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Abstract— Autonomic and self-managing systems are 

increasingly pervasive across an ever-widening spectrum of 

application domains. Autonomic technology is advancing at a 

high rate, yet there are no universal standards for the technology 

itself and the design methods used. There are also significant 

limitations to the way in which these systems are validated, with 

heavy reliance on traditional design-time techniques, despite the 

highly dynamic behaviour of these systems in dealing with run-

time configuration changes and environmental and context 

changes. These limitations ultimately undermine the trustability 

of these systems and are barriers to eventual certification. This 

paper is concerned with setting the groundwork for the 

introduction of standards for Autonomic Computing (AC), in 

terms of technologies and the composition of functionality as well 

as validation methodologies. We propose that the first vital step 

in this chain is to introduce robust techniques by which the 

systems can be described in universal language, starting with a 

description of, and means to measure the extent of autonomicity 

exhibited by a particular system. We present a novel technique 

for measuring the Level of Autonomicity (LoA) along several 

dimensions of autonomic system self-CHOP (self-configuration, 

self-healing, self-optimisation and self-protection) functionalities. 

Keywords- autonomicity; level of autonomicity; autonomic system; 

trustworthiness; metrics 

I. INTRODUCTION 

 AC seeks the development of self-managing (or 

autonomic) systems to address management complexities of 

systems. The high rate of advancement of autonomic 

technology and methodologies has seen these systems 

increasingly deployed across a broad range of application 

domains yet without universal standards. Also the widening 

acceptance of Autonomic Systems (AS) is leading to more 

trust being placed in them with little or no basis for this trust, 

especially in the face of significant limitations regarding the 

way in which these systems are validated. The traditional 

design-time validation techniques fail to address the run-time 

requirements of AS‘ environmental and contextual dynamism. 

These limitations undermine trustability and ultimately 

impinge on certification. The more this proliferation goes on 

without these challenges being addressed, the more difficult it 

gets to introduce standards and eventually achieve certifiable 

AS. It has therefore become pertinent and timely to address 

these issues. A vital first step in this course would be 

standards for the universal description of these systems and a 

standard technique for measuring LoA achieved by these 

systems. Standards for AC would be concerned with 

technologies, composition of functionalities and validation 

methodologies.  By autonomicity we mean the ability of a 

system to pursue its goal with minimal external interference 

in the form of configuration or control. Then, the extent of 

this interference defines autonomicity levels. Now the 

questions facing the AC community are, for a given system, 

―How autonomic should a system be?‖ and ―How autonomic 

is a system and how is this determined?‖ The two questions 

address both pre and post system design phases. The first 

question is of primary importance to the designers of systems 

where autonomic specification is a critical part of the whole 

system requirements definition. A good example would be 

spaceflight vehicles addressed in [1], where a level of 

autonomy assessment tool was developed to help determine 

the level of autonomy required for spaceflight vehicles. The 

second question is in two parts. On the one hand is the need to 

define systems according to a measure of autonomicity and 

another is the method and nature of the measure. Addressing 

this issue is the main thrust of this paper. Another significant 

aspect addressed here is the need for evaluation of systems in 

terms of individual functionalities. Not only do we measure 

autonomicity but also look at how systems can be evaluated 

and compared in terms of their autonomic compositions. We 

call this ‗ranking‘ (see Section IV B). 

Thaddeus et al [2] identified that defining LoA is one of 

the critical stages along the path towards certifiable AS. 

Along this path also is the need for an appropriate testing 

methodology that seeks to validate the AS decision-making 

process. But to know what testing (validation) is appropriate 

requires knowledge of the system in terms of its extent of 

autonomicity. Another issue that underpins the need for 

measuring LoA is that a means of answering the identified 

questions is also a solution for AS evaluation and ranking and 

facilitates a proper understanding of such systems. 

