
Augmenting Reinforcement Learning Feedback
with Prediction for Autonomic Management

Khandakar Rashed Ahmed
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

kahmed25@uwo.ca

Raphael Bahati
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

rbahati@uwo.ca

Michael Bauer
Department of Computer Science

The University of Western Ontario
London Ontario, Canada, N6A5B7

bauer@csd.uwo.ca

Abstract—Autonomic management depends on a feedback
loop between the managed system and the autonomic
manager. Adding a learning component to the autonomic
manager introduces a second feedback loop – between the
manager and the learning agent. In this paper, we describe
a policy-based autonomic manager that makes use of a
reinforcement learning agent. The reinforcement learning
model is based on a state-transition model formed from an
active set of policies and the actions of the manager. Based
upon this model, this paper describes approaches for
prediction of potential policy violations and examines the
accuracy of the prediction approaches. Experimental results
show that a prediction approach based on the likelihood of a
violation performs better than a non-prediction approach
and has a positive impact on avoiding policy violations.

Keywords-autonomic management, prediction, policies,
reinforcement learning.

I. INTRODUCTION

Autonomic systems are commonly conceived around
the notion of a feedback loop, usually involving
monitoring, analysis, planning and execution [1]. In
some cases, this process may involve a learning
component [2-6] which can enable an autonomic manager
to adapt aspects of its behavior over time, e.g., to “learn”
which actions are better than others in certain situations.
Some of our previous work investigated the role of
reinforcement learning [7, 8] as a key element in a policy-
based system for autonomic management.

Policies are often used to specify the required or
desired behavior of a system and its applications. In
autonomic systems, policies have been used as the basis
for the management system to adjust application or
system tuning parameters in order to meet operational
requirements [2, 7], i.e., the policies are used to drive the
feedback needed to change the system’s behavior. When
these policies are violated, the autonomic management
system tries to identify the actions needed to take based
on the policies or, in some cases, based on the past
behavior of the system. That is, the management system
may incorporate some sort of learning in order to enhance
the decisions. The general model of the approach is
illustrated in Figure 1. The autonomic management
system makes adjustments to the system being managed.
Actions taken by the management system and values of

metrics are used by a learning component to determine
the best actions in the future.

Managed
System

Learning
Agent

Autonomic
Management

System

cl
ie

n
ts

p
o

lic
ie

s

A
dj

us
tm

en
ts

 to
 S

ys
te

m

P
os

si
bl

e
 A

ct
io

n
s

Figure 1. Feedback Loops for Autonomic Manager with Learning Agent

In this paper, we consider how prediction might be
considered in the context of such feedback control. Our
approach to reinforcement learning entails the
construction of a “state model” based on an active set of
policies. In this case, the “state model” does not directly
correspond to the states of the managed system, but rather
captures the states representing the “health” of the system
as dictated by the active set of policies. In the simplest
form, such a state may indicate that the system is “OK” or
“not OK”, i.e., has or has not violated a policy. Using
this “state model” we look at approaches to prediction –
one based on predicting a future state and one predicting
whether the system will be “unhealthy”, i.e., in any
“unhealthy state”. We describe the approach and report
on results of experiments for a system incorporating
prediction.

II. RELATED WORK

A variety of different approaches to prediction in
network and system management have been explored.
Most of the techniques have dealt with prediction of
faults or prediction of resource usage. A fuzzy logic
controller prediction method was in [9] to predict
computational demand in a utility computing
environment.

The probabilistic framework of a Bayesian network
has been used to do prediction in several research studies

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

[10-12]. The work in [10], for example, tries to predict
network anomalies that typically precede a fault.
Specifically, the authors propose an approach to predict
node failure. The intelligent agent learns the normal
behavior of each measurement variable and combines the
information into a Bayesian network. Work in [12] also
used a Bayesian based algorithm to predict disk failures,
while in [13], a specific analytical method is developed
for fast detection of faults in I/O systems.

Some approaches have looked at data mining and
learning approaches learn and classify failure patterns as
rules from historical data rather than generating
probabilistic models ahead of time [14-16]. Sahoo, et al.
applied association rules to predict failure events in a
350-node IBM cluster [17]. Meta-learning [14, 16]
methods have been investigated to explore the merits of
combining various data mining techniques. The use of
reinforcement learning in autonomic management [3-5, 7]
has also attracted significant interest.

