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Abstract—Software systems used in the industry are often
large and complex. Even with an extensive validation phase, it
is impossible to ensure that a software system is fault-free and
will remain so all along its evolution. When a failure happens
in operation, the time to solve the fault should be minimized.
The major challenge in this realm is the localization of a fault
in one of the constituent components of the overall system. We
strive at simplifying the localization of the fault that led to a
failure by adapting existing techniques to the online context
in such a way that allows the system to be aware of its own
internal faults and react to it. This article first proposes to
apply the Spectrum-based Fault Localization (SFL) method
for online fault localization and health monitoring. Several
implementation approaches are presented with a performance
that depends on the architecture and the framework used. Eval-
uation is done through simulation of online failure scenarios,
and through implementation in a demonstration surveillance
system. The results of the studies performed confirm that
applying SFL online, using monitoring, can successfully provide
health information and locate problematic components, so that
a software failure can be addressed adequately and timely.

Keywords-Fault localization; diagnosis; self-awareness; au-
tonomous system; monitoring; component-based system.

I. INTRODUCTION

It is generally accepted that all but the most trivial soft-
ware systems will inevitably contain residual defects. Large
and complex software systems, such as systems of systems,
will face these problems. Nowadays, the high reliability,
availability, and flexibility imposed on many systems require
support for online reconfiguration and join/leave of external
components (a coupled and cohesive part of a system).
This further increases the chances of unexpected behavior
during execution, as they are hard to take into account in
the validation phase. As such problems cannot be avoided,
the system should be prepared to handle them as quickly
as possible. Typically, after a failure (a deviation from the
expected behavior) has been detected the following steps are
taken: diagnosis, bug fix design, re-validation, and update.
To reduce the time of this process, we focus here on

automating the diagnosis step, which very few previous
works in adaptive systems have tried to automate. This step
focuses on finding the location of the fault, i.e., the cause
of one or more failures in the system.

So far automated diagnosis techniques, also called fault
localization, have been applied solely offline, during the test-
ing phase. In this article, we detail approaches to apply fault
localization in an online context, i.e., when the system is in
operation. One of the obstacles is that typical active testing
used offline cannot be applied online, because of interference
with the normal operations. So continuous validation must
come from observations provided by monitors, also referred
to as passive testing. While there exist other approaches
to fault localization [1], [2], [3], SFL is one of the most
light-weight fault localization techniques available to be used
for the provision of health information and for identifying
problematic components in software systems.

In this paper, we make the following three contributions.
(1) We demonstrate how SFL can be applied to online fault
localization by introducing three main adaptations to the
original technique. (2) We describe two different approaches
for the implementation of online fault localization according
to the characteristics of the software system. (3) We assess
the performance of our proposed techniques in simulations
as well as in a real industrial case study.

The original SFL technique is described in Section II.
Section III presents the modeling of the problem. Our
proposal of online fault localization is presented in Sec-
tion IV. Section V summarizes the main approaches we
have used to implement fault localization on actual software
systems. Section VI evaluates the technique on a case study.
Finally, Section VII discusses related work, and Section VIII
concludes the article.

II. SPECTRUM-BASED FAULT LOCALIZATION

The objective of fault localization is to pinpoint the
precise locations of faults in a system. Before delving into
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C Program: Character Counter t1 t2 t3 t4 t5 t6 SC
function count(char *s) {
int let, dig, other, i; 0 0 0 0 0 0 0

c0 let = dig = other = i = 0; 1 1 1 1 1 1 0.87
c1 while (c = s[i++]) { 1 1 1 1 1 1 0.87
c2 if(’A’<=c && ’Z’>=c) 1 1 1 1 0 1 0.93
c3 let += 2; 1 1 1 1 0 0 1.0
c4 else if(’a’<=c && ’z’>=c) 1 1 1 1 0 1 0.93
c5 let += 1; 1 1 0 0 0 0 0.71
c6 else if(’0’<=c && ’9’>=c) 1 1 1 1 0 1 0.93
c7 dig += 1; 0 1 0 1 0 0 0.71
c8 else if(isprint(c)) 1 0 1 0 0 1 0.47
c9 other += 1;} 1 0 1 0 0 1 0.47
c10 printf("%d %d %d\n", 1 1 1 1 1 1 0.87

let, dig, other);}
Test case outcomes 1 1 1 1 0 0

Table I
EXAMPLE PROGRAM, SPECTRUM, AND OUTPUT IN SFL.

the usage of the SFL approach for online fault localization,
and the provision of health information, let us introduce SFL
in its offline version.