Currently, the vast majority of research effort in this 

direction has progressed in answering the first question 

(―How autonomic should a system be?‖) by providing us with 

scales that describe autonomy in systems. These scales, 

referenced by many researchers, provide fundamental 

understanding of system autonomy by categorising autonomy 

according to level of human-machine involvement in 

decision-making and execution. Some key works in this area 

include [1], [3], and [4]. For us, these scales only characterise 

autonomy levels qualitatively and offer no means of 

quantitatively measuring extent of autonomicity. We would 

simply say that they are more sufficient for the purposes of 

proposing an appropriate level of autonomy during the design 

of a new system.   

ISO/IEC 9126-1 standard [13] decomposes overall 

software product quality into characteristics, sub 

characteristics (attributes) and associated measures. Adapting 
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this we define a framework for measuring LoA along several 

dimensions of AS self-CHOP functionalities. Systems are 

well-defined by their set of functional capabilities and a 

measure of these capabilities will form a better representation 

of the systems. In our proposal we look at the core 

functionalities of ASs, the self-CHOP functionalities (hereafter 

referred to as CHOP), and identify specific metrics for each of 

the functionalities. The cumulative measure of these metrics 

defines a LoA. Our method is based on the establishment of a 

generic technique that can be applied to any application 

domain. This work is novel as it offers a quantitative measure 

of LoA in terms of system‘s functionalities-based description. 

It also opens a new research focus for autonomicity 

measuring metrics. We believe this is timely because if not 

addressed we not only run the risk of classifying systems as 

trusted without basis but also risk losing track and control of 

these systems as a result of spiraling complexities in terms of 

technology and methodologies. [15] also raised the concern 

that if the proliferation of unmanned systems (and by 

extension ASs) is not checked by putting appropriate 

measures (or mechanisms) in place that ensure 

trustworthiness, the systems may ultimately lose acceptance 

and popularity. 

The remainder of this paper is organised as follows: 

related work is presented in section II. In Section III, we 

introduce metrics for measuring autonomicity. Our proposed 

LoA measure and a case study is presented in Section IV. 

Section V concludes the work. 

II. RELATED WORK 

The study of AC is now a decade old. However, its rapid 

advancement has led to a wide range of views on meaning, 

architecture, and implementations. The criticality of 

understanding extent of autonomicity in defining AC systems 

has necessitated the need for evaluating these systems. The 

majority of research in this area has targeted specific 

application domains with Unmanned Systems Technology 

(UST) topping the list.  

One major proposal for measuring LoA is the scale-

based approach. This approach uses a scale of (1– n) to define 

a system‘s LoA where ‗1‘ is the lowest autonomic level 

usually describing a state of least machine involvement in 

decision-making and ‗n’ the highest autonomic level 

describing a state of least human involvement. Clough [3] 

