
A Dynamic Load Balancing Model Based on Negative Feedback and Exponential

Smoothing Estimation

Di Yuan, Shuai Wang, Xinya Sun

Tsinghua University

Beijing, 100084, China

{yuan-d09, wangshuai04}@mails.tsinghua.edu.cn, xinyasun@tsinghua.edu.cn

Abstract—Server clusters can be used to manage the massive

number of requests that a hot website will receive, so as to

meet the rapid development of Internet application. The Linux

Virtual Server provides a good solution for cluster revision,

and there is software that can be used for management and

monitoring. However, the scheduling algorithms of Linux

Virtual Server are not sufficient to deal with the heavy load

balancing required today. A dynamic load balancing

scheduling algorithm has been proposed to solve the problems

of static algorithms, but we find that there are some drawbacks

in actual use. In this paper, we suggest an improved dynamic

load balancing model that overcomes the limits or drawbacks

of the simple dynamic algorithm. In the suggested model,

negative feedback and exponential smoothing estimation

methods have been used to improve the load balancing effect.

Besides, service response time has been used to adjust the

weight variation to achieve better effect. The suggested model

is implemented in our dynamic load balancing algorithm.

Experiments show that, our algorithm can achieve better

performance than the existing static and dynamic algorithms.

Keywords-load balancing; dynamic algorithm; negative

feedback; exponential smoothing estimation; throughput

I. INTRODUCTION

With the rapid development of the Internet, hot web sites
must cope with greater demands than before. Increasing
number of users or clients makes a single server not
sufficient to handle this aggressively increasing load. As a
result, we ought to use a server cluster to solve this problem.
A server cluster can help to keep computing service in good
quality by adjusting the server nodes dynamically when the
number of requests suddenly changes. However, we should
find a method to assign the new connections to the
computing elements properly.

Server cluster can be built with either expensive
hardware as F5 load balancer, or Linux Virtual Server (LVS)
[1]. LVS is a good solution to companies for cost factors.
Generally, the LVS is a software tool assigns connections to
multiple servers, which can be used to build highly scalable
and highly available services. An LVS cluster is composed
by the load balancer and real server nodes. The load balancer
receives requests and schedules them to real servers
following certain rules [2].

The LVS clusters are always built by Direct Routing
method, because load balancer is independent from OS and
the load balancer’s burden is less than server nodes [3]. LVS

has ten scheduling algorithms [4]. The WLC algorithm,
which schedules the new connections according to servers’
weights and number of active connections, is most
commonly used for its good balancing performance [3].
However, it is usually difficult to locate proper weight to a
server, and the weight can only be adjusted manually while
LVS is running. Moreover, if the requests vary in their
processing time or package size, the workload of servers will
be skewed.

A basic dynamic load balancing algorithm based on
negative feedback has been proposed [5]. Daemon tools like
Keepalived or HeartBeat can be used to manage server nodes.
The load balancer collects load information of a server node,
which can be used to update its weight through the Simple
Network Management Protocol (SNMP). Aggregated load of
a server node can be calculated by load information, and new
weight of the server node can be solved by

 3
1 step Aggregate_Loadi i iW W W A

In the above equation, ‘Wstep’ denotes the step of weight
adjustment, while ‘A’ denotes the expected value of the
aggregate load. Through analysis and experiments, we have
found this dynamic algorithm have drawbacks in actual use.
Firstly, the current weight ‘Wi’ only relies on ‘Wi-1’ and the
current aggregate load. Once the collection or calculation of
load is interfered, the adjustment of weight may not reflect
actual variation of load. Secondly, the response time of the
server, an important factor of server’s load, is aggregated to
the ‘Aggregate_Load’, which may undermine its importance.
Lastly, no matter how much the variation of aggregate load
is, the upper bound of the weight adjustment is ‘Wstep’. As a
result, the update of the weight has limitations, which may
affect the load balancing effect.

In this paper, we suggest a new load balancing model to

improve the load balancing performance. We set up a

cluster system with the characteristics of high availability

and high reliability based on LVS and open source software

Keepalived, in order to implement our model and algorithm.

The load balancer checks server nodes by using Keepalived,

and collects the real-time load information through a user-

defined monitoring module. Then new weights of the server

nodes are calculated through weight evaluation module with

the load information and updated into Linux kernel. The

load balancer assigns new connections by using weighted

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

scheduling algorithm of LVS according to new weights [6].

