
Fault Tolerant Approaches in Cloud Computing Infrastructures

Alain Tchana, Laurent Broto, Daniel Hagimont
Institut de Recherche en Informatique de Toulouse (IRIT)

Toulouse, France
Email: alain.tchana@enseeiht.fr, laurent.broto@enseeiht.fr, daniel.hagimont@enseeiht.fr

Abstract—Based on the pay-as-you-go strategy, cloud com-
puting platforms are spreading very rapidly. One of the main
characteristics of cloud computing is the splitting into many
layers. From a technical point of view, most cloud computing
platforms exploit virtualization, which implies that they are
split into 3 layers: hosts, virtual machines and applications.
From an administration point of view, they are split into 2
layers: the cloud provider who manages the hosting center and
the customer who manages his application in the cloud. This
structuring of cloud makes it difficult to implement effective
management policies. This paper focuses on fault tolerance in
cloud computing platforms and more precisely on autonomic
repair in case of faults. It discusses the implications of this
splitting in the implementation of fault tolerance. In most
of current approaches, fault tolerance is exclusively handled
by the provider or the customer, which leads to partial or
inefficient solutions. Solutions, which involve a collaboration
between the provider and the customer are much promising.
We illustrate this discussion with experiments where exclusive
and collaborative fault tolerance solutions are implemented in
an autonomic cloud infrastructure that we prototyped.

Keywords-Cloud Computing, Fault tolerance, Virtualisation.

I. INTRODUCTION

Due to the difficulty to maintain an internal infrastructure
technology and the associated rising costs, companies are
increasingly externalizing their IT services, which are there-
fore managed by specialized companies (called providers).
This trend led to the emergence of the so-called cloud
computing approach. One of the most important objective of
cloud computing is to allow customers to pay only for the
amount of resources they effectively consume. This option,
summarized by the term pay-as-you-go, is permitted in cloud
platforms through the partitioning of their resources.

Virtualization techniques are commonly used in cloud
platforms to implement partitioning of resources. Instead
of having direct access to cloud resources, customers have
access to virtual machines, which represent a fraction of a
physical machine. Then, we identify three layers in such a
cloud infrastructure: the physical resource layer (containing
the overall cloud resources), the virtualization layer (contain-
ing virtual machines) and the applications layer (containing
applications of external companies, which are hosted in the
cloud).

From an administration point of view, we consider two
main roles, which correspond to the administration of the
hosting infrastructure (the provider) and the administration

of the application deployed in the cloud (the customer).
These multiple layers and roles make difficult the man-

agement of cloud platforms and particularly the management
of failures in these infrastructures. Indeed, handling failures
become more complex because those who intervene in the
cloud (customers and provider) have different views (and
access rights) of the different layers of the cloud. Costumers
are limited to only detecting faults of virtual machines
and their applications, while the provider can only manage
real resources (physical machines) and virtual machines
faults. Therefore, possible Fault Tolerance (FT) solutions
vary according to the involved participants and according
to the implementation level.

Although current cloud platforms take in account many
challenges, their implementation usually propose no fault
tolerance solution ([1], [2]) or basic FT solutions ([3]). For
those who implement FT services ([4], [5], [6], [7]), we
retain that their solutions only entrust the responsibility of
fault management either to the customer or to the provider.
No collaboration between the two types of participants is
considered.

The purpose of this paper is to investigate FT policies
in cloud platforms. We identify two types of policies: one,
which is exclusively handled by one participant (customer
or provider) and another, which is a collaborative man-
agement between the provider and customers. This second
type constitutes an interesting tradeoff between exclusive
management by the provider and exclusive management by
the customer. This discussion is illustrated by experiments
and evaluations with an operational prototype of autonomic
cloud platform.

The rest of the paper is organized as follows. Section II
introduces the cloud computing technology (concepts and
architecture) and its challenges (including fault manage-
ment). Section III covers fault detection and management
techniques in the cloud. Section IV discusses related work.
Section V presents experiments and evaluations, which illus-
trate our reflection. Section VI concludes and outlines areas
for future works.

II. CLOUD COMPUTING OVERVIEW

Due to the lack of consensus on the definition of cloud
computing, let us refer to the CISCO [8] one: ”IT resources
and services that are abstracted from the underlying infras-

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

tructure and provided on-demand and at scale in a mul-
titenant environment”. Therefore, cloud computing consists
in: (1) providing on demand services to external customers
with the illusion of infinite resource, (2) and then using the
same resource pool for all customers. This strategy offers
several advantages including:

• Reduced costs for the customer. He no longer needs to
manage his own infrastructure and is billed according
to the use of cloud services.