The following data are usually used as inputs in SFL
approaches:

• A finite set C = {c1, c2, . . . , cj , . . . , cM} of M compo-
nents (e.g., source code statements, functions, classes)
which are potentially faulty. We will denote the number
of faulty components in the system as Mf .

• A finite set T = {t1, t2, . . . , ti, . . . , tN}
of N given tests with binary outcomes
O = (o1, o2, . . . , oi, . . . , oN ), where oi = 1 if
test ti failed, and oi = 0 otherwise.

• An N×M coverage matrix, A = [aij ], where aij = 1 if
test ti involves (covers) component cj , and 0 otherwise.
Each row ai of the matrix is called a spectrum.

Table I shows an example of SFL applied on a small
program with a component granularity at the statement level.
This program aims at counting different types of characters.
The component c3 contains a fault, mishandling uppercase
characters. 6 tests are executed against this implementation.
The columns t1 to t6 present the coverage spectrum and
the test outcomes when executing each of the tests. The last
column shows the similarity coefficients, a value computed
by the SFL, which we will describe later.

The output of fault localization is a diagnosis, which
is a ranking of the components ordered according to their
assumed likelihood to contain a fault.

In program debugging, the granularity of a component
is often very small, typically at the statement level, since
SFL benefits from variations in program control flow (i.e.,
different branches of a if are taken). However, in an
online context, a larger grain size for components is more
appropriate. This still permits to monitor a system and to
take the appropriate actions in case of degradation, while
it reduces the performance overhead, and represents a more
realistic component granularity for large systems. In the later

study, we selected a granularity at the level of the source
code functions.

A. Statistical Spectrum-Based Fault Localization

Statistical SFL is a well-known approach originating in
software engineering [4], [5], [6]. Fault likelihood lj (and
thus assumed health) is quantified in terms of similarity
coefficients. Intuitively, the goal is to identify the component
whose line of test coverage is most similar to the test
outcomes. Similarity coefficients measure the statistical sim-
ilarity between component cj’s test coverage (a1j , . . . , aNj)
and the observed test outcomes, (o1, . . . , oN ). It is computed
by four values npq(j) counting the number of times aij
and oi form the combinations (0, 0), (0, 1), (1, 0), (1, 1),
respectively, i.e.,

npq(j) = |{i : aij = p ∧ oi = q}| p, q ∈ {0, 1} (1)

For instance, n10(j) and n11(j) are the number of tests
in which component cj is executed, and which passed or
failed, respectively. For each component, the four counters
sum up to the number of tests N . There are several different
known similarity coefficients which are efficient. For exam-
ple, Tarantula [5], and Ochiai [4] are both very common
similarity coefficients. We use the latter one, given by

Ochiai: SC = n11(j)√
(n11(j)+n01(j))·(n11(j)+n10(j))

(2)

Ordering the components by their similarity coefficients
results in the ranking of the diagnosis algorithm.

In Table I, the similarity coefficient for each component
is indicated. As c3 was the part most used when a test failed
and less used when a test passed, its similarity coefficient
is the highest. The SFL will therefore rank c3 as the most
likely location of the fault, which is correct.

A by-product of statistical SFL is the component health.
The health of a given component can be simply approx-
imated by h = 1 − SC, where SC is the similarity
coefficient. This permits the system, or system of systems,
to also be self-adapting to the failures. Components which
have access to redundant information can adapt the weight
of each input depending on the health of the components
that provide it. For example, in the maritime safety and
security context, when a radar starts behaving incorrectly, the
situation awareness component can reduce automatically the
importance of the data from this radar in its computations.

Despite their lower diagnostic accuracy [7], similar-
ity coefficients have a ultra-low computational complexity
(compared with probabilistic diagnosis approaches, such as
Bayesian reasoning [5]), which is ideal for online diagnosis.
Another advantage is the fact that statistical SFL is incre-
mental. Only the counters npq must be kept per component,
so there is no need to compile a (possibly huge) test coverage
matrix. Finally, unlike other approaches, statistical SFL is
robust with respect to uncertainties in the test outcomes.
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While all techniques tolerate false negatives (i.e., a test
involving a faulty component and not returning a failure),
statistical approaches are more robust with respect to false
positives (i.e., a test reports a failure although the system
actually behaved correctly), which is essential in online
monitoring as the oracles are often less sophisticated than
in offline testing.