In weight evaluation module, we collect load information of

the server nodes and evaluate the aggregated load. Besides,

the module detects response time from each server node to

correct ‘Wstep’. Furthermore, the module calculates weight

estimation through exponential smoothing method, the

purpose of which is to make the adjustment of weight

consistent with the actual variation of load. We suggest an

improved dynamic load balancing algorithm based on

improvements above and do experiments through open

source software Apache JMeter [7]. The new algorithm

shows better result of balancing effect than the existed WLC

algorithm and simple dynamic algorithm above.

The remainder of this paper is organized as follows:

Section II is a focus of this paper, our dynamic load

balancing model is described. In Section III, framework and

flow of corresponding algorithm is presented. In Section IV,

experiments of three algorithms are done to compare the

balancing performance. In Section V, some conclusions are

drawn through the experiments.

II. DYNAMIC LOAD BALANCING

A. Negative Feedback Model of Dynamic Load Balancing

The WLC algorithm schedules the new connections
according to weights and number of active connections. As
the former factor is static during the scheduling process,
WLC is essentially a static scheduling algorithm [8]. By
contrast, our dynamic load balancing algorithm schedules
the connections according to both active connections
number and load information. The load balancer sends
request to server nodes to get load information, and then the
weight evaluation module calculates new weight according
to former weights and aggregated load. The load balancer
schedules the new connections from client to server nodes
according to new weights. It is obvious that the dynamic
load balancing is a negative feedback process.

Load

Balancer

Client

Send Request

W Function(W, L)
+ Real

Server

Send

Request

Compute and Send Load L

+/-

W’

Send

Response

Set new weight W’

Save Weight

Figure 1. Negative feedback model of dynamic load balancing

In order to compute the weight of the server node, load
information collection service is running in each server node.
The load balancer collects load information ‘L’ periodically.

Weight evaluation module ‘Function(W, L)’ calculates the
new weight by former weight vector ‘W’ and aggregated
load ‘L’ and then update the IPVS scheduling table. This
dynamic algorithm can overcome the drawbacks of WLC,
and the effect of load balancing will be enhanced [9].

B. Weight Evaluation Module

As we discussed above, the weight evaluation module of
load balancer is an important part of this dynamic algorithm.
The load information can be used to calculate new weight of
the server.

Assume vector L=[L1, L2, L3, L4], (Li<1) denotes the
load parameters and vector Q=[Q1, Q2, Q3, Q4] denotes
proportionality factor of the parameters, where L1 to L4
represent CPU usage rate, memory usage rate, file system
usage rate, and one server’s new connections proportion of
the total number. Thus, 0<QL

T
<1, the aggregated load

parameter, denotes the current load of a server node [10].
Further, we assume that Tdelay denotes the real response time
of the computing service and Tideal denotes the ideal value of
Tdelay, then the ratio of them may represent the current
network state between load balancer and the server node.

The basic dynamic load balancing model assumes that,
current weight of a server node is only related to the former
one [5]. Considering the fact that the aggregated load may
be interfered, this mechanism may lead to deviation of the
weight calculation. Our improved dynamic algorithm solves
this problem through three former weights. Assume vector
W = [Wi-2, Wi-1, Wi] denotes weights before time i+1 and
vector P = [P1, P2, P3] denotes proportionality factor of the
weights. As we discussed above, estimated weight at time
i+1 should be used to adjust the ‘Wstep’, in order to make the
step more proper. Assume ‘A’ denotes the expected value of
the aggregate load, the weight update formula is

 Tsgn

T T1 ideal 3
1 step T

delay

ˆ
A

i

i

W T
W W A

T

QL

PW QL
PW

For each server node, Keepalived may set its weight
from 1 to 253 [6]. We can set the weight range [w0, 10w0],
(0<w0<25) for simplicity. The ideal service response delay
Tideal can be estimated through experiments. In order to
properly reflect the impact of service response time, we set
Tideal<Tdelay<1.5Tideal. If the aggregated load QL

T
 is greater

than A, weight adjustment and Tdelay is proportional, and
vice versa. Wstep and A are two important parameters.
Generally, we set Wstep= w0/2 and 0.45<A<0.95. As there
must be some differences between different cluster systems,
the exact value of them should be determined through
experiments [9]. We set W0 the reference value of W1 to W3,
and then the complete weight evaluation module is

