
A Technique for Measuring the Level of Autonomicity of Self-managing Systems

Thaddeus O. Eze, Richard J. Anthony, Alan Soper and Chris Walshaw
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, A.J.Soper and C.Walshaw}@gre.ac.uk

Abstract— Autonomic and self-managing systems are

increasingly pervasive across an ever-widening spectrum of

application domains. Autonomic technology is advancing at a

high rate, yet there are no universal standards for the technology

itself and the design methods used. There are also significant

limitations to the way in which these systems are validated, with

heavy reliance on traditional design-time techniques, despite the

highly dynamic behaviour of these systems in dealing with run-

time configuration changes and environmental and context

changes. These limitations ultimately undermine the trustability

of these systems and are barriers to eventual certification. This

paper is concerned with setting the groundwork for the

introduction of standards for Autonomic Computing (AC), in

terms of technologies and the composition of functionality as well

as validation methodologies. We propose that the first vital step

in this chain is to introduce robust techniques by which the

systems can be described in universal language, starting with a

description of, and means to measure the extent of autonomicity

exhibited by a particular system. We present a novel technique

for measuring the Level of Autonomicity (LoA) along several

dimensions of autonomic system self-CHOP (self-configuration,

self-healing, self-optimisation and self-protection) functionalities.

Keywords- autonomicity; level of autonomicity; autonomic system;

trustworthiness; metrics

I. INTRODUCTION

 AC seeks the development of self-managing (or

autonomic) systems to address management complexities of

systems. The high rate of advancement of autonomic

technology and methodologies has seen these systems

increasingly deployed across a broad range of application

domains yet without universal standards. Also the widening

acceptance of Autonomic Systems (AS) is leading to more

trust being placed in them with little or no basis for this trust,

especially in the face of significant limitations regarding the

way in which these systems are validated. The traditional

design-time validation techniques fail to address the run-time

requirements of AS‘ environmental and contextual dynamism.

These limitations undermine trustability and ultimately

impinge on certification. The more this proliferation goes on

without these challenges being addressed, the more difficult it

gets to introduce standards and eventually achieve certifiable

AS. It has therefore become pertinent and timely to address

these issues. A vital first step in this course would be

standards for the universal description of these systems and a

standard technique for measuring LoA achieved by these

systems. Standards for AC would be concerned with

technologies, composition of functionalities and validation

methodologies. By autonomicity we mean the ability of a

system to pursue its goal with minimal external interference

in the form of configuration or control. Then, the extent of

this interference defines autonomicity levels. Now the

questions facing the AC community are, for a given system,

―How autonomic should a system be?‖ and ―How autonomic

is a system and how is this determined?‖ The two questions

address both pre and post system design phases. The first

question is of primary importance to the designers of systems

where autonomic specification is a critical part of the whole

system requirements definition. A good example would be

spaceflight vehicles addressed in [1], where a level of

autonomy assessment tool was developed to help determine

the level of autonomy required for spaceflight vehicles. The

second question is in two parts. On the one hand is the need to

define systems according to a measure of autonomicity and

another is the method and nature of the measure. Addressing

this issue is the main thrust of this paper. Another significant

aspect addressed here is the need for evaluation of systems in

terms of individual functionalities. Not only do we measure

autonomicity but also look at how systems can be evaluated

and compared in terms of their autonomic compositions. We

call this ‗ranking‘ (see Section IV B).

Thaddeus et al [2] identified that defining LoA is one of

the critical stages along the path towards certifiable AS.

Along this path also is the need for an appropriate testing

methodology that seeks to validate the AS decision-making

process. But to know what testing (validation) is appropriate

requires knowledge of the system in terms of its extent of

autonomicity. Another issue that underpins the need for

measuring LoA is that a means of answering the identified

questions is also a solution for AS evaluation and ranking and

facilitates a proper understanding of such systems.