Our work is similar to work that makes use of
probabilistic approaches. The key difference in our work
from other work in the autonomic area is that we
incorporate prediction based on the learned model. Our
work also differs in that our reinforcement learning model
uses “policy” states rather than “system” states.

III. MODEL OF REINFORCEMENT LEARNING

A policy-based management system has been
developed by Bahati [7] where reinforcement learning is
used to determine the best use of a set of active (enabled)
policies to meet different performance goals. The learning
approach is based on the analysis of past experience of
the system and the learning model is used to train the
system to dynamically adapt the choice of actions for
adjusting application and system tuning parameters in
response to policy violations.

Reinforcement learning is a learning paradigm [19-20]
where an agent learns how to best map situations to
actions through trial and error interaction with its
environment. It uses a “reward and punishment”
approach, where, for each action, a numeric reward is
generated by the agent which indicates the desirability of
the agent being in a particular state. The only way to
maximize this reward is to discover which action
generates the most reward in a given state by trying them.
The learning agent must also consider a trade off between
whether it should use its current knowledge to select the
best action to take (exploit) or to try new, untried, actions
(explore) in order to improve its performance.

We assume that policies are used to specify desired
behavior and are of the form of event-triggered,
condition-action rules [7]. An event triggers the
evaluation of a rule of the form “if [conditions] then
[actions]”. An event is generated when some condition
about the state of a system becomes true. The appropriate
action is chosen from the policy specification for that

event. A policy consists of one or more conditions and an
ordered list of actions which can be used by the
management system to make adjustments to system
tuning parameters. Table 1 illustrates examples of
polices; these form the basis for the discussion in this
paper.

In Table 1, p1 illustrates a policy where different
actions can be taken when the Apache response time
(ART) is greater than 2000 ms and the trend of the
response time (ARTT) is increasing. Action a1, for
example, indicates that the limit on the maximum number
of active Apache clients should be increased by 25.

TABLE 1. EXAMPLES OF POLICIES

p1: If Apache’s response time (ART) > 2000ms and the
 trend of the Apache response time (ARTT)) > 0, then
a1: Increase MaxClients by 25, or
a2: Decrease MaxKeepAliveRequests by 30, or
a3: Decrease MaxBandwidth by 128

p2: If Apache’s response time < 250 ms, then
a4: Decrease MaxClients by 25, or
a5: Increase MaxKeepAliveRequests by 30, or
a6: Increase MaxBandwidth by 64

The following introduces a number of key terms and

concepts related to how we model learning; a more
detailed and formal description can be found in [7]. A
policy p is a pair <C, A>, where C is a finite set of
conditions, C = c1, . . . , cm, and A = a1, . . . ak is an
ordered set of actions. Each condition, ci ε C, is defined
by a tuple ci = <metricName, operator, >, where
metricName is the name of a metric measured/monitored
by the management system, operator is a relational
operator, and , is a constant threshold value. The set of
active policies at any time within the management system
is then P = {p1, . . . , pn}.

To model the dynamics of the environment from an
active set of policies, we define a set of states whose
structure is derived from the metrics associated with the
active policies. The set of metrics that must be monitored
to support an active set of policies P = {p1, . . . , pn} is
then M = {m1, . . . , mt}, such that:

 pj = <Cj, Aj> ε P, M = ci ε Cj
 {ci. metricName}.

The set M is the set of all metrics occurring in any of
the active policies. For each metric in this set, there are a
finite number of threshold values to which the metric is
compared; these can be ordered to form “regions”. For
each metric mi ε M, let the set σmi

 = {1, 2, . . ., k} be

the set of thresholds from the conditions associated with
metric mi, such that, i, < j, if i < j. Then, σmi

 induces a

set of metric regions associated with metric mi:

 Rmi
 = {R1

mi
 , R2

mi
 , . . . , Rk+1

mi
}, where R1

mi
= (-∞, 1),

 R2
mi

 = (1,2), etc., and Rk+1
mi

 = (k, ∞).

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

In essence, for any metric, a measured value of the

metric can be mapped uniquely onto one of the regions
(i.e., intervals) as defined by the thresholds of the policy
conditions. For example, if σmi

 = {1, 2}, then there

would be three regions:

R1
mi

 = (-∞, 1), R
2

mi
 = (1, 2), and R3

mi
 = (2, ∞).