 T

delay T3
0 step

ideal

sgn1

T T1 ideal 3
step T

delay

3

ˆ
3

Ai

i

T
W W A i

T

W
W T

W A i
T

QL

QL

PW QL
PW

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

C. Exponential Smoothing Estimation

As discussed above, new weight should be estimated to
adjust ‘Wstep’ to make the adjustment of weight consistent
with the actual variation of load. We estimate the new
weight through linear quadratic exponential smoothing
method, the essence of which is to get the estimation result
through the weighted average of historical data. According
to exponential smoothing theory, time series trend with
stability or regularity, so they can be reasonably extended to
estimate the future trend [11]. Exponential smoothing
method, mainly used for variable parameter linear trend
time series, may estimate the current value according to the
historical ones, which could be helpful to weight estimation.

Assume the true value of the weight at time t is Wt.
Besides, assume that the first and second exponential
smoothing result is St

(1)
 and St

(2)
, the smoothing factor is a

and the estimation cycle from time t is 1, then the estimation
formula is shown below [12].

1 1

1

2 1 2

1

1 2

1

1

1

2 1ˆ
1 1

t t t

t t t

t t t

S aW a S

S aS a S

a
W S S

a a

III. IMPLEMENTATION OF IMPROVED DYNAMIC LOAD

BALANCING ALGORITHM

A. Framework of Improved Dynamic Algorithm

The improved dynamic load balancing algorithm we
suggest is based on the WLC scheduling algorithm. Besides,
Keepalived has been used to implement health checking and
weight update of server nodes. To be specific, the
MISC_CHECK module of Keepalived allows a user-defined
script or executable program to run as the health checker [6].
The exit code of the script or program can be used to update
the LVS scheduling table. If the exit code is 0, weight of a
server node remains unchanged. Computing service of a
server node is unavailable when the exit code is 1. In
addition to the two cases, the weight of a server node will be
set to ‘exit code-2’ when the range of exit code is 2-255 [6].
According to this idea, we can achieve our dynamic load
balancing algorithm through MISC_CHECK module of
Keepalived. Each modules of this dynamic algorithm is
shown in Figure 2.

IPVS module of

Linux Kernel

MISC_CHECKER of

Keepalived

Weight evaluation

module

Health checker &

Load collection

module

Load Balancer

Load information

gathering service

.

.

.

Timer

Real Servers

Load information

gathering service

Load information

gathering service

Figure 2. Modules of improved dynamic algorithm

The user defined module get the health status and the
load information periodically. Then the weight evaluation
module calculates new weight of the server node. The LVS
scheduling table is refreshing through MISC_CHECKER
module. If the health checking fails, the module will remove
the server node from the server pool automatically. Else, the
new weight of a server node will be update to the one
calculated by weight evaluation module.

B. Flow of Improved Dynamic Algorithm

The load balancer collects load information periodically,
so load gathering service should be running real-time. We
collect load information above through some system files of
Linux. The load balancer and the real server exchange load
information by using the client and server communication
mechanism, which are both user-defined. We set the
program mon_srv running in the server node to gather and
send load information to the load balancer. The program
mon_cli, running on the load balancer, sends request to get
load information periodically.

Computing service is also running real-time on the
server nodes. The load balancer checks the health of a server
node’s computing service firstly by using mon_cli, and then
gets the server response time if the server is health. Then the
balancer gets load information from the load information
gathering service. The load balancer checks the computing
service by using TCP connection. If the service is healthy,
the load balancer checks the scheduling table to check
whether the node exists or not, and then get the response
time. Else, the load balancer removes the node from the
scheduling table and set the weight of the node to 0. After
that, the load balancer collects load information from the
server node by using UDP connection. Then the weight
evaluation module calculates new weight of the server node
by using our weight evaluation model. Finally, new weight
of the server is updated by Keepalived. The flow chart of the
algorithm is shown in Figure 3.

Health check

Computing

Service

Request

Response

TCP connection

Service

Healthy?
Delete the server

from servers pool

 No

Server

existed?