Currently, the vast majority of research effort in this

direction has progressed in answering the first question

(―How autonomic should a system be?‖) by providing us with

scales that describe autonomy in systems. These scales,

referenced by many researchers, provide fundamental

understanding of system autonomy by categorising autonomy

according to level of human-machine involvement in

decision-making and execution. Some key works in this area

include [1], [3], and [4]. For us, these scales only characterise

autonomy levels qualitatively and offer no means of

quantitatively measuring extent of autonomicity. We would

simply say that they are more sufficient for the purposes of

proposing an appropriate level of autonomy during the design

of a new system.

ISO/IEC 9126-1 standard [13] decomposes overall

software product quality into characteristics, sub

characteristics (attributes) and associated measures. Adapting

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

this we define a framework for measuring LoA along several

dimensions of AS self-CHOP functionalities. Systems are

well-defined by their set of functional capabilities and a

measure of these capabilities will form a better representation

of the systems. In our proposal we look at the core

functionalities of ASs, the self-CHOP functionalities (hereafter

referred to as CHOP), and identify specific metrics for each of

the functionalities. The cumulative measure of these metrics

defines a LoA. Our method is based on the establishment of a

generic technique that can be applied to any application

domain. This work is novel as it offers a quantitative measure

of LoA in terms of system‘s functionalities-based description.

It also opens a new research focus for autonomicity

measuring metrics. We believe this is timely because if not

addressed we not only run the risk of classifying systems as

trusted without basis but also risk losing track and control of

these systems as a result of spiraling complexities in terms of

technology and methodologies. [15] also raised the concern

that if the proliferation of unmanned systems (and by

extension ASs) is not checked by putting appropriate

measures (or mechanisms) in place that ensure

trustworthiness, the systems may ultimately lose acceptance

and popularity.

The remainder of this paper is organised as follows:

related work is presented in section II. In Section III, we

introduce metrics for measuring autonomicity. Our proposed

LoA measure and a case study is presented in Section IV.

Section V concludes the work.

II. RELATED WORK

The study of AC is now a decade old. However, its rapid

advancement has led to a wide range of views on meaning,

architecture, and implementations. The criticality of

understanding extent of autonomicity in defining AC systems

has necessitated the need for evaluating these systems. The

majority of research in this area has targeted specific

application domains with Unmanned Systems Technology

(UST) topping the list.

One major proposal for measuring LoA is the scale-

based approach. This approach uses a scale of (1– n) to define

a system‘s LoA where ‗1‘ is the lowest autonomic level

usually describing a state of least machine involvement in

decision-making and ‗n’ the highest autonomic level

describing a state of least human involvement. Clough [3]