• Flexibility for the customer. He can increase the ca-
pacity of his infrastructure without major investments,
resources of the cloud are dynamically allocated on
demand.

• Less waste. Internal IT systems managed by customers
are often under-utilized while the cloud infrastructure
is shared between many customers, which increases the
average resource utilization rate. A important example
of this waste is the energy consumption of such infras-
tructures.

Several models of cloud are presented in the literature,
including: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). In
this article, we consider a cloud as an IaaS: a virtualized
infrastructure managed by a provider, in which external
customers deploy and execute their applications. Then, the
parties involved in a cloud platform are grouped into three
categories: cloud providers, cloud customers and end users.
A cloud provider is responsible for the administration of the
cloud resources (hardware and virtual machines(VM)) and
services. He is responsible for managing the accommodation
of the capacity of the cloud. Cloud customers use the
resources provided by the cloud to deploy and execute
their applications. They do not have a global view and
direct access to the cloud environment. They use cloud
resources through VMs, which host their applications and,
which represent a confined portion of physical resource.
End users are using customer applications deployed in the
cloud. Figure 1 summarizes and shows the vertical cloud
architecture and the scope of each cloud participant: the
cloud provider has access to physical resources and VMs;
cloud customers have access to VMs and their applications;
and end users have access to customer applications.

Figure 1. Cloud Computing architecture

III. FAULT TOLERANCE TECHNIQUES IN CLOUD
PLATFORMS

As shown in Figure 1, three layers are identifiable in
a cloud platform: resources, VMs and applications. Each
of them is concerned with failures. Therefore, we identify
three types of failure in a cloud platform: hardware failure,
VM failure and application failure. A FT strategy includes
two distinct phases: detection phase and repair phase. One
of the difficulties to implement FT in a cloud architecture
can be summarize by this question: which cloud participant
(provider or customer) is the best able to implement the two
phases of fault management, depending on its access rights
in the cloud architecture? In other words, is it reasonable
to leave exclusively the responsibility of FT to one cloud
participant knowing that: hardware failures can only be
detected and repaired by the cloud provider; VM failures
can be detected by the two participants but only repaired
by the cloud provider; and application failures can only be
detected by the customer but can be repaired by the two
participants.

We present in this section two visions of FT management
in a cloud platform. The first one consists in giving both the
detection and repair responsibilities to one cloud participant
(exclusively) while the second is to harness the skills of the
two types of participant. According to these two visions, we
present some FT techniques for the three types of failure we
have identified: hardware, VM and application.

A. Exclusive FT Management

We discus about exclusive FT solutions in this section.
1) Application FT: As mentioned above, application fail-

ures are detectable only at the customer level. The failure
detection policy depends on the application. However, the
mechanism used to implement a detection policy is gener-
ally the same. For each application, the customer deploys
in the cloud special software components called sensors,
which monitor the liveness of the application. According
to this monitoring, a sensor may trigger the execution of a
procedure for repairing the application when it is considered
as malfunctioning.

Two methods are possible for repairing a faulting ap-
plication. The first one concerns stateless application (such
as loadbalancers, e.g., HAProxy or MySQL-Proxy used in
our experiments). Repair consists in restarting the faulting
server on the same VM. The second method concerns state-
full servers (e.g., the MySQL database). In this case, the
customer must implement a mechanism for saving the server
state so that it can be restored before the server is restarted.
In the case of a database server for example, this save/restore
mechanism can be implemented by trapping and storing all
modification requests, allowing replay of these requests.

The advantage of this solution is that the customer has
full control over the solution. Then, the application can be
hosted in any cloud platform without assuming that the

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

platform implements any FT solution or that the platform
is dedicated to a particular kind of application. However,
this solution requires that customers have expertise on their
applications so that they can implement application state
save/restore procedures notably, and they must implement
their own monitoring system.

2) VM Fault Tolerance: VM failures can be detected and
repaired by the two cloud participants. We consider here
repair policies that are implemented exclusively by one of
them.