Yes

Get the service

response time

Add the server

to servers pool

 No Yes

Load info

gathering Service

Request Get the usage rate of

CPU, MEM, and

File System

Get the new

connections proportion

Send the load informationResponse

UDP

connection

Collect the load

information
Former

weight vector

of the server

Weight evaluation

module

New weight

of the server

Load Balancer Real Server

Set Weight to 0

Figure 3. Flow chart of improved dynamic algorithm

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

IV. EXPERIMENTS

In order to test the performance of improved dynamic
load balancing algorithm, we have set up an experiment
environment, on which WLC algorithm, simple dynamic
load balancing algorithm and our improved dynamic
algorithm has been implemented.

A. Hardware Environment

In our experiments, 6 blade servers and 2 industrial
computers has been used, among which 1 blade server serves
as the client, 2 blade servers serve as load balancers, and the
other 3 blade servers serve as server nodes together with the
2 industrial computer. The 6 blade servers use one switch,
while the 8 devices use one. The hardware and OS
parameters of the 8 devices are shown in Table I.

TABLE I. CONFIGURATION PARAMETERS OF HARDWARE

 Parameters

Hosts
CPU

(Core/GHz)

MEM

(GB)

Storage

(GB/R)
OS

Client 16/2.40 8 320/7200 Win 2008

Load Balancer(M) 16/2.40 8 320/7200 SUSE 11

Load Balancer(B) 8/2.40 8 320/7200 SUSE 11

Real Server 1 16/2.40 8 320/7200 SUSE 11

Real Server 2 8/2.40 8 320/7200 SUSE 11

Real Server 3 8/2.40 8 320/7200 SUSE 11

Real Server 4 4/2.26 2 160/5400 SUSE 11

Real Server 5 2/2.50 4 120/5400 SUSE 11

Hardware devices’ configuration parameters are shown
in Table 1. There are two load balancers to implement
failover through VRRP, both of which have the same LVS
configuration, virtual IP address, and Keepalived
configuration [6]. Topological relations between the devices
above are shown in Figure 4.

Client:

192.168.4.77

DIP: 192.168.4.80

VIP: 192.168.4.83

Load Balancer

(Master)
RS: 192.168.4.71

RS: 192.168.4.72

RS: 192.168.4.73

Request

Load Balancing

RS: 192.168.4.74

RS:192.168.4.135

DIP: 192.168.4.137

VIP: 192.168.4.83

Load Balancer

(Backup)
Request

VRRP

Figure 4. Topological relations between the devices

B. Software Environment

The operating systems of the devices have been shown in
Table 1. Each server node supplies the same computing
services and we choose five of them to do our experiments.

The request processing time and the result data packet size of
each service is shown in Table II.

TABLE II. EFFICIENCY AND PACKAGE SIZE OF COMPUTING SERVICES

Service Name
Request Processing

Time (ms)

Size of Data

Packet (KB)

te_tl_ksp_radix_multi 20 30

te_ts_ksp_radix_multi 10 20

te_ts_sp_bidij_buckets 40 35

te_ae_ksp_astar_heap_multi 60 40

price_svc 1 2

The ‘price_svc’ service is the most efficient among these
services, while the ‘te_ae_ksp_astar_heap_multi’ service is
the least. It’s important to point out that, the two indexes are
the average result of 430 test samples, and the latter one has
more impact on the network load.

The computing services are compiled by GCC, while the
client program is Java application, which can be generated
to JAR file for testing. The open source software Apache
JMeter has been used to simulate multiple clients, which
could send requests to the server nodes. JMeter is an Apache
top level project that can be used as a load testing tool for
analyzing and measuring the performance of a variety of
services. The concurrent test is implemented by using multi-
threaded method [13]. Our experiments are performance test
with Java application and the concurrent test and analyzing
function of JMeter can meet our requirements.

A client and a server node communicate with each other
through a TCP connection. The client should do login and
authentication after a connection is established. Then the
client send request data package with specific service name
and parameters through the socket instance. After the login
and authentication process, multiple requests can be send to
the server node until the connection is closed. For each
request, the service is chosen randomly in our experiments.

C. Content of Experiments

The test objects of our experiments is the original WLC
scheduling algorithm, simple dynamic scheduling algorithm
based on WLC, and improved dynamic scheduling algorithm
based on WLC. The three algorithms can be recorded as
WLC, DWLC and IDWLC for convenience. We use JMeter
as the test and analysis tool and the test index is the
throughput of the system shown in Figure 4.

