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Abstract— Inertial data can represent a rich source of 
clinically relevant information which can provide details on 
motor assessment in subjects undertaking a rehabilitation 
process. Indeed, in clinical and sport settings, motor 
assessment is generally conducted through simple subjective 
measures such as a visual assessment or questionnaire given by 
caregivers. As part of a mobile health application, wireless 
sensors such as inertial measurement units and associated data 
sets can help provide an objective and empirical measure of a 
patient’s progress through rehabilitation using on body 
sensors. In this publication, several metrics in different 
domains have been considered and extrapolated from the 3D 
accelerometer and angular rate data sets collected on an 
impaired subject with knee injury, via a wearable sensing 
system developed at the Tyndall National Institute. These data 
sets were collected for different activities performed across a 
number of sessions as the subject progressed through the 
rehabilitation process. Using these data sets, a novel and 
effective method has been investigated in order to define a 
single score indicator which can provide accurate quantitative 
analysis of the improvement of the subject throughout their 
rehabilitation. The indicator compares impaired and 
unimpaired limb motor performance. The present work proves 
that the defined score indicator can be taken into account by 
clinicians to study the overall patients’ condition and provide 
accurate clinical feedback as to their rehabilitative progress. 

Keywords- ACL; IMU; Inertial Sensors; Metrics; Motor 
Assessment; Rehabilitation; Wearables.  

I. INTRODUCTION 
Motor assessment is the part of biomechanics which 

studies the process by which the musculoskeletal system can 
create and control coordinated movements [1]. Voluntary 
movement requires the transmission of a message from the 
brain to the appropriate muscle which also controls the 
smoothness and coordination of the movement. If motor 
function is intact, muscles can be moved to command 
allowing symmetrical movements with significant strength 
levels. With particular reference to the treatment of patients 
with lower extremity injuries, literature has recently shown a 
paradigm shift, going from time-dependent concepts to 
function-based concepts [2], where qualitative and 
quantitative tests comparing affected and unaffected sides 
must be met before successfully accessing the following 
rehabilitation stage.  

Qualitative and quantitative motor assessment is 

typically divided into clinimetrics, balance analysis, and gait 
analysis. Indexes, rating scales, questionnaires, and 
observational forms represent the clinical standard for knee 
joint assessment, including, for instance, Knee Injury and 
Osteoarthritis Outcome Score (KOOS), Oxford Knee Score 
(OKS), Tegner Lysholm Knee Scoring Scale, International 
Knee Documentation Committee (IKDC), Western Ontario 
& McMaster Universities Osteoarthritis Index (WOMAC) 
[3]. However, these tools are subjective and, even when 
utilised by experienced clinicians, may not be adequate or 
sensitive enough. 

Gold-standard technology adopted in gait analysis for 
quantitative movement analysis may include camera-based 
motion analysis, instrumented treadmills, force platforms 
[4], but their application is constrained by costs, access to 
specialist motion labs, as well as practicality of application 
for larger patient/subject groups.  

A viable alternative is represented by the adoption of 
small-size low-cost wearable sensing units whose 
consideration for lower-limbs monitoring during 
rehabilitation, in order to provide objective performance of 
impaired subjects throughout the process, has been growing 
lately. Indeed, inertial sensors, typically including 
accelerometers, gyroscopes, and magnetometers, have been 
used to derive gait parameters efficiently both in healthy and 
symptomatic subjects [5].  

This paper describes a long-term investigation of post-
injury rehabilitation carried out by using a wearable inertial 
system developed at the Tyndall National Institute, 
consisting of two sensors per limb, able to provide a 
complete biomechanics assessment for a series of scripted 
activities. The work is organized as follows. Hardware 
platform description and test protocol are described in 
Section II and III, respectively. The features extracted are 
illustrated in Section IV. The mathematical model is outlined 
in Section V. The obtained results are shown in Section VI. 
Finally, conclusions are drawn in the final section. 

II. HARDWARE PLATFORM 
The Tyndall biomechanical monitoring system consists of 
two Tyndall Wireless Inertial Measurement Units (WIMUs) 
per leg [6]-[9]. The platform measures 44 × 30 × 8 mm and 
7.2 g without battery as shown in Figure 1. 

The WIMU is equipped with a high-performance low-
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power ARM Cortex-M4 32-bit microprocessor operating at 
a frequency up to 168 MHz part of the STM32F0407 family 
produced by STMicroelectronics. It also features a floating 
point unit single precision, high-speed embedded memories 
(1 Mb of Flash memory, 192 + 4 Kb of SRAM), an 
extensive range of enhanced I/Os and peripherals, and 
standard and advanced communication interfaces.  
 