We also define a weighting function f over metrics and
their regions where f(Rj

mi
) → R, which assigns a numeric

value to the jth region, Rj
mi

 , such that, f(Rj
mi

) > f(Rk
mi

), if

k < j. An example of such a mapping, which we make
use of in our current implementation, is defined by:

f(Rj
mi

) = 100 - (100/(n - 1)) x (j - 1),

where n is the total number of regions in Rmi
.

This function assigns a numeric value between 100
and 0 for each metric's region in Rmi

 , starting from 100

for the most desirable region and decrementing at equal
intervals towards the opposite end of the spectrum, whose
region is assigned a value of 0. Here we assume that the
smaller the values of f(Rj

mi
) are more desirable, though in

general this is not a necessary requirement. The idea is
that regions of greater “desirability”, i.e., preferred
quality of service, are assigned higher values. Table 2
illustrates the metrics and their regions from the example
policies of Table 1.

TABLE 2. METRIC AND REGION FROM SAMPLE POLICIES

Metric Condition Region f(Rj
mi

)

m1: ART ART < 250.0
ART > 2000.0

R1
m

1
 = (-∞, 250.0)

R2
m

1
 = (250.0, 2000.0)

R3
m

1
 = (2000.0, 250.0)

100
50
0

m2: ARTT ARTT > 0.0 R1
m

2
 = (-∞, 0.0)

R1
m

2
 = (0.0, ∞)

100
0

The key role of these regions is that they partition the

space of values that a metric can take on with respect to
the thresholds in conditions involving that metric. We
use these to define a state within our model. A set of
active policies, P, with metrics M, derives a set of states S
= {si}, where si = <P(si), A(si), M(si), μ)>, where:

 P(si) is the set of policies that were violated when
the system was in state si.

 A(si) is the set of actions associated with the
policies in P(si), plus the γ-action, representing
the “null” or “no-op” action.

 M(si) is the set {(value1, Rr1m1
 , f(R r1m1

)), . . . ,

(valuen, Rrnmn
, f(Rrnmn

))), where valuej is the

observed measurement of metric mj or its average
value when state si is visited multiple times and

Rrjmj
 = (1, 2), where 1 < valuej < 2 , i.e., the

region of mi in which the measured value valuej

falls. Essentially, each state has a unique region
from each metric of M along with a measured
value of that metric, i.e., for a set of policies with
n metrics, each state would have n metrics { m1,
m2, . . . , mn} and for each of those metrics there
would be a single metric region.

 μ defines the “health” of the state, that is, is either
“violation” or “acceptable” depending,
respectively, on whether or not there are any
policies violated when visiting this particular
state.

Transitions are determined by the actions taken by the
management system and labeled by a value determined by
the learning algorithm. A state transition, ti(sp, ap, sc), is a
directed edge corresponding to a transition originating in
state sp and ending at state sc as a result of taking action ap
while in state sp and is labeled by <, Qti

(sp, ap)>, where

 is the frequency (i.e., the number of times) the
transition has occurred and Qti

(sp, ap) is the action-value

estimate from the reinforcement learning algorithm
associated with taking action ap in state sp. In our current
implementation, this value is computed using a one-step
Q-Learning [20] algorithm which has been described
elsewhere [7].

For a set of active policies, P, the state-transition
model can be defined by the graph GP = <S, T>, where S
is a set of states and T is a set of state transitions. The
construction of states and transitions is naturally done at
run-time (i.e., on-line) and not a priori given an active set
of policies (though, this could be done). In practice,
many of the states may never occur, thus keeping the size
of the model manageable.

S0

S1

S2

S3

S4

[a0, 10, 10.05]

[a3, 53, 89.70]

[a3, 11, 13.78]

[a0, 22, 39.71]

[a0, 40, 53.45]

[a1, 21, 23.34]

[a2, 30, 44.45]

[a0, 20, 33.45]

Figure 2. State Graph

Figure 2 shows several states, and for each transition

the action taken, the number of times that action was
taken, and a reward value as determined from the learning
algorithm. Action a0 represents the “null” action, that is,
no action was taken, but the system moved from one state
to another (e.g., S0 to itself). State S4 (colored) is a

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

“violation” state. After each management cycle, the
system updates the state graph information either by
adding a new state or by updating the previous state
information which includes an update of the transition
frequency and reward value of actions.