The cycle index of the threads group in JMeter should be
set to a constant. For each cycle, there are three parameters
to adjust, which are number of concurrent connections, the
ramp-up period of the concurrent threads, and number of
requests per connection. We denote the three parameters as P,
Q, and R. We study the system throughput variation
tendency when parameters P, Q, and R changes, and then
draw some conclusions of three algorithms through analysis.

D. Results and Analysis

In order to test the performance of three algorithms, we
set the cycle index to 10 in each experiment, so as to make
the test closer to the real situation. For the WLC algorithm,
we set the weights of real server nodes in Figure 4 to 50, 50,
50, 40, and 40. For the DWLC algorithm, we set the original

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

dict://key.0895DFE8DB67F9409DB285590D870EDD/efficiency%20of%20algorithm
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Jakarta_Project
http://en.wikipedia.org/wiki/Load_testing

weights of real server nodes the same to 50 and the expected
value of the aggregate load to 0.70.

Then we determine the parameters of the IDWLC
algorithm. Firstly, the ideal service response time and the
true time should be determined through lots of experiments.
As the average server response time is greater than 0.2
milliseconds in our 100000 experiments, we set the Tideal to
0.2 milliseconds. Through the data analysis, we find that if
the computing service is healthy, the range of response time
will be 0.20-0.35 milliseconds. In order to set the parameter
more properly, we set the upper bound of Tdelay to 0.35
milliseconds. Then, we set the value of other important
parameters. As the weight value range of LVS server node
is [0, 253], we set w0=20 for convenience. Considering the
importance of former weights and load parameters, the
vector P is set to [0.2, 0.3, 0.5], Q is set to [0.4, 0.2, 0.1,
0.3]. Through some experiments, we set expected value of
the aggregate load A to 0.7, and initial weight W0 to 50.
According to the exponential smoothing prediction theory,
the greater the fluctuation range of predicted target is, the
more the predicted value depends on the true value of the
previous moment [11]. As a result, the value of smooth
factor ‘a’ ought to be greater. Considering the weight
sequence variation, we set a=0.6. The weight prediction and
adjustment formula of our experiments is

1 1

1

2 1 2

1

1 2

1

0.6 0.4

0.6 0.4

ˆ 3.5 2.5

i i i

i i i

i i i

S W S

S S S

W S S

 T

T3

delay

sgn 0.701

T T1 3

T

delay

0.2
50 10 0.70 3

ˆ 0.2
10 0.70 3

i

i

i
T

W
W

i
T

QL

QL

PW QL
PW

1) System throughput T and concurrent connections

number P: We set the ramp-up period of the connections to

10 seconds, requests number per connection to 50. When

concurrent connections number changes from 50 to 5000,

throughput curves are shown in Figure 5.

Figure 5. Throughput and connections number curves of three algorithms

As shown in Figure 5, when concurrent connections
number is smaller than 1000, difference among throughputs
of the system under three algorithms is insignificant. The
reason is that, when the connections number is small, the
processing ability of real server nodes is enough to handle
the requests from the client, so the dynamic algorithms’
balancing effect is no better than the WLC’s. When
concurrent connections number is greater than 1000, load of
the server nodes increases, and the dynamic algorithms come
into play and assigns the new connections more balanced. It
is shown in Figure 5 that, when the connections number is
greater than 1000 and smaller than 3500, the two dynamic
algorithms achieve greater throughput than the WLC
algorithm. Especially, our dynamic load balancing algorithm
achieved greater throughput than the other two. When the
number of connections is greater than 3500, the load of the
server nodes is greater than the processing ability of them,
and the effect of dynamic algorithm becomes insignificant
compared with the WLC algorithm. As a result, system
throughput of the three algorithms tends to be close to each
other.

2) System throughput T and threads ramp-up period Q:

We set the number of concurrent connections to 2500 and

the number of requests per connection to 50. When the

ramp-up period changes from 1 second to 40 seconds,

throughput curves are shown in Figure 6.

Figure 6. Throughput and ramp-up period curves of three algorithms

This experiment set the number of connections and
number of requests constant, so the total load per cycle is
constant too. As shown in Figure 6, when the ramp-up period
is small, system throughput of three algorithms is low. The
reason is that, the server nodes are under excessive load
during the ramp-up period, which leads to queuing or
waiting phenomenon and decreases the system throughput.
When the ramp-up period increases, the queuing or waiting
phenomenon has been alleviated. As a result, the two
dynamic algorithms achieve greater throughput than the
WLC algorithm and our improved dynamic algorithm shows
better result than the simple one. When the ramp-up period is
greater than 20 seconds, the assignment of new connections
is sparse, and the load of the server nodes gets smaller,

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

which lead to almost the same throughput for the three
algorithms.