proposes a scale of (1–10) for determining Unmanned Aerial 

Vehicles‘ (UAV‘s) autonomy. Level 1 ‗remotely piloted 

vehicle’ describes the traditional remotely piloted aircraft, 

while level 10 ‗fully autonomous’ describes the ultimate goal 

of complete autonomy for UAVs. Clough populates the levels 

between by defining metrics for UAVs. Sheridan [7] also 

proposes a 10-level scale of autonomic degrees. Unlike 

Clough‘s scale, Sheridan‘s levels 2-4 centre on who makes 

the decisions (human or machine), while levels 5-9 centre on 

how to execute decisions. Ryan et al [1], in a study to 

determine the level of autonomy of a particular AS decision-

making function, developed an 8-level autonomy assessment 

tool.  The tool ranks each of the OODA (Observe, Orient, 

Decide and Act) loop functions across Sheridan‘s proposed 

scale of autonomy [7]. OODA is decision-making loop 

architecture for ASs. The scale‘s bounds (1 and 8) correspond 

to complete human and complete machine responsibilities 

respectively. They first identified the tasks encompassed by 

each of the functions and then tailored each level of the scale 

to fit appropriate tasks. The challenge here is ensuring relative 

consistency in magnitude of change between levels across the 

functions. The levels are broken into three sections. Levels 1-

2 (human is primary, computer is secondary), levels 3-5 

(computer and human have similar levels of responsibility), 

and levels 6-8 (computer is independent of human). To 

determine the LoA needed to design into a spaceflight vehicle 

Ryan et al needed a way to map particular functions onto the 

scale and determine how autonomous each function should 

be. They designed a questionnaire (sent to system designers, 

programmers and operators) that considered what they call 

‗factors for determining LoA‘ –these are LoA trust limit and 

cost/benefit ratio limit. This implies that a particular LoA for 

a function is favoured when a balance is struck between trust 

and cost/benefit ratio limits. Ultimately the pertinent question 

is ―How autonomous should future spaceflight vehicles be?‖ 

IBM‘s 5 levels of automation [4] describes the extent of 

automation of the IT and business processes. We consider 

these to be too narrowly defined and [5] observes that the 

differentiation between levels is too vague to describe the 

diversity of self-management. In general the autonomy scale 

approach is qualitative and does not discriminate between 

behaviour types. We posit that a more appropriate approach 

should comprise both qualitative and quantitative measures.  

Barber and Martin [8] supposes that in a multi-agent 

system environment, agent autonomy is measured in terms of 

a system-wide goal. It proposes a collaborative decision-

making algorithm for multi-agent systems. In the proposed 

algorithm, a plan for achieving the system‘s goal is decided 

by the agents. Every agent suggests a complete plan with 

justification for how to achieve the entire system‘s goal. Each 

agent evaluates each suggested plan and determines the value 

of its justification. Each plan receives an integer number of 

votes from the deciding agents. The plan with the highest 

votes becomes the plan for the entire system. The ratio of an 

agent‘s number of votes (received for suggested plan) to the 

total number of votes cast is a measure of that agent‘s 

autonomy and the extent of its capability to influence the 

system. This method, however, does not offer a measure for 

LoA but gives a valuable description of agents‘ individual 

influence in a multi-agent system environment. 

Fernando et al [6] proposes measures for evaluating the 

autonomy of software agents. It believes that a measure of 

autonomy (or any other agent feature) can be determined as a 

function of well-defined characteristics. Firstly it identifies 

the agent autonomy attributes (self-control, functional 

independence, and evolution capability) and then defines a set 

of measures for each of the identified attributes. By 

normalising the results of the defined measures using a set of 

functions, the agent‘s LoA is defined. [6] considers 

autonomicity measure with reference to system‘s 
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characteristics and attributes. But in that work 

‘characteristics’ are a broad range of attributes that describe a 

system which also include features outside the system‘s core 

functionalities and so in a way are vague and limited in 

offering a proper and conclusive description of that system. 

We have adapted this approach in our proposal for ASs but 

with reference to self-CHOP functionalities. 

III. AUTONOMICITY MEASURING METRICS  

In this section, we introduce metrics for each of the 

functionalities that define autonomicity of AS. Though 

metrics are application domain dependent, the metrics 

presented here are generic and serve as examples. We present 

at least one metric for each of the functionalities. This is part 

of a wide (and separate) research focus. This section only 

focuses on how autonomic metrics can be generated. We also 

show how metrics can be normalised to yield autonomic 

values (see Section IV A). We will start with a definition of 

each CHOP. (For more on these definitions see [10] and [12]). 

Self-Configuring: A system is self-configuring when it 

is able to automate its own installation and setup according to 

high-level goals. When a new component is introduced into 

an AS it registers itself so that other components can easily 

interact with it. The extent of this interoperability ( I ) is a 

measure of self-configuration, measured as ratio of the actual 

number of components ( actual in ) successfully interacting with 

the new component (after configuration) to the number of 

components expected ( expected in ) to interact with the new 

component. 
 

1

actual

expected

i

i

i n

n
I           (1) 

 

Interoperability ratio I measures to what extent a system is 

distorted by an upgrade. A system is self-configuring to the 

extent of its ability to curb this distortion. This example can 

be related to the problem diagnosis system for AS upgrade 

discussed in [10]. Here an upgrade introduces 5 software 

modules. The installation regression testers found faulty 

output in 3 of the new modules. This implies that only 2 

modules out of 5 successfully integrate with the system. 