 
Figure 1.  Tyndall Wireless Inertial Measurement Unit (WIMU).  

Inertial sensors (3D accelerometer and gyroscope, MPU-
9250 from Invensense) are the main sensing components on 
the platform and are wired to the microcontroller through 
the I2C communication. Sensor data can be transmitted 
wirelessly via a communication BLE-complaint module 
(Broadcom BCM20737S), with integrated ARM CM3 
microcontroller unit, radio frequency and embedded 
Bluetooth Smart Stack, or logged to a removable Micro SD 
card with sampling rate of 250 Hz.   

For measurement of inertial data, the Invensense MPU-
9250 was chosen for its low power consumption and the 
high range (16g for accelerometer and 2000 deg/s for the 
gyroscope) with limited noise levels.  

The platform also features a USB connector, battery 
charger, fuel gauge, external I/O connectors, three LEDs, 
and power switch. Even if not considered in the presented 
investigation, the platform could also provide additional 
sensing data, such as magnetic field (from the MPU-9250) 
and environmental data (pressure, humidity, temperature) 
from the Bosch BME280. All the components fit with 
mobile applications requirements and, averagely, the overall 
power consumption in TX/RX mode is 100 mA, dropping to 
40 mA (17 mA) for stand-by (sleep mode).  

III. PROTOCOL FOR DATA COLLECTION 
In conjunction with clinical partners, an experimental 

protocol for data collection was developed to evaluate 
patient progress. The rehabilitation exercises considered are 
walking, half-squat, hamstring curl, and flexion-extension, 
defined by physiotherapists as indicators of rehabilitation. 

These are described as follows: 
- In the walking exercise, the subject walks on a 

calibrated treadmill, which is operated at defined speeds 
(3-4-6 km/h) for approximately one minute per test. 

- In the half-squat exercise, the subject stands with their 
feet shoulder’s distance apart and arms crossed on the 

chest. Keeping the chest lifted, the hips are lowered 
about 10 inches, planting the weight in the heels. The 
body is then brought back up to standing by pushing 
through the heels. 

- In the hamstring curl exercise, the subject stands and 
bends their knee, raising the heel toward the ceiling as 
far as possible without pain, relaxing the leg after each 
repetition. This is repeated on both legs. 

- In the flexion-extension exercise, the subject lies supine 
on the floor and bends their knee raising it toward the 
chest as far as possible without pain, relaxing the leg 
after each repetition. This is repeated on both legs. 

 
The system has been tested with an impaired subject. 

The impaired subject is a female athlete, age: 44, height: 
161 cm, and weight: 52 kg, with good general health status, 
with a history of knee injuries and surgery (reconstructed 
anterior cruciate ligament in the left leg following a sporting 
injury). The tests were carried out during the course of the 
rehabilitation program, e.g., starting 1 month before surgery 
and finishing 7 months after surgery. Overall, the subject 
has been evaluated in 8 sessions through three periods: once 
in pre-surgery conditions (e.g., 1 month before surgery), 
then 6 times in a range of 20 weeks starting one month after 
surgery (namely short-term post-surgery), and finally once 3 
months after the last data capture (e.g., during long-term 
post-surgery period). 

A number of repetitions has been collected for each 
exercise, so as to provide an accurate picture of the overall 
conditions, and each exercise was evaluated during the 
majority of the data captures. Hamstring curl, as well as 
walking at 3 and 4 km/h, were performed at every session. 
Similarly, flexion-extension was always recorded except in 
the pre-surgery session due to subject’s impairment of 
movement. For the same reason, half-squat and walking at 6 
km/h were not recorded in the first 2 sessions after surgery. 

IV. FEATURES EXTRACTION 
The metrics considered for the patient’s assessment are 

divided into seven categories described below. More details 
on the computation of the features are reported in [6]-[8]. 

A. Gait Metrics 
Well-known gait measures are calculated from the data 

recorded by the inertial sensors attached on the shanks, 
including: Gait Cycle Time (GCT), Stance Phase (StP), 
Swing Phase (SwP), Stride Length (SL), Stride Speed (SS), 
Stride Clearance (SC). This information is obtained for both 
legs only for walking. This category includes 6 features. 