IV. PREDICTION

In this section, we outline our approaches for
prediction based on the state-transition model introduced
in the previous section. We consider two different
strategies for prediction - prediction of the next “state”
within the state-transition graph and prediction of whether
there might be some policy violation, i.e., move to an
“unhealthy” state. The first strategy is a straightforward
approach given that our model is comprised of states and
transitions with frequencies of occurrences included. The
latter, though, similar, originates from our specific
interest in policy-based autonomic management and that
the primary concern is to avoid policy violations. As a
result, this strategy tries to predict the likelihood of any
policy violation or not.

For our current work, we decided to predict two
management cycles ahead – a single cycle ahead was “too
close” while two cycles ahead seemed to be a good
starting point, though more might be of more interest.
This means that if we are currently at management cycle
t, then we will try to predict whether there will be any
policy violation at management cycle t+2 by predicting
which state is most likely or by predicting the likelihood
of some policy being violated. As indicated, states in the
reinforcement learning model contain frequency
information as well as reward values generated from the
learning algorithm. We further consider prediction using
the frequency values (probability approach) and one
based on just using reward values (reward approach).

A. Probability Approach

The probability is calculated from the action
frequency values (from the labels of each edge in the
state-transition graph). The action frequency value
indicates the number of times that an action has been
taken from a particular state. From the frequency values,
we can compute the probability of transitioning from a
state to an adjacent state and then states two transitions
away. Considering Figure 2 and assuming that the system
is in state S0, the probability of states two transitions
away is presented in Table 3. Multiple values in a single
cell of Table 3 indicate multiple paths, e.g., from S0 to S1
there are two paths and so there are two separate
probability values.

B. Reward Approach

The reward approach only considers the action reward
value (generated from the reinforcement learning
algorithm) for prediction analysis. The action reward
values are summed for all states on paths two transitions

away from the current state. These are shown in Table 3,
again, assuming that state S0 is the current state.

C. Predicting State

When we want to predict the state, we compute the
probabilities of reaching each state two transitions away.
The state with the highest probability is the chosen state
and depending on whether that state is a “violation” state
or not determines whether the prediction indicates a
violation or not. Similarly, in using reward, the sum of
the reward values is used and the state reached with
transitions that have the highest reward total is the state
selected. In the previous example, state S4 is selected
based on using probabilities and state S3 is selected based
on reward values.

TABLE 3. PROBABILITIES AND REWARDS FOR STATES

State
(2 transitions from S0)

Probability Reward

S0 0.03 20.10
S1 0.06

0.14
33.39
77.90

S2 0.08 54.50
S3 0.24

0.07
113.04
58.23

S4 0.10
0.28

63.05
97.90

D. Predicting Likelihood of a Violation

In contrast, predicting the “likelihood” of a violation
involves computing a score for all “violated” states
reachable in two steps from the given state. In this case,
we compute a score for “not violated” and one for
“violation” states. We do this by summing the
probabilities or summing the rewards for states that are
“not violated” and those that are “violated”.

Using the probabilities and rewards from Table 3, the
likelihood scores are shown in Table 4. Here, we see that
using approaches based on the probabilities and on the
reward suggest that there is no expected violation. This is
consistent with the state graph of Figure 2.

TABLE 4. PREDICTION OF FUTURE CONDITIONS

Future
Condition

Likelihood
(Probability)

Likelihood
(Reward)

No Violation 0.72 420.21
Violation 0.28 97.90

V. EXPERIMENTAL RESULTS

But, how accurate are these predictions? In the
following, we outline experiments to evaluate the
prediction approaches.

A. Experimental Environment

The experimental environment consists of networked
workstations. A Linux workstation with a 2.0 GHz

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

processor and 2.0 Gigabytes of memory is used to host an
Apache Web Server, the Knowledge Base and the
MySQL database server. Three network workstations are
used to run the traffic load tool for generating server
requests. The three workstations represent load for gold,
silver and bronze users and their service classes. Linux
Traffic Controller (TC) Tool is used to control the
bandwidth associated with the gold, silver, and bronze
service classes. Thus, given a ratio of bandwidth for each
of the service classes, the bandwidth is shared
accordingly; for our experiments this ratio was 85:10:5.
A tuning parameter MaxBandwidth determines
bandwidth which needs to be assigned to each service
class. Apache Jmeter is used as a traffic load generator.
The Jmeter application runs in each of the workstations
where each has a dynamic load testing plan. All
workstations generate traffic load using the same plan.
The load plan contains dynamic requests which create
situations where the system resource usage is increased at
significant rate.