Self-Optimising: A system is self-optimising when it is 

capable of adapting to meet current requirements and also of 

taking necessary actions to self-adjust to better its 

performance. Resource management (e.g., load balancing) is 

an aspect of self-optimisation. An AS is then required to be 

able to learn how to adapt its state to meet the new challenges. 

Also needed is consistent update of the system‘s knowledge 

of how to modify its state. State is defined by a set of 

variables such as current load distribution, CPU utilization, 

resource usage, etc. The values of these variables are 

influenced by certain event occurrences like new 

requirements (e.g., process fluctuations or disruptions). By 

changing the values of these variables, the event also changes 

the state of the system. The status of these variables is then 

updated by a set of executable statements (policies) to meet 

any new requirement. A typical example would be an 

autonomic job scheduling system. At first, the job scheduler 

could assign equal processing time quanta to all systems 

requiring processing time. The size of the time quantum 

becomes the current state and as events occur (e.g., 

fluctuations in processing time requirement, disruptions of 

any kind, etc.), the scheduler is able to adjust the processing 

time allocation according to priorities specified as policies. In 

this way the state of the system is updated. But this may lead 

to erratic tuning (as a result of over or under compensation) 

causing instability in the system. We define Stability as a 

measure of self-optimisation. If an event leads to erratic 

behaviour, incoherent results or system not been able to 

retrace its working state beyond a certain safe margin (a 

margin within which instability is tolerated) then the system is 

not effectively self-optimising.  

Self-Healing: A system is self-healing when it is able to 

detect errors or symptoms of potential errors by monitoring its 

own platform and automatically initiate remediation [11]. 

Fault tolerance is one aspect of self-healing. It allows the 

system to continue its operation possibly at a reduced level 

instead of stopping completely as a result of a part failure. 

One critical factor here is latency; the amount of time the 

system takes to detect a problem and then react to it. We 
define reaction time T as a metric for self-healing capability. 

This is crucial to the reliability of a system. If a change occurs 

at time ta and the system is able to detect and work out a new 

configuration and ready to adapt at time tb then (2) defines 

the reaction time T. (Average is taken instead where 
variations of T are possible). 

 

b aT t t                                (2) 
 

A case scenario is a stock trading system where time is 

of paramount importance. The system needs to track changes 

(e.g., in trade volumes, price, rates etc.) in real time in order 

to make profitable trading decisions.  

Self-Protecting: A system is self-protecting when it is 

able to detect and protect itself from attacks by automatically 

configuring and tuning itself to achieve security. It may also 

be capable of proactively preventing a security breach 

through its knowledge based on previous occurrences. While 

self-healing is reactive, self-protecting is proactive. A 

proactive system, for example, would maintain a kind of log 

of trends leading to security problems (threats and breaches) 

and a list of solutions to resolve them (a list of problems and 

corresponding solutions only applies to self-healing). One 

major metric here is the ability of the system to prevent 

security issues based on its experience of past occurrences. 

For example let‘s assume p  {pij} to be true if i
th

 trend leads 

to j
th

 problem where pij is a log of all identified trends and 

corresponding problems. p is a particular instance of trend-

problem combination. A self-protecting manager will avoid a 

situation of same trend leading to the same problem again by 

blocking the problem, addressing it or preventatively shutting 

down part of the system. We define ability to detect repeat 

events R as a self-protecting metric. R is a Boolean value 

(True indicates the manager is able to stop a repeating 
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problem and False otherwise).  If we choose two samples of 

{pij} at different times (t1 and t2) then (3) defines R. (Different 

trends may lead to the same problem but a repeated trend-

problem combination indicates a failure of the system to 

prevent a reoccurrence).  
 

R True ij if 1 2{ } { }ij t ij tp p                     (3) 
 

One typical implementation of this is an antivirus 

system. Some antivirus systems learn about trends or patterns 

(signatures) and are able to make decisions based on this to 

proactively protect a system from an attack. The antivirus is 

able to stop repeatable patterns. Detecting problem 

reoccurrence is an active research focus in Autonomic 

Computing [18]. 

