% 3.90% 29.62% 29.66% 
Reward 26.19% 7.69% 45.76% 37.03% 

Predicting a single state is clearly less successful that 
predicting the likelihood of a violation which could 
include multiple states.  In predicting a single state, the 
accuracy dramatically decreases during the four hour run.  
This is because the size of the state graph has grown and 
so predicting a single state is much harder.  There is a 
much smaller reduction in accuracy for the four hour 
experimental run when predicting the likelihood of a 
violation.  It is also interesting to note that the use of the 
reward values for prediction proved to be more accurate 
in both cases than the uses of probabilities. 

B. Experiments with Prediction 

Given the evaluation of the accuracy of the prediction 
approaches, we decided to evaluate the likelihood 
approach to prediction in the context of our prototype 
web environment and autonomic manager.  Our objective 
for looking at prediction was to be able to avoid policy 
violations, that is, if our predictive mechanism did predict 
that a violation was likely, then the autonomic manager 
could take action prior to the violation. 

Our approach is outlined as follows.  If the prediction 
mechanism (probability based or reward based) predicts 
that a violation was likely to occur, then our prediction 
component would look for possible safe states and the 
transitions that would take the system to a safe state two 

steps away (our consideration of what happens at 
management cycle t+2).  The state selected is the safe 
state with the highest value as per the prediction 
computation.  The algorithm determines the two actions 
on the transitions to that safe state from the current state.  
These are then passed to the autonomic manager for 
execution. 

If no safe state is available, then there are two 
possibilities – do nothing, i.e., let the autonomic manager 
rely strictly on its reinforcement learning algorithm to 
select an action, or have another mechanism for choosing 
an action.  We have explored the latter [21], but details of 
how this works is beyond the scope of this paper. 

We compared the use of prediction to that of no 
prediction.  The “no prediction” method relied on the 
autonomic manager and the reinforcement learning 
component, which performed very well in adapting the 
system in previous experiments [7].  Experiments were 
done for each of the 1hr and 4hr testing periods with 
traffic load varying during the test periods.  Since our aim 
is to reduce policy violations, we counted the number of 
policy violations that occurred during the testing period; 
each experiment was run three times and the average 
used. 

The results are presented in Table 6. The existing 
management system encountered 77 and 280 policy 
violations in the 1hr and 4hr time periods, respectively.  
When we add prediction, the number of policy violations 
is reduced to 60 and 226 in the 1hr and 4hr time periods. 

TABLE  6:  POLICY VIOLATIONS: WITH AND WITHOUT PREDICTION 

Approach Policy 
Violations 
(1 hour) 

Policy 
Violations 
(4 hours) 

Reinforcement Learning 
(Existing) 

77 280 

Prediction: Likelihood 
of Violation 
(Probability) 

62 220 

Prediction: Likelihood 
of Violation (Reward) 

61 226 

 
Using prediction resulted in approximately a 20% 

reduction in the number of policy violations encountered 
in both the one hour and four hour test periods.  

VI. CONCLUSIONS AND FUTURE WORK 

Given the results, it is clear that our prediction 
technique should only predict whether a policy violation 
is likely to occur or not, rather than trying to predict a 
state.  The results of prediction with the reinforcement 
learning resulted in useful feedback to the autonomic 
manager with experimental results showing roughly a 
20% improvement in the number of violations 
encountered.  This result is a little surprising in that the 
accuracy of the likelihood prediction approach was only 
around 38% for the reward approach and 30% for the 
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probability approach (4 hour test period).  Would this 
continue for a longer test period?  If the prediction 
accuracy was increased, would the improvement in the 
number of violations continue?  These are future areas of 
study. 

There are, of course, a number of other areas for 
exploration, the obvious being to consider this approach  
in a different scenario and with more policies.  More 
immediate work could include looking at some 
combination of probability and reward or some 
combination of predicting a state and predicting the 
likelihood of a violation to see if there might be a useful 
alternative evaluation mechanism that could result in 
increased prediction accuracy.  Other work could look at 
prediction more than two cycles ahead to see how 
accuracy changes.  Finally, it would be useful to develop 
a more formal basis for understanding how prediction and 
reinforcement learning are dependent on each other and 
their use in autonomic management. 
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