B. Diagnosis Effort
In order to compare different diagnosis approaches, there

is a need to measure how well a diagnosis performed.
This measure, the diagnostic performance, should represent
how well the diagnosis algorithm can pinpoint the true root
cause of an observed problem. In software fault localization,
this performance is often expressed in terms of a metric
Cd that measures the theoretical effort still needed for a
diagnostician to find all faulty components after reading the
generated diagnosis [7]. Cd is expressed as the position
of the last faulty component in the ranking given by the
fault localization. Cd measures wasted effort, independent
of the number of faulty components Mf in the system,
to enable an unbiased evaluation of the effect of Mf on
Cd. Thus, regardless of Mf , Cd = 0 represents an ideal
diagnosis technique (all Mf faulty components are ranked
at the top, and no effort is wasted for a human to check
healthy components), while Cd = M −Mf represents the
worst diagnosis technique (checking all M − Mf healthy
components before the Mf faulty ones), with M the total
number of components. For example, consider a diagnosis
algorithm that returned the ranking 〈c12, c5, c6, . . .〉, while c6
contains the actual fault. This diagnosis leads the developer
to inspecting c12 and c5 first. As both components are
healthy, Cd is increased by 2, and the next component to
be inspected is c6. As it is faulty, no more effort is wasted
and Cd = 2. To ease comparison between systems, a relative
wasted effort is often used: Cd

M−Mf
. A perfect diagnosis gives

therefore a relative effort of 0, while the worse possible one
gives an effort of 1, and an algorithm picking randomly a
component gives on average a relative effort of 0.5.

III. SIMULATION OF A FAULTY SYSTEM

For initial illustration and evaluation of online SFL we
use synthetic system simulations next to an actual case
study. The main advantage of the simulations is that they
can be executed quickly (e.g., for our case study system
we can simulate one hour of operation in just a few
seconds). They allow to vary many properties of a base
system, in order to generalize the findings according to
many different (synthetic) system configurations, and they
also avoid implementation details which could cause noise
in the observations (e.g., test outcomes with false positives).

A. System Model
The simulations use system models with different topolo-

gies all based on the surveillance system used as case study,

which is presented in Section VI. The simulation of a system
generates outputs similar to the ones given by the actual
SFL algorithm, i.e., a ranking of the components according
to their assumed health over the whole period of execution
of the simulation. The simulator and example models are
available for download [8].

Figure 1. Example topological layer with 7 functional components and 3
monitors.

Fig. 1 shows an example of a system model, with 7
functional components and 3 monitors (A, B, and C). As
we will see in Section IV, monitors are placed in order to
replace test cases in an online context. Component 2 is set
to be faulty, with a fault happening 60% of the time it is
used. The model represents a typical data-flow system where
component 1 receives the inputs and passes them on to the
other components. More information about the simulation
setup and a description of the type of model that is used in
the simulator can be found in [9].

B. Simulated System Generation

One of the most difficult parts of simulation is to obtain
models of systems which are representative of the reality.
If a model is generated fully randomly with respect to
every possible parameter, there is little chance that it cor-
responds to a potential real system. That is because only
some topologies, order of execution, etc. are reasonable for
a software system. Therefore, as basis for creating many
simulations, we used the topology of a known surveillance
system. It comprises 63 components for the functionality.
For each component, a configuration was generated with that
component being the faulty one. For each fault location, 10
different system configurations were generated by randomly
placing 15 monitors, and producing a set of 20 execution
paths (with random frequencies between 0.2 Hz and 50 Hz).
Therefore, each technique can be evaluated on 630 system
configurations. Results are presented in the next section.

IV. ONLINE FAULT LOCALIZATION

Applying SFL online brings up three issues: (1) test cases
would disrupt the normal operation of the system (to be
discussed in Section IV-A, (2) the range of a coverage
spectrum (to be discussed in Section IV-B), (3) the adequacy
of the diagnosis with the current system behavior (to be
discussed in Section IV-C). In an offline context, tests
are run separately, so the start and end of a test and the
coverage spectrum are clear, as well as associated inputs
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and outputs. However, in the case of continuous diagnosis
these boundaries disappear, or, at least, become blurred. In
this section, we present solutions for adapting SFL to an
online context.