IV. PROPOSED LOA MEASURE 

An AS is defined based on its achievement of the CHOP 

capabilities [11]. In our approach, we define a level of AS in 

terms of its extent of achieving the identified functionalities. 

(We understand that these functionalities may overlap i.e., are 

not necessarily orthogonal, thus some algorithms may 

influence several functionalities, but to make progress in this 

area we assume orthogonality for this preliminary work). If a 

system fails to provide at least a certain level of one of the 

CHOP, the system is said to be non autonomic. On the other 

hand if the system provides a full level of all the four 

capabilities, it is said to have achieved full autonomicity (as 

defined by our proposed scheme). Each functionality is 

defined by a set of metrics. An autonomic value contribution 

is assigned to each functionality which is spread across the set 

of metrics for that functionality. It then follows that each 

metric contributes a certain definite level of the assigned 

value. The cumulative normalisation of the measure of all 

metrics (for all functionalities) defines a LoA. Let the 

maximum LoA value for an AS be M. In generic terms, this 

will mean an AS having a LoA value of N (0 ≤ N ≤ M) and 

each functionality contributing a value in the range (0 ≤ x ≤ 

M/4), while each metric of each functionality contributes 

(M/4)/m (m ≠ 0) autonomic value, where m is the number of 

identified metrics defining a particular functionality, and the 

constant 4 represents four CHOP functionalities. (With an 

ongoing debate on the composition of AS functionalities and 

the list substantially growing [16, 17], we choose to limit it to 

the original, and generally accepted four). 

Given that any AS is defined by the four autonomic 

functionalities, the expression (4) is the representation of the 

possible combinations of the functionalities.  
4

1


n

r

rC      16 Combinations                    (4) 

This will give 15 possible combinations (excluding zero 

value which is a special case and not considered further as it 

means the system provides no autonomic functionality) where 

(n = 4) is the number of functionalities (the CHOP) and r is a 

category of the possibilities (a specific implementation 

combination of the functionalities). The CHOP functionalities 

may not be of equal importance to an application domain so 

categories indicate what CHOP is important to an application 

domain. Category 2 means that only two functionalities are of 

importance to the system‘s domain –so for example {C, H, 

not O, not P} is a specific category representing a system 

indicated by line 4 in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 implies that, in terms of autonomic functionality 

composition, a system deemed autonomic (an AS) can be 

defined (or described) in one of fifteen ways. Each trace of 

line from start to finish represents an AS except line 16. If we 

define autonomic metrics for each of the functionalities, then 

the sum of the autonomicity in each of the constituent 

functionalities for a particular AS gives the system‘s LoA (5). 

For example, the LoA of a system represented by line 9 in 

Figure 1 will be the summation of the autonomic metrics 

defining the self-healing, self-optimising and self-protecting 

functionalities.   

 

 
1 1 1 1

[ ] [ ] [ ] [ ]
   

      
pc h o mm m m

i j k l

i j k l

LoA c h o p                  (5) 

 

Subscripted m is the number of identified metrics for the 

respective functionalities. ci, hj, ok and pl are the autonomic 

metric contributions of the functionalities. These can be 

composed of functions of different measures but as explained 

in Section III they are normalised to yield autonomic values. 

A. Normalising Autonomic Metrics 

Depending on the application domain, metrics could be 

scalar (of different measures) or non scalar values (e.g., 

observing a capability). One challenge here is defining and 

normalizing appropriate autonomic metrics. The metrics‘ 

values (irrespective of units of measure) are normalized into 

real numbers that are summed to give LoA (N). We identify 

two simple methods for normalization: 1) By ranking values 

according to high, medium, and low. The meaning of this 

ranking is metric-dependent and is based on a defined margin. 

For example, if a maximum expected value is 6, a value of 0-

2 will be ranked low, while 3-4 will be ranked medium and 5-

Figure 1: Combination of autonomic functionalities.  

 

AS 
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6 high. A medium value would contribute fifty percent of the 

metric‘s autonomic value contribution of (M/4)/m, while the 

two extremes would contribute zero and hundred percents. 

