
Interactive Rendering of Huge 3D Meshes in Cloud Computing

Daeyoung Kim and Haeyoung Lee
Computer Engineering Dept.

Hongik University
Seoul, Korea

dykim99@gmail.com, leeh@hongik.ac.kr

Abstract — This paper presents a new hierarchical
representation of huge 3D meshes for fast and seamless
rendering in cloud computing. Shape-outlines, simplified
meshes, and uniform mesh partitions construct a hierarchy.
Our hierarchy enables on-demand rendering of huge 3D
meshes in cloud computing.

Keywords-cloud computing, 3D meshes, interactive
rendering, hiearchical representation.

I. INTRODUCTION
Rapid advances in 3D scanning technologies now enable

us to create huge and exquisite 3D meshes for medical
imaging and cultural heritage preservation. Nevertheless, it
is hard and even impossible to render huge meshes on
consumer computers and mobile devices due to limited
resources. Various techniques such as mesh compression [1],
[2], simplification [3], [4] and chartification [2] allow the
transfer and display of huge meshes on mobile devices;
however, interactive rendering in real time is hard to
achieve using these methods. Though image-based
rendering [5] has recently been introduced, pre-rendered
images and grid-based sparse meshes cannot provide
detailed views of original meshes. Moreover, these methods
do not allow for the control of file size. Advances in CPU-
related technologies have dramatically decreased CPU
processing times so that I/O time contributes to almost the
entire processing time. Uniformly sized files optimize I/O
processing time and are especially necessary for mobile
computing.

In this paper, we present an interactive rendering method
of a hierarchical data structure for huge meshes for cloud
computing platforms. Moreover, with our method the file
size for each of a series of files for hierarchical data
structures can be uniformly controlled for optimized and
predictable I/O processing time.

The remainder of the paper is organized as follows: the
basics of hierarchical rendering are described in detail in
Section II; uniform mesh partitioning and simplifications
are explained in Section II, parts A and B; our interactive
view modes are listed in Section II, parts C through E; our
conclusions and future work are presented in Section III.

II. HIERARCHICAL 3D MESH RENDERING
New hierarchical representations of huge 3D meshes

allow for fast and seamless rendering of 3D meshes in cloud
computing. The hierarchical display structure for a large 3D

Figure 1. A hierarchical rendering of a huge 3D mesh on a mobile device1.
David has 28,184,526 vertices at 1.1GB. (a) 3D shape-outlines in TP mode;
(b) simplified David of 10,820 vertices; (c) more detailed head of 10,649
vertices; (d) original resolution eye of 5,625 vertices fully rendered.

mesh is composed of several view options: a thumbnail-
preview mode (TP), a coarse-whole-view mode (CWV), a
zoomed-sector-view mode (ZSV), and finally a deep-zoom-
of-the-mesh mode (DZM). Shape-outlines (TP mode),
simplified meshes (CWV, ZSV modes), and the original
mesh partitions (DZM mode) hierarchically represent large
3D meshes. For example, Table I depicts a huge mesh
David with 28,184,526 vertices totaling 1.1 GB which
cannot be loaded and displayed on a mobile device. Using
our interactive rendering method, David can be displayed in
real time on a mobile device with a hierarchical data
structure as illustrated in Fig. 1. First, David is selected from
a 3D shape-outline in TP mode in (a). A selected CWV is
then generated with a simplified mesh of only 10,820
vertices in (b). After selecting the head in (b), a more
detailed mesh of 10,649 vertices is rendered in ZSV mode as
depicted in (c). For a DZM-mode view of the eye, partitions
of the original mesh having 5,625 vertices are loaded and
rendered in (d).

An overview of our interactive 3D mesh rendering for
cloud computing is depicted in Fig. 2. A huge mesh is

This work was supported by Seoul R&DB program (ST100035).
1 A mobile device ODROID-7 with Samsung S5PC 110 Cortex-A8 1Ghz
CPU and 512MB RAM.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

TABLE I. LOADING AND RENDERING TIME ON A MOBILE DEVICE2

 Original Model Our Simplified Model
File Name Vertices Time(s) Vertices Time(s)
feline 49,864 3.48 10,379 0.59
foot 160,226 9.00 8,324 0.56
dragon 399,332 25.69 9,797 0.61
ihigenie 351,750 23.90 9,999 0.62
bddha 541,366 33.99 10,275 0.63
xyzrgb_dragon 3,609,455 N/A 9,589 0.60
lucy 14,027,872 N/A 10,180 0.64
david 28,184,526 N/A 10,820 0.66
Average 19.21 0.61

Uniformly partitioned and simplified meshes provide a hierarchical
representation for huge 3D meshes so that interactive renderings on mobile
devices can be performed with optimized and predictable processing times.

uniformly partitioned based on a user-specified equal
number of vertices for uniform I/O processing time. Then a
3D shape-outline of each uniform partition is extracted and
simplified through its own boundaries. Mesh simplifications
in multi-resolution are then executed by calculating the
representative vertex for a group of vertices in each partition.
The number of partitions can be controlled by the user
allowing the file size of a simplified mesh to be easily
manipulated. This enables the client to transfer and render
hierarchical structures of huge 3D meshes according to the
user’s interaction with the server in cloud computing.