B. Prediction Accuracy

Experiments were run with the above experimental
environment for 1 and 4 hours. The accuracy of
prediction results is present in Table 5.

TABLE 5. PREDICTION ACCURACY

Approach State
(1 hour)

State
(4 hours)

Violation
(1 hour)

Violation
(4 hours)

Probability 20.00% 3.90% 29.62% 29.66%
Reward 26.19% 7.69% 45.76% 37.03%

Predicting a single state is clearly less successful that
predicting the likelihood of a violation which could
include multiple states. In predicting a single state, the
accuracy dramatically decreases during the four hour run.
This is because the size of the state graph has grown and
so predicting a single state is much harder. There is a
much smaller reduction in accuracy for the four hour
experimental run when predicting the likelihood of a
violation. It is also interesting to note that the use of the
reward values for prediction proved to be more accurate
in both cases than the uses of probabilities.

B. Experiments with Prediction

Given the evaluation of the accuracy of the prediction
approaches, we decided to evaluate the likelihood
approach to prediction in the context of our prototype
web environment and autonomic manager. Our objective
for looking at prediction was to be able to avoid policy
violations, that is, if our predictive mechanism did predict
that a violation was likely, then the autonomic manager
could take action prior to the violation.

Our approach is outlined as follows. If the prediction
mechanism (probability based or reward based) predicts
that a violation was likely to occur, then our prediction
component would look for possible safe states and the
transitions that would take the system to a safe state two

steps away (our consideration of what happens at
management cycle t+2). The state selected is the safe
state with the highest value as per the prediction
computation. The algorithm determines the two actions
on the transitions to that safe state from the current state.
These are then passed to the autonomic manager for
execution.

If no safe state is available, then there are two
possibilities – do nothing, i.e., let the autonomic manager
rely strictly on its reinforcement learning algorithm to
select an action, or have another mechanism for choosing
an action. We have explored the latter [21], but details of
how this works is beyond the scope of this paper.

We compared the use of prediction to that of no
prediction. The “no prediction” method relied on the
autonomic manager and the reinforcement learning
component, which performed very well in adapting the
system in previous experiments [7]. Experiments were
done for each of the 1hr and 4hr testing periods with
traffic load varying during the test periods. Since our aim
is to reduce policy violations, we counted the number of
policy violations that occurred during the testing period;
each experiment was run three times and the average
used.

The results are presented in Table 6. The existing
management system encountered 77 and 280 policy
violations in the 1hr and 4hr time periods, respectively.
When we add prediction, the number of policy violations
is reduced to 60 and 226 in the 1hr and 4hr time periods.

TABLE 6: POLICY VIOLATIONS: WITH AND WITHOUT PREDICTION

Approach Policy
Violations
(1 hour)

Policy
Violations
(4 hours)

Reinforcement Learning
(Existing)

77 280

Prediction: Likelihood
of Violation
(Probability)

62 220

Prediction: Likelihood
of Violation (Reward)

61 226

Using prediction resulted in approximately a 20%

reduction in the number of policy violations encountered
in both the one hour and four hour test periods.

VI. CONCLUSIONS AND FUTURE WORK

Given the results, it is clear that our prediction
technique should only predict whether a policy violation
is likely to occur or not, rather than trying to predict a
state. The results of prediction with the reinforcement
learning resulted in useful feedback to the autonomic
manager with experimental results showing roughly a
20% improvement in the number of violations
encountered. This result is a little surprising in that the
accuracy of the likelihood prediction approach was only
around 38% for the reward approach and 30% for the

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

probability approach (4 hour test period). Would this
continue for a longer test period? If the prediction
accuracy was increased, would the improvement in the
number of violations continue? These are future areas of
study.

There are, of course, a number of other areas for
exploration, the obvious being to consider this approach
in a different scenario and with more policies. More
immediate work could include looking at some
combination of probability and reward or some
combination of predicting a state and predicting the
likelihood of a violation to see if there might be a useful
alternative evaluation mechanism that could result in
increased prediction accuracy. Other work could look at
prediction more than two cycles ahead to see how
accuracy changes. Finally, it would be useful to develop
a more formal basis for understanding how prediction and
reinforcement learning are dependent on each other and
their use in autonomic management.