proposes a scale of (1–10) for determining Unmanned Aerial

Vehicles‘ (UAV‘s) autonomy. Level 1 ‗remotely piloted

vehicle’ describes the traditional remotely piloted aircraft,

while level 10 ‗fully autonomous’ describes the ultimate goal

of complete autonomy for UAVs. Clough populates the levels

between by defining metrics for UAVs. Sheridan [7] also

proposes a 10-level scale of autonomic degrees. Unlike

Clough‘s scale, Sheridan‘s levels 2-4 centre on who makes

the decisions (human or machine), while levels 5-9 centre on

how to execute decisions. Ryan et al [1], in a study to

determine the level of autonomy of a particular AS decision-

making function, developed an 8-level autonomy assessment

tool. The tool ranks each of the OODA (Observe, Orient,

Decide and Act) loop functions across Sheridan‘s proposed

scale of autonomy [7]. OODA is decision-making loop

architecture for ASs. The scale‘s bounds (1 and 8) correspond

to complete human and complete machine responsibilities

respectively. They first identified the tasks encompassed by

each of the functions and then tailored each level of the scale

to fit appropriate tasks. The challenge here is ensuring relative

consistency in magnitude of change between levels across the

functions. The levels are broken into three sections. Levels 1-

2 (human is primary, computer is secondary), levels 3-5

(computer and human have similar levels of responsibility),

and levels 6-8 (computer is independent of human). To

determine the LoA needed to design into a spaceflight vehicle

Ryan et al needed a way to map particular functions onto the

scale and determine how autonomous each function should

be. They designed a questionnaire (sent to system designers,

programmers and operators) that considered what they call

‗factors for determining LoA‘ –these are LoA trust limit and

cost/benefit ratio limit. This implies that a particular LoA for

a function is favoured when a balance is struck between trust

and cost/benefit ratio limits. Ultimately the pertinent question

is ―How autonomous should future spaceflight vehicles be?‖

IBM‘s 5 levels of automation [4] describes the extent of

automation of the IT and business processes. We consider

these to be too narrowly defined and [5] observes that the

differentiation between levels is too vague to describe the

diversity of self-management. In general the autonomy scale

approach is qualitative and does not discriminate between

behaviour types. We posit that a more appropriate approach

should comprise both qualitative and quantitative measures.

Barber and Martin [8] supposes that in a multi-agent

system environment, agent autonomy is measured in terms of

a system-wide goal. It proposes a collaborative decision-

making algorithm for multi-agent systems. In the proposed

algorithm, a plan for achieving the system‘s goal is decided

by the agents. Every agent suggests a complete plan with

justification for how to achieve the entire system‘s goal. Each

agent evaluates each suggested plan and determines the value

of its justification. Each plan receives an integer number of

votes from the deciding agents. The plan with the highest

votes becomes the plan for the entire system. The ratio of an

agent‘s number of votes (received for suggested plan) to the

total number of votes cast is a measure of that agent‘s

autonomy and the extent of its capability to influence the

system. This method, however, does not offer a measure for

LoA but gives a valuable description of agents‘ individual

influence in a multi-agent system environment.

Fernando et al [6] proposes measures for evaluating the

autonomy of software agents. It believes that a measure of

autonomy (or any other agent feature) can be determined as a

function of well-defined characteristics. Firstly it identifies

the agent autonomy attributes (self-control, functional

independence, and evolution capability) and then defines a set

of measures for each of the identified attributes. By

normalising the results of the defined measures using a set of

functions, the agent‘s LoA is defined. [6] considers

autonomicity measure with reference to system‘s

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

characteristics and attributes. But in that work

‘characteristics’ are a broad range of attributes that describe a

system which also include features outside the system‘s core

functionalities and so in a way are vague and limited in

offering a proper and conclusive description of that system.

We have adapted this approach in our proposal for ASs but

with reference to self-CHOP functionalities.

III. AUTONOMICITY MEASURING METRICS

In this section, we introduce metrics for each of the

functionalities that define autonomicity of AS. Though

metrics are application domain dependent, the metrics

presented here are generic and serve as examples. We present

at least one metric for each of the functionalities. This is part

of a wide (and separate) research focus. This section only

focuses on how autonomic metrics can be generated. We also

show how metrics can be normalised to yield autonomic

values (see Section IV A). We will start with a definition of

each CHOP. (For more on these definitions see [10] and [12]).

Self-Configuring: A system is self-configuring when it

is able to automate its own installation and setup according to

high-level goals. When a new component is introduced into

an AS it registers itself so that other components can easily

interact with it. The extent of this interoperability (I) is a

measure of self-configuration, measured as ratio of the actual

number of components (actual in) successfully interacting with

the new component (after configuration) to the number of

components expected (expected in) to interact with the new

component.

1

actual

expected

i

i

i n

n
I (1)

Interoperability ratio I measures to what extent a system is

distorted by an upgrade. A system is self-configuring to the

extent of its ability to curb this distortion. This example can

be related to the problem diagnosis system for AS upgrade

discussed in [10]. Here an upgrade introduces 5 software

modules. The installation regression testers found faulty

output in 3 of the new modules. This implies that only 2

modules out of 5 successfully integrate with the system.