Customers implement VM FT by deploying sensors in
the cloud, which monitor VM state during their lifetime. In
this case, it is not recommended to give to a single sensor
the responsibility of probing one VM because a failure of
the VM hosting this sensor would compromise the repair
mechanism. The repair of the failed VM is organized as
follows: (1) the customer level requests the cloud to free
the failed VM; (2) it allocates a new VM; (3) it deploys
and starts the servers that were running on the failed VM;
and (4) it restores the state of these servers in case of state-
full servers. One disadvantage of this solution is that each
customer must implement his own VM monitoring system,
which leads to complexity and network resource wasting,
while VM monitoring can be factorized and implemented
by the cloud provider.

At the cloud provider level, an exclusive VM FT technique
can be implemented. With a direct access to VM hypervi-
sors, the cloud provider is more likely to implement VM
FT. Firstly, such an implementation decreases the number
of VM sensors (and their associated communication) as they
are integrated in hypervisors. Actually, a single sensor per
physical machine can monitor all the VMs hosted on this
machine. Secondly, through the hypervisor, the provider can
collect more detailed information about VM status. This
information allows him to implement more accurate FT
solutions according to VM status. In contrast, when a VM
failure is detected by the customer, it is more precisely the
VM inaccessibility, which is detected since the customer is
not supposed to be granted access to hypervisor information.
At the cloud level, the provider is able to identify several
types of VM failure. For example, considering the Xen
hypervisor, a VM can be broken when its state is blocked,
pending, or error. The provider can then implement VM
repair so that an appropriate repair method is applied for
each state of failure. Also, the analysis of Xen logs allows
releasing a VM (instead of reallocating a new VM as the
customer level would do) whose state is blocked waiting
for a device. A more agnostic solution for VM FT is to
regularly store VM states using the checkpointing ability
offered by virtualization systems. Thus, the cloud will just
restart a failed VM from its last saved state.

The advantage of provider level solutions resides in the
fact that it factorizes VM FT tasks that would be imple-
mented by the customers. However, being not aware of the

particularities of VM hosted applications, the provider repair
solution may not be efficient in certain cases. For example,
repairing a VM, which hosts MPI processes (used by other
VMs) cannot be done by restoring the VM to its last state.
MPI applications do not support rollbacks, even negligible.
In this case, a collaboration between the provider and the
customer can be the solution.

3) Physical Machine Fault Tolerance: Hardware failures
are more difficult to take into account in the cloud because
they trigger failures at the other levels (VM and application).
We consider repair implemented exclusively at the customer
or provider level.

At the customer level, it is impossible to detect a physical
machine failure. At this level, a physical machine failure is
perceived as multiple VM failures (the VMs running on the
failing machine). The customer level only sees VMs and
even if VM monitoring sensors are deployed in the cloud,
they may not be aware of a hardware failure if they are all
deployed on the same physical machine (sensors deployed
on VMs hosted by the faulting machine). The customer
would need to implement constraints regarding the physical
location of sensors, which is a form of collaboration between
the customer and the cloud provider (we will come back to
this collaboration in the next section).

At cloud provider level, hardware FT is implemented
with a monitoring system composed of sensors deployed
on different physical machines. For repair, the provider will
start on a new machine (or several machines according to
its capacities) the same number of VMs, which were hosted
on the failed machine. In addition, all VM states must be
saved by checkpointing so that VM restoration is possible.
This solution is used in [5] and [9] for example.

B. Collaborative Fault Tolerance Management

Exclusive FT techniques presented in the previous sec-
tions highlight difficulties regarding techniques applied for
certain types of failure. As will be discussed in this section,
these difficulties can be taken into account if a collaborative
management between the cloud provider and customers is
considered.

1) Application Fault Tolerance: In Section III-A1 we
have described an application fault detection without spec-
ifying the impact on other levels of failure (VM and
hardware). If the sensor is deployed on a separate VM
than the application, then a detected failure can have three
origins: application (already treated in Section III-A1), VM
or hardware. In the case of a VM failure, the collaboration
between the application sensor and the VM sensor (possibly
at the customer level) will give more clarification to the
application sensor. If the VM sensor does not detect any
error, then it can conclude that it is an application failure.
Otherwise, it can deduce that it is a VM or a hardware
failure. In this latter case, the customer alone has no way
to know much. A better collaboration with the cloud level

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

would provide confirmation of the failure type.
Concerning the repair of a failed application, a collab-

orative repair may be considered. Indeed, the cloud can
offer regular backups of VM states so that a customer can
subscribe to and invoke the cloud level for the restoration
of a VM from a saved image.