A. Obtaining Test Outcomes Online

In order to bring fault localization online, the usage of
test cases must be reevaluated. Test cases are active, as
they provides their own inputs to the system. If done during
operation, such input can interfere with the usual behavior
of the system, and can cause a large performance overhead.
Therefore, in the online context, monitoring is more fitting.
Monitoring is well-understood, easy to apply, and event-
based, due to its passive nature, e.g., triggered by the arrival
of new data, or a timer interrupt. A monitor is a specific
component in the system that observes and assesses the
correctness of the functionality without interfering through
test inputs.

A monitor observes data or behavior at specific loca-
tions and decides based on built-in oracle logic whether
an observation is expected (pass) or unexpected (fail),
for example through checking the range of a variable,
consistency between different data, or through comparison
with a state model. The monitor outcomes replace the test
outcome. Because SFL requires to know when the system
is deemed behaving both correctly and incorrectly, it is of
prime importance when writing a monitor that whenever a
fail could be sent, it sends a pass if no failure is detected.

B. Spectrum Sampling

In many cases, interactions in a live system are not clearly
separable by time or space boundaries (such as a complete
test transaction in testing). Input stimuli are continuously
arriving and the system responds accordingly changing its
internal state and/or producing some output. For example,
in our case study (cf Section VI), input messages arrive at
any time, and sometimes simultaneously in separate threads.
Previous inputs influence the behavior of a component either
explicitly such as in a database, or implicitly by affecting
its internal state. When applying SFL offline, the coverage
spectrum is recorded since the system was started for a test
case. In an online context, after a short period of operation,
the coverage matrix will contain only 1’s: “everything cov-
ered”. Although this approach would guarantee a theoretical
strong causal relationship between fault execution and failure
observation (i.e., if a failure is observed, the spectrum will
contain the fault information), a solid 1’s spectrum does not
provide any diagnostic information for the SFL, because it
infers the diagnosis from differences of the various spectra
in the coverage matrix A and the outcome O. The curve
named time inf of Fig. 2 shows the result of never resetting
the spectrum. The average diagnostic cost is approximately
0.5 all the time. Guessing the fault locations randomly would
yield a similar performance.
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Figure 2. Average diagnostic cost along the time of observation for various
observation policies, with simulated systems having one fault.

The coverage of components represented as binary values
in the spectrum must be reset regularly, in order to provide
a meaningful diagnosis. We propose two different solutions,
which are adapted to different development contexts, that is,
a transactional approach, and a time frame approach.

1) Transactional: A monitor validates the correctness of
a specific component transaction in the system, correspond-
ing to particular interactive functionality. The provision of
an outcome through the monitor correlates to the end of
this transaction. The transactional policy assigns a separate
spectrum to every monitor. Every monitor is also associated
to a scope, which represents which components might be
involved in the monitored interaction1. Each time a com-
ponent is involved, the current spectrum of every monitor
whose scope contains that component is updated. When a
monitor generates an outcome, its associated spectrum is
used as a row for the matrix A and is then completely reset
to zero.

The list of the components in the scope associated to
each monitor is provided before the start of the system (and
is updated after each modification). It is either manually
created by the user (the developer of the monitor, most
likely), or it could be determined by code or configuration
analysis. Fig. 2 shows with the curve transaction that this
solution is the most effective one, with a low average
diagnostic cost throughout the execution of the systems.
The curve tends towards an asymptote close from 0.2. This
asymptote corresponds to the average diagnostic cost that
can be achieved by the SFL algorithm with all possible
spectra for the specific set of systems in the simulation.

However, if a fault modifies how components interact
(i.e., the control flow is modified), the difference between
the expected behavior and the implementation could lead
to an inaccurate scope. In such a case, this policy would

1Each execution of the interaction can be considered a transaction, hence
the name of the policy.
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cause a faulty component to be omitted from every spectrum
associated with a fail outcome. The quality of the diagnosis
would be adversely affected. In addition, pre-analysis of the
system for every monitor can be time consuming, and needs
to be done every time the system is modified. It might be
difficult to perform if external components (from different
companies) are used. In order to avoid this analysis we
investigate a technique requiring less information about the
system, i.e., the time frame technique.