Self-Optimising: A system is self-optimising when it is

capable of adapting to meet current requirements and also of

taking necessary actions to self-adjust to better its

performance. Resource management (e.g., load balancing) is

an aspect of self-optimisation. An AS is then required to be

able to learn how to adapt its state to meet the new challenges.

Also needed is consistent update of the system‘s knowledge

of how to modify its state. State is defined by a set of

variables such as current load distribution, CPU utilization,

resource usage, etc. The values of these variables are

influenced by certain event occurrences like new

requirements (e.g., process fluctuations or disruptions). By

changing the values of these variables, the event also changes

the state of the system. The status of these variables is then

updated by a set of executable statements (policies) to meet

any new requirement. A typical example would be an

autonomic job scheduling system. At first, the job scheduler

could assign equal processing time quanta to all systems

requiring processing time. The size of the time quantum

becomes the current state and as events occur (e.g.,

fluctuations in processing time requirement, disruptions of

any kind, etc.), the scheduler is able to adjust the processing

time allocation according to priorities specified as policies. In

this way the state of the system is updated. But this may lead

to erratic tuning (as a result of over or under compensation)

causing instability in the system. We define Stability as a

measure of self-optimisation. If an event leads to erratic

behaviour, incoherent results or system not been able to

retrace its working state beyond a certain safe margin (a

margin within which instability is tolerated) then the system is

not effectively self-optimising.

Self-Healing: A system is self-healing when it is able to

detect errors or symptoms of potential errors by monitoring its

own platform and automatically initiate remediation [11].

Fault tolerance is one aspect of self-healing. It allows the

system to continue its operation possibly at a reduced level

instead of stopping completely as a result of a part failure.

One critical factor here is latency; the amount of time the

system takes to detect a problem and then react to it. We
define reaction time T as a metric for self-healing capability.

This is crucial to the reliability of a system. If a change occurs

at time ta and the system is able to detect and work out a new

configuration and ready to adapt at time tb then (2) defines

the reaction time T. (Average is taken instead where
variations of T are possible).

b aT t t (2)

A case scenario is a stock trading system where time is

of paramount importance. The system needs to track changes

(e.g., in trade volumes, price, rates etc.) in real time in order

to make profitable trading decisions.

Self-Protecting: A system is self-protecting when it is

able to detect and protect itself from attacks by automatically

configuring and tuning itself to achieve security. It may also

be capable of proactively preventing a security breach

through its knowledge based on previous occurrences. While

self-healing is reactive, self-protecting is proactive. A

proactive system, for example, would maintain a kind of log

of trends leading to security problems (threats and breaches)

and a list of solutions to resolve them (a list of problems and

corresponding solutions only applies to self-healing). One

major metric here is the ability of the system to prevent

security issues based on its experience of past occurrences.

For example let‘s assume p {pij} to be true if i
th

 trend leads

to j
th

 problem where pij is a log of all identified trends and

corresponding problems. p is a particular instance of trend-

problem combination. A self-protecting manager will avoid a

situation of same trend leading to the same problem again by

blocking the problem, addressing it or preventatively shutting

down part of the system. We define ability to detect repeat

events R as a self-protecting metric. R is a Boolean value

(True indicates the manager is able to stop a repeating

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

problem and False otherwise). If we choose two samples of

{pij} at different times (t1 and t2) then (3) defines R. (Different

trends may lead to the same problem but a repeated trend-

problem combination indicates a failure of the system to

prevent a reoccurrence).

R True ij if 1 2{ } { }ij t ij tp p (3)

One typical implementation of this is an antivirus

system. Some antivirus systems learn about trends or patterns

(signatures) and are able to make decisions based on this to

proactively protect a system from an attack. The antivirus is

able to stop repeatable patterns. Detecting problem

reoccurrence is an active research focus in Autonomic

Computing [18].

IV. PROPOSED LOA MEASURE

An AS is defined based on its achievement of the CHOP

capabilities [11]. In our approach, we define a level of AS in

terms of its extent of achieving the identified functionalities.