2) VM Fault Tolerance: If the VM fault detection is done
by the customer, we will have the same problem as described
in the previous section. At the customer level, a VM failure
detected by a sensor can be due to a hardware failure (the
machine, which hosts the VM), which is out of scope for
the customer. A VM fault detection at the cloud level allows
getting a more accurate decision.

If the VM fault detection is implemented at the cloud
level, a collaboration with the customer level can provide
a better solution than the checkpoint-based one described
in section III-A2. Concretely, once the fault is detected
by the cloud, it starts a new VM with the same features
(networking, memory, CPU, image) as the failed VM and
then calls the customer to redeploy, restart and synchronize
the new VM. This solution would probably perform better
than the checkpointing one regarding the cost of save/restore
operations.

3) Physical Machine Fault Tolerance: From the point of
view of the customer, the failure of a physical machine is
identical to the VM crashes. When detected by the cloud
provider, such a failure can be resolved collaboratively
during the repair of each VM hosted on the failed machine.
Each VM is restarted with the same characteristics on a new
physical machine and the completion of the repair is asked
to the customer (as seen in the previous section).

C. Synthesis

We have discussed possibilities for implementing FT
(repair) in a cloud environment. In a cloud environment
composed of a hosting center managed by a provider and
applications deployed in this hosting center and managed by
customers, we distinguish:

• FT managed exclusively at the customer level. At this
level, it is possible to detect application and VM faults,
but detecting hardware faults is difficult and it is not
possible to have details about detected VM fault (this
information is only available at the hypervisor level).
Repair can be implemented at this level by restarting
VMs (VM and hardware faults) and redeploying and
restoring applications (all faults). The main drawback
is that each customer must implement the whole FT
policy.

• FT managed exclusively at the provider level. At this
level, application faults cannot be detected, but detailed
information can be given for VM and hardware faults.
Repair can be based on VM checkpointing, which is
independent from applications, but can be quite costly.

• FT managed collaboratively at both levels. Applications
faults must be detected and repaired at the customer
level. VM and hardware faults can be detected at the
provider level (with details). The repair of the VMs
(upon VM and hardware faults) can then be accurately
performed at the provider level, and finally the recovery
of the application that were running on these VMs can
be requested and performed at the customer level. The
recovery (redeployment and restoration) of applications
on VMs can also have a significant cost.

Naturally, collaborative techniques appear to be the best
suited. However, most of the proposed solutions are exclu-
sively implemented in one level, as it is strategically difficult
to split an FT policy between two participants.

IV. RELATED WORK

As we mentioned in the introduction, few works addressed
the issues of FT in cloud environments. Some platforms such
as Eucalyptus [1] or CLEVER [6] provide no solution to take
into account hardware, VM or customer application failures.
CLEVER addresses FT management, but only for its own
components.

OpenNebula [3] offers exclusive VM FT implemented at
the cloud level. It allows the cloud provider to associate
hooks (scripts or programs) with each type of VM failure
(according to hypervisor information). Hardware failures are
not addressed by OpenNebula for two reasons: it provides
no hardware sensors and all VM sensors are located on the
same machine than the VM. So a machine failure cannot be
detected by OpenNebula.

As OpenNebula, the Microsoft Windows Azure plat-
form [5] offers an exclusive FT management at the cloud
level. Windows Azure replicates each VM so that a VM
failure is covered by its replicas. The Azure solution is
limited to web applications developed in the Windows Azure
platform. Moreover, no solution is proposed to repair the
failed VM. In addition, for VMs which are not instantiated
by the Azure development platform, the entire responsibility
of FT management is left to the customer. This is also the
case in the Amazon EC2 [7] cloud platform.

Kaushal [4] proposes an FT solution in the cloud at the
customer level by replicating servers queries, based on the
HA-Proxy load distributor. Other researches such as [10]
and [11] propose a collaborative solutions for specifics ap-
plications (MPI for example). However, they do not consider
the splitting of the cloud between a (VM) provider and its
customers, so their works are only applicable to an SaaS
cloud.

Uesheng Tan [12] describes a replication solution for VM
FT, exclusively managed by the cloud provider. It proposes
to improve efficiency by using passive VM replicas (with
very few resources), which become active when a failure
is detected. A mechanism is introduced to transfer/initialize
the state of VM. This solution is similar to the exclusive FT

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

solution (at the provider level) that we presented previously
and that we evaluate in the next section.

Finally, Wenbing Zhao [13] proposes a FT middleware,
which can be used by a cloud customer to implement soft-
ware FT. Their main purpose is to implement a synchronized
server replication strategy so that a failed server can be
repaired with a consistent state.