2) Time Frame: The time frame policy uses expiration of
time as transaction boundary to establish causality between
components covered and monitor outcome. Over a given
time period, the component activity is recorded into a global
“current spectrum”. When the time expires, the bits of the
involved components are reset and the recording of a new
current spectrum is started. Every monitor outcome during
this period, is associated with the current spectrum.

Time frame-based sampling avoids spectra with too many
1’s if the time window is properly adjusted to the working
speed of the system. To avoid using a period which could
hide a specific fault our approach uses a random frame
length. After expiration of a time frame, the length of
the next frame is determined randomly within reasonable
bounds. An exponential distribution is used, in order to have
a broad set of period sizes. An average period must be
selected according to the system under observation, but it
can be relatively roughly estimated to the average processing
time of a typical transaction. In Fig. 2 it can be seen
how a fixed time period leads a limited accuracy of the
fault localization, with the curve time 10s. The curves time
rnd 1s and time rnd 100s, corresponding respectively to a
randomized time frame with an average of 1 s and 100 s,
both provide on average a low diagnostic cost.

We recommend that the observation policy should be
selected according to the system context: if it is possible to
gather precise information on which interaction is observed
by a monitor, then the transactional policy should be applied.
Otherwise the randomized time frame policy should be
implemented, with just enough validation to ensure the
average period is adapted to the system.

C. Spectrum Matrix Size

When using SFL offline, the size of the spectrum matrix
and the test outcome vector are finite and, in practice,
relatively small, which is not the case online. For example, in
our case study, approximately 100,000 monitor outcomes are
generated for a single hour of observation. This could even-
tually lead to excessive storage requirements and processing
overheads. This potential size problem is addressed through
application of statistical SFL, on which our approach relies.
It is incremental, so that accumulating counters can be used.

However, another issue is the timeliness of a spectrum, for
example “is a week-old observation relevant for the current
state of the system?” A fault may appear long time after

the system was started (e.g., memory leakage, unexpected
combination of inputs that affect the internal state of the
system, an unnoticed third-party component update). Old
spectra might mislead the fault localization. The detection
of a new failure should always lead to the same diagnosis,
independent of how long the system has been running.

Note however that the problem is not symmetric, when
conversely, a fault is fixed, or the failures are not observed
anymore. If the fault is fixed, it is easy to reset the matrix
at the same time to avoid this “aging effect”. If the failures
stop appearing without the fault having been fixed, it is better
to still report the component as faulty for some sufficiently
long time to acknowledge the problem and deal with it.
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Figure 3. Estimated health with an infinite window.

Fig. 3 shows the health estimated by the SFL algorithm
for a faulty component yielding a failure at different times,
when all spectra are kept. The later the failure surfaces, the
slower is the convergence of health. From the point of view
of the system maintainer, when a given failure happens, the
algorithm output should be identical independently from the
time system has been running previously.

To overcome this problem, we defined the sliding win-
dow policy. Spectra that are older than a given age are
discarded. In practice, as the SFL counters are accumulated,
we approximate the window by decomposing it into a fixed
number of small periods. An array of counters allows to
keep track of the SFL counters for each period. When the
current period is over, the oldest set of counters is discarded
and replaced by a new set for the next coming period. The
global counters are replaced by an addition of the counters
for each available period. In our implementation we used 32
sub-periods, which appeared to be of sufficient precision.

The ideal window size (leading to stable health values)
depends on the frequency of the monitors generating ob-
servations and the frequency of failures being detected. In
our experiments, we observed that short sliding windows
yield a relatively high diagnostic cost and unstable output
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Figure 4. Average diagnostic cost on simulated systems with a sliding
window policy of length of 4 s (component fails in the period 128 s –
356 s, dotted lines).

over time, because they are too small to contain enough
test outcomes for adequate diagnosis. When the size of the
window is extended, it reaches a point where the diagnostic
performance does not improve anymore. Increasing further
the length solely leads to a bigger latency to react to
the failure disappearance. The size of the window after
which the diagnosis presents no more noise depends on the
frequency at which the failures are detected. We observed
that the minimum efficient window size depends on the
amount of fail outcomes that are captured. The amount
of pass outcomes is usually far superior, so it is not a
bottleneck. We observed that if a window is long enough
to contain at least approximately 10 fail outcomes, it is
sufficient to keep a good quality diagnosis.