Partitioned mesh files, simplified meshes, and a shape-
outline are generated and stored on a server as a hierarchy
automatically whenever a huge mesh is uploaded. Then a
client can access the hierarchy starting from a shape-outline
as shown in Fig.1. Our work will add interactive mesh
simplifications to provide appropriate simplified meshes
according to a user’s choice of views for server-side
processing in the future.

A. Uniform Mesh Partitioning
The main goal of partitioning a large mesh is to

minimize processing time while maintaining load balance.
The CPU in most systems today have improved radically
resulting in input-output (I/O) processing becoming the
main factor in the overall processing time. Uniform
partitioning is the division of a large mesh into partitions
with an equal number of user-specified vertices. Uniform
partitioning is essential for a 3D mesh in cloud computing,
so as to enable the assignment of standardized times to the
processing of each partition as well as to optimize I/O
processing time. Typically, mesh partitioning has been
implemented by clustering vertices or faces. Clustering has
been accomplished through either space subdivisions [1][7]
or incremental additions [2][6]. The octree method provides
fast hierarchical clustering [1][7]. However, the numbers of
vertices or faces in partitions are varied because the division
is performed not by the numbers of vertices or faces but by
the sizes of the cells. K-means clustering [6] can generate
partially uniform mesh partitions. However, it does not

2 A smart phone LG-SU660 with 1GHz Dual Core CPU and 512MB RAM.

Figure 2. Overview of our interactive 3D mesh rendering in cloud
computing.

provide uniform mesh partitioning and hierarchical clusters.
Also, initial positions of random seeds must be carefully
selected and an elaborate cost function must be designed to
attain quality results. Optimization takes a great deal of time
requiring many repetitions for large 3D meshes [2].

Our algorithm constructs a kd-tree for a mesh. Each cell
in the kd-tree represents a vertex cluster which forms a
single partition of the mesh. For a given mesh, our kd-tree
divides space based on the object median where the objects
are vertices of the mesh. Our kd-tree splits a cell into two
sub-cells each containing half the vertices of the cell.
Instead of cycling the axis from x to y to z-axis for a
perpendicular splitting plane, our kd-tree determines the
axis adaptively according to the longest axis of a bounding
box. Compactness is a quantity for measuring the degree to
which a shape is compact. Given a partition with area w and
perimeter p, we define the compactness c of the partition as
a ratio of its squared perimeter p2 to its areas w [9].

w
pc
p4

2

= (1)

A square figure has better compactness than a long thin
rectangular figure. To avoid long thin shaped partitions, our
algorithm considers compactness when determining an axis
for perpendicular splitting planes to subdivide cells in the
kd-tree. Fig. 3 depicts the steps from level 1 to level 4 of the
kd-tree in a simplified 2D format. The dotted-line is the
bounding box of vertices in a cell. The solid lines are

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

Figure 3. An example of our kd-tree construction in 2D. Our kd-tree is
based on the uniform number of vertices in each cell. An axis to be split is
adaptively determined to lower the compactness of the cell.

determined by, and are perpendicular to, the longer of the
two axes, x and y, of the bounding box and colored red for
two cells in level 1, blue for four cells in level 2, green for
eight cells in level 3, and yellow for sixteen cells in level 4.
The axes for cells at the same level may be chosen
differently depending on the shape of the bounding boxes as
depicted in Fig. 3. Median values are computed to split
vertices in half. Finally, sixteen uniform partitions of the
mesh are created from sixteen clusters of vertices in sixteen
leaf-cells in the kd-tree. To construct a kd-tree of a mesh, a
median value of the vertices in a cell needs to be determined
so as to split a cell into two subcells with equal numbers of
vertices. For an out-of-core mesh which has more data than
the size of the main memory, external sorting needs to be
applied; however, external sorting takes a lot of time.
Therefore, we plan to introduce an improved out-of-core
sorting method to find median values.

In Fig. 4, two previous partitioning methods are
compared with our method for a model foot of 40,058
vertices in (a). Partitioning results are listed in (b) by k-
means clustering, (c) by octree-based clustering, and (d) by
our kd-tree based clustering. The numbers of vertices in
each partition are charted in (e). K-means clustering
generates 128 partitions in 6.22 seconds with a compactness
measure of 3.155. Octree clustering runs fast in 3.76
seconds with a compactness of 1.806 for 126 partitions. Our
kd-tree clustering generates 128 uniform partitions in 3.85
seconds with a compactness of 1.929. Only our kd-tree
based clustering creates uniform partitioning with quality
shapes in a relatively fast processing time.