V. EVALUATIONS

In these experiments, we evaluate the two visions that we
presented above: exclusive and collaborative FT strategies.
Due to the limited space in this paper, we only present our
evaluation with VM FT. In these evaluations, we detect a
VM failure when the VM does not respond to a ping request
or when the hypervisor indicates an error state.

The evaluation environment is composed as follows. For
the cloud platform, we use a prototype called CloudEngine,
based on an adaptable autonomic management system called
TUNeEngine, which were both implemented in our research
group. Briefly, CloudEngine is similar to the OpenNebula
system, but it is more adaptable and flexible because it is
based on an adaptable system (TUNeEngine). For example,
it allows easy addition of new functionalities, management
policies and offers collaborative API. This prototype allows,
at the cloud level, the deployment of VMs and the definition
of VM level reconfiguration policies (repair in our case), and
at the customer level, the deployment of application servers
and their reconfiguration/repair.

Our prototype is used to allocate VM in the cloud, deploy
and start a J2EE application (RUBIS [14]) as our customer
application. Our J2EE experimental application is composed
of an Apache web server, two Tomcat servlet containers,
a MySQL-Proxy database loadbalancer and two MySQL
database servers. The MySQL stage is our replicated layer
in which failures will be triggered. For the evaluation of our
two FT techniques, we apply a pyramidal RUBIS workload
(upload phase, constant load phase and download phase) in
which we simulate a VM failure during the constant load
phase. The objective of the experiment can be summarized
by this question: what does the FT technique cost in term of
RUBIS performance (throughput). To answer this question,
we ran the same workload without failure in order to have a
reference execution with which the others can be compared.
We observe the request throughput during the benchmark
and the number of untreated requests during repair.

A. Exclusive Fault Tolerance

The exclusive FT technique we evaluate in this experiment
is implemented in the cloud level. The implemented FT
policy starts a checkpointing program on each IaaS node,
which role is to save the status of each VM every 7 seconds.
The choice of the backup frequency should not be too small
nor too large for two reasons: the risk of penalizing the
performance of the VM (as discussed) and the risk of having

a large gap between VM status after and before the failure.
Upon failure, the last checkpoint is used to restore a recent
image of the failed VM.

Figure 2 shows the comparison between the experimental
landmark (red curve) and the experiment with the check-
pointing (green curve) in which no failure was simulated.
These first curves allow us to observe the overhead of VM
checkpointing. We estimate this overhead is about 46% due
to the Xen VM checkpointing implementation. Actually, the
checkpointing implemented by Xen causes the unavailability
of the VM during the checkpoint, which explains this
overhead. Notice however that this unavailability does not
cause request loss since the TCP/IP protocol (on which our
network is based) retransmits a request when communication
fails. Thus, during checkpointing, the downtime of the
VM does not break TCP/IP communications and it only
postpones request handling. It explains the large fluctuations
in the green curve.

Figure 2. Checkpointing cost during VM repair in the IaaS

Figure 3 shows the result of applying our FT method (at
the cloud level) with fault simulation on a MySQL server
VM. Tp represents the failure date while Tr marks the end
of the repair. The repair time in this experiment is about
22 seconds. This time includes the time taken to detect the
failure and also the duration of VM restarting (from its last
saved state).

Notice here that requests are lost when we recover from
the last saved checkpoint. This can be tolerated for a web
application but it would not for more sensitive applications
such as MPI applications.

B. Collaborative Fault Tolerance

The second FT technique we evaluated is a collaborative
one in which VM fault detection and repair operations are
performed (collaboratively) by CloudEngine (the IaaS) and
the customer (via our TUNeEngine autonomic administra-
tion system at the application level). CloudEngine detects
VM failure, restarts the VM from its original image and
finally invokes the customer level TUNeEngine system to

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

Figure 3. Exclusive VM Fault Tolerance Technique

complete the repair. Then, TUNeEngine deploys on the
restarted VM the application that was running on it before
the failure (MySQL in this experiment), configures and starts
the MySQL application. The size of the deployed application
and the reconfiguration and start operations influence the
overall duration of the repair.

Figure 4 shows two curves: the red curve represents the
reference execution (without failure nor FT management)
while the green curve represents the result of our collabora-
tive FT technique. We observe that this repair method, unlike
the previous one, has no impact on RUBIS performance
when no failure is involved. This is shown in Figure 4 areas
(1) and (3). Zone (2) represents the duration of the repair. It
includes: the failure detection (at the cloud level), the VM
deployment and restart, the MySQL server binaries copy and
restart. For these reasons, we measured in this experiment a
repair time of 5 minutes 30 seconds. Notice that the use of a
mirror server, which is usually the case for such applications,
would keep the service available during the repair of the
failed server.