REFERENCES

[1] R. Murch, Autonomic Computing. IBM Press., 2004.

[2] J. O. Kephart and W. E. Walsh, “An Artificial Intelligence
Perspective on Autonomic Computing Policies”, IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY’04), 2004, pp. 3–12.

[3] G. Tesauro, “Online Resource Allocation Using De-
compositional Reinforcement Learning”, Association for
the Advancement of Artificial Intelligence (AAAI’05),
2005.

[4] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A
Hybrid Reinforcement Learning Approach to Autonomic
Resource Allocation”, International Conference on
Autonomic Computing (ICAC’06), Dublin, Ireland, June
2006, pp. 65–73.

[5] D. Vengerov and N. Iakovlev, “A Reinforcement
Learning Framework for Dynamic Resource Allocation:
First Results”, International Conference on Autonomic
Computing (ICAC’05), Seattle, WA, USA, January 2005, pp.
339–340.

[6] P. Vienne and J. Sourrouille, “A Middleware for Autonomic
QoS Management based on Learning”, International
Conference on Sofware Engineering and Middleware,
Lisbon, Portugal, September 2005, pp. 1–8.

[7] R. M. Bahati and M. A. Bauer, “Modelling Reinforcement
Learning in Policy-driven Autonomic Management”,
International Journal On Advances in Intelligent Systems,
2008, vol. 1, no. 1, pp. 54-79.

[8] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Adaptation
Stratergies in Policy-Driven Autonomic Management”,
International Conference on Autonomic and Autonomous
Systems (ICAS’07), Athens, Greece, July 2007, pp. 16-21.

[9] A. Andrzejak S. Graupner and S. Plantikow. “Predicting
Resource Demand in Dynamic Utility Computing

Environments”, International Conference on Autonomic
and Autonomous Systems (ICAS), 2006, pp. 6-6.

[10] C. Hood and C. Ji. “Intelligent Agents for Proactive
Network Fault Detection”, IEEE Internet Computing, 1998,
Vol.2, 65-72.

[11] J. Ding and X. Li and N, Jiang and Kramer, B.J. and
Davoli, “Prediction Strategies for Proactive Management in
Dynamic Distributed Systems”, International Conference
on Digital Telecommunications. 2006, pp. 74-79.

[12] G. Hamerly and C. Elkan, “Bayesian Approaches to Failure
Prediction for Disk Drives”, Proceedings of International
Conference on Machine Learning (ICML), 2001, pp. 202-
209.

[13] K. Shen, M. Zhong, C. Li., “I/O System Performance
Debugging Using Model-driven Anomaly
Characterization”, 4th USENIX Conference on File and
Storage Technologies, 2005, pp. 309-322.

[14] P. Gujrati and Y. Li and Z. Lan and R. Thakur and J.
White, “A Meta-learning Failure Predictor for Bluegene/L
Systems”, Proceedings of International Conference on
Parallel Processing (ICPP), 2007, pp. 40-40.

[15] Y. Liang and Y. Zhang and A. Sivasubramanium and R.
Sahoo, “BlueGene/L Failure Analysis and Prediction
Models”, Proceedings of Dependable Systems and
Networks (DSN), 2006, pp. 425-434.

[16] J. Gu and Z. Zheng and Z. Lan and J. White and E. Hocks
and B. Park, “Dynamic Meta-Learning for Failure
Prediction in Large-Scale Systems: A Case Study”,
Proceedings of International Conference Parallel
Processing (ICPP), 2008, pp. 157-164.

[17] R.K. Sahoo and A.J. Oliner et al., “Critical event prediction
for proactive management in large-scale computer
clusters”, Proceedings of Knowledge Discovery and Data
Mining (KDD), 2003, pp. 426-435.

[18] G. A. Hoffmann, F. Salfner and M. Malek. Advanced
Failure Prediction in Complex Software Systems, Research
Report, No. 172, Department of Computer Science,
Humboldt University Berlin, 2004.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: an
Introduction. MIT Press, 1998.

[20] L. P. Kaelbing, M. L. Littman, and A. W. Moore, “Re-
inforcement Learning: A Survey”, Journal of Artificial
Intelligence Research, April 1996, pp. 237–285.

[21] R. A. Khandekar. Policy-Based Proactive System
Management: Predicting Faults in Advance. MSc.
Thesis, Department of Computer Science, The University
of Western Ontario, 2010.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