B. Mesh Simplification Using Our Mesh Partitioning
A uniform number of vertices in a partition plays a key

Figure 4. Examples of mesh partitioning. A mesh Foot of 40,058 vertices
and 80,112 faces is rendered in wire frame in (a). Partitioning results are
listed in (b) by k-means clustering, (c) by octree-based clustering, and (d)
by our kd-tree based clustering. The numbers of vertices in each partition
are charted in (e).

role in the quality of the mesh simplification. A single
representative vertex for a partition was calculated for the
vertices of the partition. Triangulations were performed with
simplified vertices according to the original connectivity.
The size and the shape of simplified triangle faces are more
regular with our kd-tree method since each simplified vertex
represents a uniform number of vertices, whereas each
simplified vertex using the octree method represents various
numbers of vertices as depicted in Fig. 5. In (a), the mesh is
simplified to 1,104 vertices using our kd-tree method
whereas in (b) the mesh is simplified to 1,206 vertices using
the octree method. The mean distortion to the original mesh
is 0.4149 by our kd-tree and 0.4563 with the octree [8]. Our
simplification preserves the original shape better with better
triangulation.

C. 3D Shape-Outlines: Interactive 3D Previews
For 2D images, TP mode provides small thumbnail

images so that a user can easily and quickly identify and
select a specific image. Until present, an interactive TP mode
for 3D meshes has not been available. As such, we offer our
TP mode which uses shape-outlines for interactive 3D mesh
previews to dramatically reduce file size. As shown in Fig.
1(a), a series of shape-outlines can easily be displayed on
mobile devices with no need for file names. A shape-outline
also depicts how the mesh is partitioned. As illustrated in Fig.
6, each TP shape-outline can be interacted with to translate
or rotate the thumbnail with no need to fully display the
mesh.

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

Figure 5. Examples of simplified meshes with a mesh Foot. In (a), the mesh
is simplified to 1,104 vertices using our kd-tree method whereas in (b), the
mesh is simplified to 1,206 vertices using the octree method.

D. Simplified Meshes in Multi-Resolution
Simplified meshes in multi-resolution can provide CWV

and ZSV modes of 3D meshes. As shown in Fig. 7, the more
detailed Buddha of 9,539 vertices in (b) provides higher
resolution than simply an enlarged but degraded view of the
simplified mesh of 2,569 vertices in (a).

E. Mesh Partitions for the Closest View
Finally, for DZM-mode views of meshes, uniformly

partitioned files of the selected area of the original mesh are
transferred and rendered as shown in Fig. 1(d). The number
of vertices in each partition can be specified by a user to
provide optimized and predictable processing time for each
partition.

III. CONCLUSION AND FURTURE WORK
This paper introduced a hierarchical representation of 3D

meshes for interactive rendering in cloud computing. As
listed in Table I, the rendering of 3D meshes on a mobile
device took 19.21 seconds on average while huge meshes
could not be loaded due to device memory limitations. With
our hierarchical method, interactive rendering can be
provided in real time in about 0.6 seconds on average even
for huge meshes. In our future work, we will investigate how
to automatically control simplification levels on the server or
the client. Our research has led us to conclude that texture
mapping to simplified meshes should be further studied.
Moreover, how to approximate texture coordinates for
simplified meshes also needs further investigation.

Figure 6. A shape-outline of a model Buddha in various views. A user can
interactively control TP mode views of the shape-outline.

(a) Simplified in a low resolution (b) Simplified in higher resolution

Figure 7. Simplified meshes in multi-resolution for a mesh Buddha. Rather
than zooming in to a lower resolution of the simplified mesh in CWV mode
in (a), rendering can automatically switch to ZSV mode to get a higher
resolution zoom.

REFERENCES
[1] D. Kim, S. Lee, H. Lee, and S. Cho, “A distance-based compression

of 3D meshes for mobile devices,” IEEE Trans. Consumer Electron.,
vol. 54, no. 3, pp. 1398-1405, 2008.

[2] S. Choe, J. Kim, H. Lee, and S. Lee, “Random accessible mesh
compression using mesh chartification,” IEEE Trans. Visualization
and Computer Graphics, vol. 15, no. 1, pp. 160-173, 2009.

[3] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “External
memory management and simplification of huge meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 525-
537, 2003.

[4] S. Schaefer and J. Warren, “Adaptive vertex clustering using
octrees,” SIAM Geometric Design and Computing, 2003.

[5] Y. Okamoto, T. Oishi, and K. Ikeuchi, ”Image-Based Network
Rendering of Large Meshes for Cloud Computing,” International
Journal of Computer Vision, vol. 94, no. 1, pp. 23-35, August 2011.

[6] S. Lloyd, “Least square quantization in PCM,” Information Theory,
IEEE Transactions, vol. 28, no. 2, pp. 129-137, 1982.

[7] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “External
memory management and simplification of huge meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 525-
537, 2003.

[8] P. Cignoni, C. Rocchini and R. Scopigno, “Metro: measuring error on
simplified surfaces,” Computer Graphics Forum, Blackwell
Publishers, vol. 17, no. 2, pp. 167-174, June 1998.

[9] M. Garland, A. Willmott, and P. Heckbert, “Hierarchical face
clustering on polygonal surfaces,” Proc. ACM Symposium on
Interactive 3D Graphics, pp. 49-58, 2001.

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