Even if the repair time is much higher with this solution,
it seems best suited as it does not incur any overhead on
execution.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we studied two visions for FT management
in cloud computing platforms: the first one consists in
leaving exclusively the responsibility of FT management
to one cloud participant (cloud customer or provider); the
second one consists in sharing the responsibility between
the two cloud participants. We reviewed all possible fault
situations in the cloud: application level, virtualization level
and hardware level. We proposed for each of them some
solutions involving exclusive or collaborative FT visions.
Given the limited space in this article, we only evaluated
two FT techniques (one exclusive and one collaborative).
However, this evaluation illustrates that sharing FT manage-
ment between the two cloud participants opens interesting

Figure 4. Collaborative VM Fault Tolerance Technique

perspectives.
In the near future, we intend to complete our experiments

with all the techniques described in this paper. Furthermore,
VM FT techniques based on checkpointing can be improved
by new VM checkpointing solutions, which consist in stor-
ing only the difference between successive VM states (rather
than the entire VM state).

REFERENCES

[1] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov “The eucalyptus open-source cloud-
computing system,” in 9th International Symposium on
Cluster Computing and the Grid (CCGRID), vol. 0, pp.
124-131. Washington, DC, USA, 2009.

[2] University. of Chicago, “Nimbus is cloud computing for
science,” http://www.nimbusproject.org/, [retrieved: january,
2012].

[3] OpenNebula, “Opennebula.org: The open source toolkit for
cloud computing,” http://opennebula.org, [retrieved: january,
2012].

[4] Vishonika Kaushal and Vishonika Kaushal, “Autonomic fault
tolerance using haproxy in cloud environment,” International
Journal of Advanced Engeneering Sciences and Technologies,
vol. 7, 2010.

[5] Microsoft, “Windows azure: Microsoft’s cloud services plat-
form,” http://www.microsoft.com/windowsazure/, [retrieved:
january, 2012].

[6] Francesco Tusa, Maurizio Paone, Massimo Villari, and Anto-
nio Puliafito, “Clever: A cloud-enabled virtual environment,”
in IEEE Symposium on Computers and Communications
(ISCC), pp. 477-482. Riccione, Italy, 2010.

[7] Amazon, Inc, Amazon Elastic Compute Cloud (Amazon EC2).
Available: http://aws.amazon.com/ec2/#pricing, [retrieved:
january, 2012].

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

[8] Kapil Bakshi, “Cisco cloud computing - data cen-
ter strategy, architecture, and solutions point of view
white paper for u.s. public sector 1st edition,” 2009,
http://www.cisco.com/web/strategy/docs/gov/
CiscoCloudComputing WP.pdf, [retrieved: january, 2012].

[9] Walters John Paul and Chaudhary Vipin, “A fault-tolerant
strategy for virtualized hpc clusters,” The Journal of Super-
computing, vol. 50, 2009.

[10] Qin Zheng, “Improving mapreduce fault tolerance in the
cloud,” in Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pp. 1-6, 2010.

[11] Magdalena Slawinska, Jaroslaw Slawinski, and Vaidy Sun-
deram, “Unibus: Aspects of heterogeneity and fault tolerance
in cloud computing,” in Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), pp. 1-10, 2010.

[12] Uesheng Tan, Dengliang Luo, and Jingyu Wang, “Cc-vit:
Virtualization intrusion tolerance based on cloud computing,”
in 2nd International Conference on Information Engineering
and Computer Science (ICIECS), pp. 1-6. Wuhan, China,
2010.

[13] Wenbing Zhao, Michael Melliar-Smith, and Louise E. Moser,
“Fault tolerance middleware for cloud computing,” in 3rd In-
ternational Conference on Cloud Computing (CLOUD 2010),
pp. 67-74. Miami, FL, USA, 2010.

[14] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda,
Alan L. Cox, S Elnikety, Romer Gil, Julie Marguerite,
Karthick Rajamani, and Willy Zwaenepoel, “Specification
and implementation of dynamic web site benchmarks,” in 5th
Annual Workshop on Workload Characterization (WWC-5),
pp. 3-13. Austin, Texas, USA, 2002.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