3) System throughput T and requests number R per

connection: We set the number of concurrent connection to

2500 and the ramp-up period to 10 seconds. When the

requests number per connection changes from 10 to 160,

throughput curves are shown in Figure 7.

Figure 7. Throughput and requests number curves of three algorithms

This experiment set the connections number and ramp-up
period to constant. When the requests per connection is
smaller than 20, the load of server nodes is low. As a result,
the effect of two dynamic algorithms is not better than the
WLC algorithm. With the increase of the requests number,
dynamic algorithms could assign new connections more
proper, system throughput gets greater than the WLC
algorithm. We can find in Figure 7 that, our improved
algorithm achieves greater throughput than the other
algorithms when the requests number changes from 30 to
120. As the requests number gets greater than 120, the total
load is too heavy to the server nodes, which could lead to
similar system throughput for the three algorithms.

V. CONCLUSION

As described above, a static load balancing algorithm is
not sufficient to assign client connections when processing
time requests vary, and thus the scheduling programs of the
Linux Virtual Server are not useful [5]. A dynamic load
balancing algorithm has proposed before to solve this
problem. However, the algorithm has some problems, which
may reduce its usefulness, and thus we propose a more
efficient load balancing algorithm that achieves better
results.

The improved model we suggest could solve the
shortcoming of the simple dynamic algorithm and improve
the stability of the dynamic scheduling process. For one
thing, computing service response time has been used to
adjust the weight variation, aims to highlight the important
role of the network delay for load balancing. For another, the
exponential smoothing estimation method has been used to
make the adjustment of weight consistent with the actual

variation of load. The experimental results show that, our
improved dynamic load balancing algorithm could achieve
greater system performance than the other two, if the total
load is proper to the real server nodes.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Technology R&D Program under Grant 2009BAG12A08
and the Research Foundation of Easyway Company.

REFERENCES

[1] Linux Virtual Server Project, “Linux Virtual Server, ” 2007,
http://www.linuxvirtualserver.org

[2] Zhang Wensong, “Linux Virtual Server for Scalable Network
Services,” Ottawa Linux Symposium 2000, 2000(7)

[3] Suntae Hwang, Naksoo Jung, “Dynamic Scheduling of Web
Server Cluster,” Proc. Ninth Int’l Conf. Parallel and
Distributed Computer Systems (ICPADS ‘02), 2002

[4] Zhang Wensong, “Job Scheduling Algorithms in Linux
Virtual Server,” 2005, http://www.linuxvirtualserver.org

[5] Zhang Wensong, “Dynamic Feedback Load Balancing
Algorithm”, 2005, http://zh.linuxvirtualserver.org.

[6] Alexandre Cassen, “Keepalived for LVS datasheet”, 2002,
http://www.keepalived.org/pdf/UserGuide.pdf

[7] Ma Wei, “A New Approach to Load Balancing Algorithm in
LVS Cluster,” Master Degree thesis. Wuhan, Hubei, China:
Hua Zhong Normal University. 2006.5.

[8] Shen Wei, “Research and Realization of an Improved Load
Balancing Algorithm based on LVS Cluster,” Master Degree
thesis. Bejing, China: China University of Geosciences.
2010.6.

[9] Qin Liu, Lan Julong. Design and Implementation of Dynamic
Load Balancing in LVS. Computer Technology and Its
Applications, 2007, 09:116-119.

[10] Yang Jianhua, Jin Di. A Method of Measuring the
Performance of A Cluster-based Linux Web Server.
Computer Development & Applications, 2006, 04: 58-60.

[11] Diao Mingbi, Theoretical Statistics. Beingjing: Publishing
House of Electronics Industry. 1998.

[12] Luo Bin, Ye Shiwei, Server Performance Prediction using
Recurrent Neural Network. Computer Engineering and
Design, 2005,08: 2158-2160

[13] The Apache Jakarta Project, Apache JMeter, 1999-2011,
http://jakarta.apache.org/jmeter

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