(We understand that these functionalities may overlap i.e., are

not necessarily orthogonal, thus some algorithms may

influence several functionalities, but to make progress in this

area we assume orthogonality for this preliminary work). If a

system fails to provide at least a certain level of one of the

CHOP, the system is said to be non autonomic. On the other

hand if the system provides a full level of all the four

capabilities, it is said to have achieved full autonomicity (as

defined by our proposed scheme). Each functionality is

defined by a set of metrics. An autonomic value contribution

is assigned to each functionality which is spread across the set

of metrics for that functionality. It then follows that each

metric contributes a certain definite level of the assigned

value. The cumulative normalisation of the measure of all

metrics (for all functionalities) defines a LoA. Let the

maximum LoA value for an AS be M. In generic terms, this

will mean an AS having a LoA value of N (0 ≤ N ≤ M) and

each functionality contributing a value in the range (0 ≤ x ≤

M/4), while each metric of each functionality contributes

(M/4)/m (m ≠ 0) autonomic value, where m is the number of

identified metrics defining a particular functionality, and the

constant 4 represents four CHOP functionalities. (With an

ongoing debate on the composition of AS functionalities and

the list substantially growing [16, 17], we choose to limit it to

the original, and generally accepted four).

Given that any AS is defined by the four autonomic

functionalities, the expression (4) is the representation of the

possible combinations of the functionalities.
4

1

n

r

rC 16 Combinations (4)

This will give 15 possible combinations (excluding zero

value which is a special case and not considered further as it

means the system provides no autonomic functionality) where

(n = 4) is the number of functionalities (the CHOP) and r is a

category of the possibilities (a specific implementation

combination of the functionalities). The CHOP functionalities

may not be of equal importance to an application domain so

categories indicate what CHOP is important to an application

domain. Category 2 means that only two functionalities are of

importance to the system‘s domain –so for example {C, H,

not O, not P} is a specific category representing a system

indicated by line 4 in Figure 1.

Figure 1 implies that, in terms of autonomic functionality

composition, a system deemed autonomic (an AS) can be

defined (or described) in one of fifteen ways. Each trace of

line from start to finish represents an AS except line 16. If we

define autonomic metrics for each of the functionalities, then

the sum of the autonomicity in each of the constituent

functionalities for a particular AS gives the system‘s LoA (5).

For example, the LoA of a system represented by line 9 in

Figure 1 will be the summation of the autonomic metrics

defining the self-healing, self-optimising and self-protecting

functionalities.

1 1 1 1

[] [] [] []

pc h o mm m m

i j k l

i j k l

LoA c h o p (5)

Subscripted m is the number of identified metrics for the

respective functionalities. ci, hj, ok and pl are the autonomic

metric contributions of the functionalities. These can be

composed of functions of different measures but as explained

in Section III they are normalised to yield autonomic values.

A. Normalising Autonomic Metrics

Depending on the application domain, metrics could be

scalar (of different measures) or non scalar values (e.g.,

observing a capability). One challenge here is defining and

normalizing appropriate autonomic metrics. The metrics‘

values (irrespective of units of measure) are normalized into

real numbers that are summed to give LoA (N). We identify

two simple methods for normalization: 1) By ranking values

according to high, medium, and low. The meaning of this

ranking is metric-dependent and is based on a defined margin.

For example, if a maximum expected value is 6, a value of 0-

2 will be ranked low, while 3-4 will be ranked medium and 5-

Figure 1: Combination of autonomic functionalities.

AS

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

6 high. A medium value would contribute fifty percent of the

metric‘s autonomic value contribution of (M/4)/m, while the

two extremes would contribute zero and hundred percents.

This can be used for scalar metrics like the interoperability

ratio and reaction time metrics discussed in Section III. 2) By

having a Boolean kind of contribution where two values can

suggest two extremes –either affirming a capability or not.