Therefore, we recommend selecting a size of the window
which is sufficiently long to receive many monitor outcomes.
The main restriction on the maximum length is to ensure a
fairly fast reaction in terms of health. The window size can
be set as the minimum duration for which a single failure
occurrence should be seen when looking at the diagnosis.

In order to observe the effect of applying the sliding
window policy, we simulate a system where a new failure
is seen, lasts for 228 s, and disappears. Fig. 4 shows
the average diagnostic cost when a window size of 4 s
is applied. Approximately 4 seconds after the first failure
appears the diagnostic cost reaches its minimum. Similarly,
the diagnostic reacts within seconds to the disappearance of
the failures. As the failure frequency is high enough that
a window contains several fail observation outcomes, the
diagnostic variance is relatively low. Increasing the window
size would stabilize even further the diagnostic over the
period that the failure happens.

D. Self-Adaptation to Faults

By localizing properly and precisely the faults, a system
has two main ways to react in order to improve its behavior.
Firstly, it can attempt to fix the failure origin by applying
an automated fix such as described in [10]. Such automated

fixes rely usually on a set of generic fixes. Each of the
generic fix can be apply sequentially after each other, on
the each of the most suspicious fault location provided by
the online SFL. The search for a fix ends when the online
SFL detects that the health of the system goes back to
an acceptable level (or when all the fixes have been tried
unsuccessfully).

A second way to adapt to a fault, orthogonal to the first
one, is to take into account the estimated health of the
components into the functional behavior. As seen previously,
SFL computes for each component a similarity coefficient,
which can be converted into an estimated health value
approximating how likely the component provides a correct
output. The confidence of a data is the product of the health
of each component which was involved in generating it. In
dependable systems, it is usual to obtain data from multiple
independent sources and/or process the data via redundant
paths. Instead of relying equally on all the redundant data,
components which receive data from multiple sources can
weight the data according to their confidence value. There-
for, the system adapts automatically to faults by avoiding to
rely on the incorrect data.

V. IMPLEMENTATION OF ONLINE FAULT LOCALIZATION

There are many ways to implement the proposed tech-
niques. We outline here two different implementation ap-
proaches that we have carried out successfully. The first
approach is centralized, while the second one is metadata-
based.

A. Centralized Approach

Figure 5. Architecture of the case study system, which is based on the
centralized approach.

A first implementation approach, which we have used in
our Atlas framework [11], relies on a centralized spectrum
recording. Its architecture can be broken down into five parts.
An example system using such an approach is displayed in
Fig. 5. For each architectural part, we will refer to this exam-
ple. The coverage manager component takes care of keeping
the coverage spectrum of the system. In the example, this
component is represented by the box of the same name. The
spectrum is reset periodically according to the randomized
time frame policy as described previously. By request from
the coverage instrumentation part (discussed later), it sets
a position in the spectrum to indicate a specific component
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has been covered. When a monitor sends a new observation,
the coverage manager receives this observation, attaches the
current spectrum, and forwards it to the SFL component.

The SFL component (which is represented by the SFL
box in the example) receives every monitor observation and
adds it to the matrix according to the sliding window policy.
In practice, a whole matrix is not needed, only a set of
accumulators, which permits a fast processing. Running at
a slower frequency, the similarity coefficient and ranking of
the faulty components is computed. This might require a
noticeable amount of processing power, but it can be done
independently from the rest of the system, even offloaded to
separate hardware.

Every functional component of the system is instrumented
to report whenever one of its methods is called. In the
example, every component part of the core functionality is
instrumented. We use Aspect Orientation [12] and Java self-
reflection to apply the same code to all the components. This
allows to dynamically instrument any component, even when
provided by a third party or added a posteriori. However,
it brings a high overhead to each method call. A static
approach, such as found in many code profilers, would likely
be more efficient.

Finally, the behavior of the system is validated by a
set of monitors, positioned at various places between or
around the normal components. Monitors are represented as
dash boxes in the example. Every monitor observation, both
fails and passes, is transmitted to the coverage manager.
A monitor can be replacing what would traditionally be a
warning or error check, or can be more complex piece of
code which validates the outputs of a component compared
to the previously received input (based for instance on a
state machine). Watchdogs, which detect the loss of service
provided by a component can also be implemented as
monitors but care should be taken to report in case of failure
not the actual spectrum, but the spectrum that would be
expected (so that SFL can point towards the non-responding
part of the system).