This can be used for scalar metrics like the interoperability 

ratio and reaction time metrics discussed in Section III. 2) By 

having a Boolean kind of contribution where two values can 

suggest two extremes –either affirming a capability or not. 

For example, if a ‗True‘ outcome affirms a capability then it 

contributes hundred percent of the autonomic value 

contribution, while a ‗False‘ outcome contributes zero. 

Another example in this category is where an instance of an 

event either does or doesn‘t confirm a capability (e.g., the 

stability metric for self-optimising). 

B. Evaluating Autonomic Systems 

Evaluating Autonomic Systems using (5) gives their 

separate LoA values. Systems are classified according to 

categories. This is in terms of what CHOP functionalities are 

required in their specific application domains. One thing 

remains to be clarified at this point –‗how do we rank each 

functionality in the autonomic composition of a system?‘ This 

can be in terms of importance or extent of functionality 

provided. We focus on the later –the extent of functionality 

provided as against what is needed. Take for instance, if two 

systems are of the same category we may wish to know which 

of them provides a greater degree of say self-healing or self-

protection in any application domain. To address this we 

adapt a function that measures agent‘s decision-making power 

in a multi-agent AS defined in [8]. The rank R of a 

functionality in the autonomic composition of a system is 

defined by the ratio of its autonomic contribution x to the total 

autonomic contribution of all metrics defining the composite 

functionalities of that system.  

R
x

LoA
         (6) 

where x is the autonomic contribution of the considered 

functionality which could be the summation of ci, hj, ok or pl 

as in (5). With (6) any composite functionality can be ranked 

in terms of their autonomic contribution. (See case study). 

C. Autonomic Systems Evaluation Case Study 

Our case study is Dynamic Qualitative Sensor Selection 

System (DQSSS), based on work in [14]. The goal of DQSSS is 

to dynamically select a sensor (amongst many) based on 

continuously variable qualitative characteristics (e.g., signal 

quality and noise levels). This is typical of an application that 

accesses several sensors generating raw data from monitoring 

a particular context; these could be physical attributes of a 

system or perhaps information feeds from a service (e.g. 

financial data). In such applications, it is expected that a 

DQSSS would generate and differentiate signal characteristics 

and trends, choose the best signal and without compromising 

stability, be continuous, unsupervised, dynamic, and detect 

and react if a sensor goes down. Autonomic metrics are drawn 

from these characteristics. By definition self-configuration, 

optimization and healing are of importance to this system 

(r=3). The DQSSS presented in [14] is in three stages which 

we refer to as systems A, B and C. All three systems are able 

to differentiate sensors by their signal characteristics such as 

noise level and spikes. These are then combined in a utility 

function to determine the better quality sensor. Systems B and 

C are able to generate trends in signal quality using trend 

analysis logic. Only system C ensures stability (avoiding 

unhealthy oscillation in sensor selection) by implementing 

dead zone logic, while none of the systems has a way of 

detecting a failed sensor.  
 

TABLE I: REPRESENTATION OF THE DQSSS [14] 

 

We adopt the 8-level autonomy assessment scale in [1] 

as a way of qualitatively interpreting our results. In keeping 

with this we adopt the arbitrary value 8 as the maximum LoA 

implying that each CHOP contributes an autonomic value in 

the range (0 ≤ x ≤ 2) spread across its metrics. Normalizing the 

identified metrics in Table I (the numbers of metrics in each 

category are: C=4, H=2, O=3) in the autonomic value range (0 

≤ x ≤ 2) gives the result in Table II. 

Figure 2 is a radar chart analysis of systems A, B and C 

in terms of their separate autonomic functionality 

composition. Recall that only three functionalities (CHO-) are 

of importance here which means maximum LoA value of 6. 