For example, if a ‗True‘ outcome affirms a capability then it

contributes hundred percent of the autonomic value

contribution, while a ‗False‘ outcome contributes zero.

Another example in this category is where an instance of an

event either does or doesn‘t confirm a capability (e.g., the

stability metric for self-optimising).

B. Evaluating Autonomic Systems

Evaluating Autonomic Systems using (5) gives their

separate LoA values. Systems are classified according to

categories. This is in terms of what CHOP functionalities are

required in their specific application domains. One thing

remains to be clarified at this point –‗how do we rank each

functionality in the autonomic composition of a system?‘ This

can be in terms of importance or extent of functionality

provided. We focus on the later –the extent of functionality

provided as against what is needed. Take for instance, if two

systems are of the same category we may wish to know which

of them provides a greater degree of say self-healing or self-

protection in any application domain. To address this we

adapt a function that measures agent‘s decision-making power

in a multi-agent AS defined in [8]. The rank R of a

functionality in the autonomic composition of a system is

defined by the ratio of its autonomic contribution x to the total

autonomic contribution of all metrics defining the composite

functionalities of that system.

R
x

LoA
 (6)

where x is the autonomic contribution of the considered

functionality which could be the summation of ci, hj, ok or pl

as in (5). With (6) any composite functionality can be ranked

in terms of their autonomic contribution. (See case study).

C. Autonomic Systems Evaluation Case Study

Our case study is Dynamic Qualitative Sensor Selection

System (DQSSS), based on work in [14]. The goal of DQSSS is

to dynamically select a sensor (amongst many) based on

continuously variable qualitative characteristics (e.g., signal

quality and noise levels). This is typical of an application that

accesses several sensors generating raw data from monitoring

a particular context; these could be physical attributes of a

system or perhaps information feeds from a service (e.g.

financial data). In such applications, it is expected that a

DQSSS would generate and differentiate signal characteristics

and trends, choose the best signal and without compromising

stability, be continuous, unsupervised, dynamic, and detect

and react if a sensor goes down. Autonomic metrics are drawn

from these characteristics. By definition self-configuration,

optimization and healing are of importance to this system

(r=3). The DQSSS presented in [14] is in three stages which

we refer to as systems A, B and C. All three systems are able

to differentiate sensors by their signal characteristics such as

noise level and spikes. These are then combined in a utility

function to determine the better quality sensor. Systems B and

C are able to generate trends in signal quality using trend

analysis logic. Only system C ensures stability (avoiding

unhealthy oscillation in sensor selection) by implementing

dead zone logic, while none of the systems has a way of

detecting a failed sensor.

TABLE I: REPRESENTATION OF THE DQSSS [14]

We adopt the 8-level autonomy assessment scale in [1]

as a way of qualitatively interpreting our results. In keeping

with this we adopt the arbitrary value 8 as the maximum LoA

implying that each CHOP contributes an autonomic value in

the range (0 ≤ x ≤ 2) spread across its metrics. Normalizing the

identified metrics in Table I (the numbers of metrics in each

category are: C=4, H=2, O=3) in the autonomic value range (0

≤ x ≤ 2) gives the result in Table II.

Figure 2 is a radar chart analysis of systems A, B and C

in terms of their separate autonomic functionality

composition. Recall that only three functionalities (CHO-) are

of importance here which means maximum LoA value of 6.

Out of this maximum value systems A, B and C achieved the

values 2 (i.e., 33%), 2.67 (i.e., 45%) and 5 (i.e., 83%)

respectively. This means that in a dynamic sensor selection

application domain (as defined), system C can be depended

upon to carry out the task with a confidence level of 83% and

0.17 risk factor, B with 45% and 0.55 risk factor, while A

with 33% and 0.67 risk factor. Furthermore this can also be

interpreted using Ryan et al‘s level of autonomy assessment

scale [1]. The scale as explained in Related Work section is

an 8-level autonomy assessment tool used for either

identifying (qualitatively) the level of autonomy of an

existing system or for proposing an appropriate level of

autonomy during the design of a new system. System A falls

within level 2 of the scale which points to a situation where

‗computer shadows human‘ in the self-management process.