Last but not least, the visualization component receives
the measurements from the SFL component and displays to
the user a graph of the health of the components (approxi-
mated by their similarity coefficient) over time.

B. Metadata-Based Approach

The centralized approach is easy to implement and ef-
ficient on systems where all components can access the
coverage manager with a low latency and where communi-
cations have a low overhead. In systems where components
are running on physically separate nodes such as systems-
of-systems, or systems which are message-based, it might be
more efficient to use a different approach, based on meta-
data. All data transmitted between components is associated
to metadata that contains a coverage spectrum indicating all
the components used to generate this data. Every time an

output is generated, its metadata must be set, based on the
metadata of the inputs. Note that computing the spectrum
might be difficult in some cases where many inputs are
used. There is still a central component for the coverage,
but it is only accessed to request a position in the spectrum
when a component initializes. Monitors work similarly to the
previous implementation approach except that the spectrum
associated to an observation comes from the metadata of the
output which is validated. This observation can then be sent
directly to the SFL component.

To handle dynamic system architectures, where compo-
nents can be added and removed online, the coverage spec-
trum needs to have positions updated when there is a change.
We treat this requirement by having the coverage manager
assign positions to new components. When a component
is removed the positions which were assigned to it can
be reused, once a certain delay corresponding to the time
window length has passed.

VI. CASE STUDY

All techniques for realizing online fault localization with
SFL have been introduced. Synthetic system simulations
were used to compare different techniques to each other
on a large set of systems. In the following, we evaluate
our contributions on a real system. The main goal is to
validate the techniques on practical ground, and verify that
the simulated systems behave similarly to the actual ones.

The surveillance system that we use as case receives
information broadcasts from ships, called AIS messages [13],
and it processes them in order to form a situational picture of
a maritime area. The system is made of Atlas components in
Java. In total it is comprised of 63 methods (the granularity
of the SFL) for the core functionality with an average of 10
lines of Java code each.

The monitoring infrastructure comprises four monitors,
each of them guarding different functional and non-
functional aspects of the system. Coverage of components
is recorded through an ad-hoc Java aspect, as described in
Section V.

A. Injected Faults

We simulate two types of faults, loss of data between
components (for example due to reset of the component,
or unstable connection), and software faults caused by the
functionality. Data loss faults are simulated through inter-
mittent connection drops between two components. Software
faults are introduced through mutations in the original code
(a set of 100 mutants which was created with µJava [14]
and manually verified to affect the behavior of the system).
For each of the mutation faults, the system was executed for
one hour with the recorded input, producing approximately
100,000 monitor outcomes in total. A posteriori, it is then
possible to determine the diagnostic cost at each moment
in time. 12 mutations lead to early system crash (within a
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minute) and are sorted out (in practice, such a bug would be
directly noticed and investigated off-line). 55 mutations have
faults not detected by the monitors, leaving 33 configurations
with detectable faults.

B. Results
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Figure 6. Average diagnostic cost (33 configurations) over the time for
three different observation policies.

The average Cd for transactional and randomized time
frame observation strategies is presented in Fig. 6. The
# systems indicate the number of systems still running at
a given time. It decreases whenever a system crashes or
stop responding. The SFL algorithm uses a sliding window
of 5 minutes, in order to ensure a good quality of the
diagnosis while keeping a relatively fast reaction to any fault
correction.

The diagnostic cost Cd, which starts at 0.5, decreases
until it reaches some relatively constant value after around a
minute. This is similar to the results seen in the simulations
(Fig. 2). After 5 minutes of execution (i.e., the length of
the sliding window), all Cd graphs increase. This is because
some faults lead to failures only at initialization, i.e., they are
located in components only used at that time. When these
first spectra are removed from the matrix (through the sliding
window) the SFL loses information about their location, and
assumes a better health, leading typically to a Cd = 0.5.
Hence, the average Cd increases.

As in the simulation, the transactional observation per-
forms best, with an average Cd = 0.14. The time frame
observation yields its best results with 1 ms (Cd = 0.16). A
shorter or longer period impairs the results, leading to Cd

around 0.3 (not shown in the figure to improve readability).
This suggests that observation periods of 1 ms are optimal
for this system. The randomized time frame observation
performed equally well as the best fixed time period, for
all periods tried between 0.1 ms and 100 ms.