Out of this maximum value systems A, B and C achieved the 

values 2 (i.e., 33%), 2.67 (i.e., 45%) and 5 (i.e., 83%) 

respectively. This means that in a dynamic sensor selection 

application domain (as defined), system C can be depended 

upon to carry out the task with a confidence level of 83% and 

0.17 risk factor, B with 45% and 0.55 risk factor, while A 

with 33% and 0.67 risk factor. Furthermore this can also be 

interpreted using Ryan et al‘s level of autonomy assessment 

scale [1]. The scale as explained in Related Work section is 

an 8-level autonomy assessment tool used for either 

identifying (qualitatively) the level of autonomy of an 

existing system or for proposing an appropriate level of 

autonomy during the design of a new system. System A falls 

within level 2 of the scale which points to a situation where 

‗computer shadows human‘ in the self-management process. 

This indicates that system A only has a narrow envelope of 

environmental conditions in which it is both autonomic and 

returns satisfactory behaviour. System B tends toward level 3 

on the scale which is ‗human shadows computer‘ which 

translates into a wider operational envelope, but once the 

limits of that envelope are reached human input is needed in 

the form of retuning, or manual override in the case of 

oscillation, which for example system C can deal with 

autonomicaly. System C falls within level 5, which points to 

Characteristics (metrics) Contributing CHOP Sys A Sys B Sys C 

Continuous  C √ √ √ 
Unsupervised C √ √ √ 

Trends examination O - √ √ 

Stability O - - √ 

Dynamic (logic switching) O - - √ 

Signal characteristics  C √ √ √ 

Signal  differentiation C √ √ √ 
Failure sensitivity (sensors) H - - - 

Robust (fault tolerance) H - - √ 
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‗collaboration with reduced human intervention‘. This 

indicates that C is sufficiently sophisticated to operate 

autonomicaly and yield satisfactory results under almost all 

perceivable operating circumstances.  

Employing (6) to rank the functionalities and taking just 

self-configuration for example, we find that in system A self-

configuration contributes 100% of its autonomic achievement, 

while in systems B and C the contribution is 75% and 40% 

respectively. This shows that system A is entirely a self-

configuring system, while system C is more of a self-

optimising system than B.  

 

 

 

 

 

 

 

 

 

 

 

The benefit of analyzing Autonomic Systems in terms of 

their extent of autonomicity not only offers a path to 

Autonomic Systems‘ certification as stated earlier, it also 

offers a way of comparing these systems, and also facilitates a 

proper description of these systems to users.  

V. CONCLUSION AND FUTURE WORK 

A system is better defined by its capabilities and so 

measuring the LoA of Autonomic Systems without a 

reference to autonomic functionalities would be inaccurate. 

We have proposed a CHOP-based LoA measurement. In our 

proposal a typical AS is defined by the four CHOP 

functionalities (self-configuring, -healing, -optimising and -

protecting) and LoA is measured with respect to these 

functionalities. Each functionality is defined by a set of 

metrics. The metrics values are normalised and aggregated to 

give the autonomic contribution of each functionality which 

are then combined to yield a LoA value for an AS. We have 

adopted the maximum autonomic value of 8 to correspond 

with the autonomy assessment scale defined in [1] to enable a 

qualitative understanding of the quantitative LoA measure 

proposed here. We have also shown how systems can further 

be evaluated by looking at the ratio of autonomic 

contributions of their separate functionalities. In this, we 

found that only systems of the same autonomic categorisation 

can be compared (e.g., a space exploration system cannot be 

directly compared with a resource allocation system as both 

are uniquely defined in terms of context and functionalities).  

The standardization of a technique for the measurement 

of LoA will bring many quality-related benefits which include 

being able to compare alternative configurations of ASs, and 

even to be able to compare alternate systems themselves and 

approaches to building ASs, in terms of the LoA they offer. 

This in turn has the potential to improve the consistency of 

the entire lifecycle of Autonomic Systems and in particular 

links across the requirements analysis, design and acceptance 

testing stages. 

As future work, we are looking at exploring areas where 

the CHOP are not orthogonal and also how to properly define 

and generate autonomic metrics to strengthen our framework. 

This is a key component towards our wider research which 

focuses on the challenge of validating AC systems to achieve 

trustworthiness in Autonomic Systems. 
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Figure 2: LoA representation of systems A, B & C 

in the four CHOP domains. 

TABLE II: ANALYSIS RESULT 
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