This indicates that system A only has a narrow envelope of

environmental conditions in which it is both autonomic and

returns satisfactory behaviour. System B tends toward level 3

on the scale which is ‗human shadows computer‘ which

translates into a wider operational envelope, but once the

limits of that envelope are reached human input is needed in

the form of retuning, or manual override in the case of

oscillation, which for example system C can deal with

autonomicaly. System C falls within level 5, which points to

Characteristics (metrics) Contributing CHOP Sys A Sys B Sys C

Continuous C √ √ √
Unsupervised C √ √ √

Trends examination O - √ √

Stability O - - √

Dynamic (logic switching) O - - √

Signal characteristics C √ √ √

Signal differentiation C √ √ √
Failure sensitivity (sensors) H - - -

Robust (fault tolerance) H - - √

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

‗collaboration with reduced human intervention‘. This

indicates that C is sufficiently sophisticated to operate

autonomicaly and yield satisfactory results under almost all

perceivable operating circumstances.

Employing (6) to rank the functionalities and taking just

self-configuration for example, we find that in system A self-

configuration contributes 100% of its autonomic achievement,

while in systems B and C the contribution is 75% and 40%

respectively. This shows that system A is entirely a self-

configuring system, while system C is more of a self-

optimising system than B.

The benefit of analyzing Autonomic Systems in terms of

their extent of autonomicity not only offers a path to

Autonomic Systems‘ certification as stated earlier, it also

offers a way of comparing these systems, and also facilitates a

proper description of these systems to users.

V. CONCLUSION AND FUTURE WORK

A system is better defined by its capabilities and so

measuring the LoA of Autonomic Systems without a

reference to autonomic functionalities would be inaccurate.

We have proposed a CHOP-based LoA measurement. In our

proposal a typical AS is defined by the four CHOP

functionalities (self-configuring, -healing, -optimising and -

protecting) and LoA is measured with respect to these

functionalities. Each functionality is defined by a set of

metrics. The metrics values are normalised and aggregated to

give the autonomic contribution of each functionality which

are then combined to yield a LoA value for an AS. We have

adopted the maximum autonomic value of 8 to correspond

with the autonomy assessment scale defined in [1] to enable a

qualitative understanding of the quantitative LoA measure

proposed here. We have also shown how systems can further

be evaluated by looking at the ratio of autonomic

contributions of their separate functionalities. In this, we

found that only systems of the same autonomic categorisation

can be compared (e.g., a space exploration system cannot be

directly compared with a resource allocation system as both

are uniquely defined in terms of context and functionalities).

The standardization of a technique for the measurement

of LoA will bring many quality-related benefits which include

being able to compare alternative configurations of ASs, and

even to be able to compare alternate systems themselves and

approaches to building ASs, in terms of the LoA they offer.

This in turn has the potential to improve the consistency of

the entire lifecycle of Autonomic Systems and in particular

links across the requirements analysis, design and acceptance

testing stages.

As future work, we are looking at exploring areas where

the CHOP are not orthogonal and also how to properly define

and generate autonomic metrics to strengthen our framework.

This is a key component towards our wider research which

focuses on the challenge of validating AC systems to achieve

trustworthiness in Autonomic Systems.

REFERENCES

[1] Ryan W. Proud, Jeremy J. Hart, and Richard B. Mrozinski.
Methods for Determining the Level of Autonomy to Design
into a Human Spaceflight Vehicle: A Function Specific
Approach. http://handle.dtic.mil/100.2/ADA515467 accessed 28/03/11

[2] Thaddeus O. Eze, Richard J. Anthony, Chris Walshaw and
Alan Soper. The Challenge of Validation for Autonomic and
Self-Managing Systems. In proceedings of The 7th
International Conference on Autonomic and Autonomous
Systems (ICAS), May 22-27, 2011 – Venice/Mestre, Italy

[3] Clough B T. Metrics, Schmetrics! How The Heck Do You
Determine A UAV’s Autonomy Anyway? In Proceedings of
PerMis Workshop, pp 1–7. NIST, Gaithersburg, MD, 2002.