In our case, transactional observation provides the best
results. Nevertheless, this requires that for each monitor
the information about which components are observed is

known and correct. Otherwise, a randomized time frame
allows diagnosis with comparable quality, with only a rough
estimation of the processing time needed.

This case study demonstrates the feasibility of online fault
localization using the SFL technique in a system inspired by
industry. With a diagnostic cost ranging on average below
0.2 just after a minute, it also shows that fault localization
is able to point into the right direction for identifying
problematic components in software systems. Of course,
this works only if residual defects can be detected by the
monitors. The fact that the results are relatively similar to
the results obtained by simulation suggests that the model
employed for the simulation is representative of this real
case.

The case study shows also that a relatively small number
of monitors (compared to the number of components) is
sufficient to locate faults. Although no complete study has
yet be done on the needed number of monitors for a given
system, our first observations are that 1) this can vary
considerably depending on the topology of the system and
the false negative rate of the faults, and 2) for a system
of N components, a large number of fault locations can
be correctly found when the number of monitors is above
log(N).

VII. RELATED WORK

The role of fault diagnosis for realising more adaptive,
intelligent, and self-aware systems has been recognized for
at least a decade (e.g., [15], [16]). Some researchers have
looked at online defect detection [17], [18], but did not
address the specific issues of finding the root causes of
defects, i.e., the diagnosis.

Seltzer and Small [19] and Chen [20] have proposed
system infrastructures for enabling self-monitoring and -
adaptation. However, their approaches focus on system
performance, ignoring all the other software quality issues,
that our approach is able to treat. The biggest drawbacks
of these approaches is that they rely on ad-hoc localization
algorithms, which are based on long observations performed
in test systems rather than in the operational systems, and
that they often require manual adjustments. The usage of
automatic diagnosis in our approach avoids these drawbacks.
Our approach can be applied in a generic way, and relies
only on the latest observations.

In [2], an invariant-based approach is presented and
applied online. However, they use specialized active unit-
testing instead of monitoring, and the system state is
recorded every time a test is executed, which leads to a
very high overhead (execution time multiplied by ∼100).
An additional issue are interferences that active testing can
cause in a running system.

In [21], an approach for self-repair, coined Rainbow,
which allocates the diagnosis process to the individual repair
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handlers is presented. Rainbow defines a set of repair strate-
gies that are triggered when certain architectural invariants
are violated in a running system. Thus, each strategy is
responsible to realize (i.e., diagnose) whether or not its set
of actions will fix the observed problem.

In [22], an approach for architecture-based run-time fault
diagnosis is presented. Conversely to our approach, the
one presented in [22] applies a lightweight model-based
approach to fault diagnosis based on the architecture de-
scription of the system at the granularity level defined by
the architecture (typically, coarse granularity). Similar to
the Rainbow approach, pass/fail information is obtained by
checking whether architectural invariants are violated in a
running system or not.

VIII. CONCLUSIONS AND FUTURE WORK

While fault localization is a fundamental step towards
adaptive and self-managing systems, in order to identify the
part of the system which should be corrected, little work so
far has focused on adopting existing diagnosis approaches
into this domain. In this article, we present an approach for
realizing online spectrum-based fault localization to be used
in self-adaptive systems. We introduce techniques to obtain a
significant spectrum for the SFL algorithm in order to yield
good diagnoses. The usage of a sliding window, provides a
diagnostic outcome which is always relevant to the current
state of the system. Furthermore, we presented two different
implementation approaches which fit either to centralized
architectures or distributed architectures.

Our contributions are validated first by simulation of a
large set of randomly generated systems, and through a case
study with a system inspired by industry. The diagnostic re-
sults on a set of real, mutated systems corroborate the results
of the simulation and confirm that, with our contributions,
SFL and monitoring can be applied successfully to online
fault localization.

Additional challenges could be investigated in future work
in order to improve the quality of online fault localization
in real systems. One of the main topics we will investigate
is the usage of runtime testing to complement the monitors.
When a fault is detected but its location cannot be precisely
pinpointed, a small set of runtime tests could be executed
on the system in order to obtain more information.
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