[4] IBM Autonomic Computing White Paper, An architectural
blueprint for autonomic computing. 3rd edition, June 2005

[5] Huebscher M. C. and McCann J. A.. A survey of autonomic
computing—degrees, models, and applications. ACM
Computer Survey, 40, 3, Article 7 (August 2008)

[6] Fernando Alonso, José Fuertes, Löic Martínez, and Héctor
Soza. Towards a Set of Measures for Evaluating Software
Agent Autonomy. In proceedings of 8th Mexican Int‘l
Conference on Artificial Intelligence (MICAI), 2009

[7] Sheridan T. B.. Telerobotics, Automation, and Human
Supervisory Control. The MIT Press. Cambridge, MA,
USA 1992. ISBN:0-262-19316-7

[8] Barber, K. S. and Martin, C. E.. Agent Autonomy:
Specification, Measurement, and Dynamic Adjustment. In
Proceedings of the Autonomy Control Software Workshop at
Autonomous Agents 1999 (Agents‘99), 8-15. Seattle

[9] Hui-Min Huang, Kerry Pavek, James Albus, and Elena
Messina. Autonomy Levels for Unmanned Systems (ALFUS)
Framework: An Update. In proceedings of SPIE Defense and
Security Symposium, Orlando, Florida. 2005

[10] Kephart J., Chess D. The Vision of Autonomic Computing.
Computer, IEEE, Vol 36, Issue 1, 2003, pp 41-50

[11] Bantz D. F. Bisdikian, C. Challener, D. Karidis, J.
P. Mastrianni, S. Mohindra, A. Shea, D. G. and Vanover,
M.. Autonomic Personal Pomputing. IBM Systems Journal,
Vol 42, No 1, 2003

[12] J. A. McCann and M. Huebscher. Evaluation issues in
Autonomic Computing. In proceedings of Grid and
Corporative Computing (GCC) Workshop, LNCS 3252, pp.
597-608, Springer-V erlag, Birlin Heidelber, 2004

[13] ISO/IEC 9126-1:2001(E), Software engineering — Product
quality — Part 1: Quality model

[14] R.J. Anthony. Policy-based autonomic computing with
integral support for self-stabilisation, Int. Journal of
Autonomic Computing, Vol. 1, No. 1, pp.1–33. 2009

[15] Gaea Honeycutt, How Much Do we Trust Autonomous
Systems? Unmanned Systems -2008

[16] H. Tianfield. Multi-agent Based Autonomic Architecture for
Network Management. In Proc. IEEE International
Conference on Industrial Informatics, pp. 462–469, 2003

[17] W. Truszkowski, L. Hallock, C. Rouff, J. Karlin, J. Rash, M.
G.Hinchey, and R. Sterritt, Autonomous and Autonomic
Systems. Springer, 2009

[18] Mark B., Sheng M., Guy L., Laurent M., Mark W., Jon C.
and Peter S., Quickly Finding Known Software Problems via
Automated Symptom Matching, The 2nd International
Conference on Autonomic Computing (ICAC), 2005,
Seattle, USA

 Sys C

 Sys B

 Sys A

 Sys

A

Sys

B

Sys

C

C 2 2 2

H 0 0 1

O 0 0.67 2

LoA 2 2.67 5

Figure 2: LoA representation of systems A, B & C

in the four CHOP domains.

TABLE II: ANALYSIS RESULT

O

H

C

P

2

2 2 1 1

1

2

1

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-187-8

ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems

http://handle.dtic.mil/100.2/ADA515467