B. Range of Motion (RoM) Metric 
Knee Range of Motion (RoM), defined as the peak-to-

peak amplitude of the knee joint angle over the x-, y-, and z-
axis during a single exercise repetition, is obtained for both 
limbs and for all the exercises taken into account. This 
category includes 3 features. 
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C. Kinematic Metrics 
Kinematic metrics, which have been occasionally 

adopted for gait analysis, can provide useful information on 
the movement analysis. Those metrics include: Range of 
Angular Velocity (RAV), Vertical Acceleration (VA), 
Vertical Velocity (VV), Fluency (along the three axis), 
Kinetic Value (KV). All those features are calculated for 
each of the 4 sensors used for data collection and for all the 
exercises. This category includes 7 features. 

D. Stability Metric 
Stability is defined as the dynamic time warping of the 

x-, y-, z-axis of the acceleration and angular rate signals 
measured at two consecutive repetitions/strides, then 
averaged based on all the repetitions present in a test 
session. Those features are calculated for each of the 4 
sensors used for data collection and for all the exercises. 
This category includes 3 features. 

E. Jerk-based Metrics 
Jerk is the rate of change of the acceleration in a 

repetition. Several jerk-based metrics have been investigated 
in literature, including: Integrated Squared Jerk (ISJ), Mean 
Squared Jerk (MSJ), Cumulative Square Jerk (CSJ), Root 
Mean Square Jerk (RMSJ), Mean Square Jerk normalized 
by peak speed (N_MSJ), Integrated Absolute Jerk (IAJ), 
Mean Absolute Jerk normalized by peak speed (N_MAJ), 
Dimensionless Square Jerk (DSJ). Those features are 
calculated on the three axis, for each of the 4 sensors used 
for data collection, and for all the exercises. This category 
includes 24 features. 

F. Statistical Metrics 
This category takes into account various well-known 

statistical features extrapolated from the time-domain. 
Those variables are applied on every segmented walking 
stride/exercise repetition for both legs performed during the 
sessions. The selected features are described below: 
- Mean, standard deviation, skewness, kurtosis, root 

mean square, calculated over the acceleration and 
angular velocity magnitudes, 

- Mean, standard deviation, skewness, kurtosis, root 
mean square, minimum, maximum, Coefficient of 
Variation (CV), and Peak-to-Peak (p-p) amplitude over 
the x-, y-, and z-axis of the acceleration and angular 
rate signals. 

All those features are calculated for each of the 4 sensors 
used for data collection. This category includes 64 features. 

G. Spectral/Entropy/Information-Theoretic Metrics 
This category takes into account various well-known 

spectral, entropy, and information-theoretic feature. Spectral 
metrics are obtained using the Fast Fourier Transform 
(FFT). These variables are applied on the raw 3-axis of the 
accelerometer/angular rates data collected for both legs on 
each session. All these features are calculated for each of the 

4 sensors used for data collection. This category includes 74 
features. The features are: Dominant Frequency (DF) and its 
Width (FWHM), Spectral Centroid (SpC), Power in 1.5-3 
Hz (LFP), Power in 5-8 Hz (MFP), 25-50-75% Quartile 
Frequency (QF), Spectral Edge Frequency (SEF) at 95% 
(calculated on the magnitude signal), Harmonic Ratio (HR), 
Ratio High-Low bands (RHL), Frequency-Domain Entropy 
(FER), Lempel-Ziv Complexity (LZC).  

While LZC is calculated on the single repetitions/strides, 
the other features are not extrapolated for each segmented 
walking strides/repetitions but are obtained for a sliding 
window covering the 50% of the whole signal, with 10% 
overlapping. The data analysis is implemented off-line over 
the data collected using a commercial software package 
(MATLAB R2015a, The MathWorks Inc., Natick, MA, 
2015). Each repetition/stride was visually segmented. 

V. SCORE MODELING 
Preliminary analysis described in [6]-[8] have highlighted 

that several parameters are seen to be potentially relevant to 
provide indications on patient’s performance during 
rehabilitation. However, to support clinicians during their 
clinical practice, it is essential to obtain a single indicator 
scoring regarding patient’s performance, so as to avoid 
analyzing all the parameters separately.  

The Mahalanobis distance is typically adopted to describe 
how much a patient’s performance deviates from the control 
group. However, this distance does not allow the 
comparison between the data distribution related to the 
affected and unaffected side, which is essential for 
rehabilitation. Moreover, this distance assumes that control 
and patient group have comparable standard deviations, 
which cannot be assumed in patients following orthopedic 
injuries. A more reliable extension of this metric is the 
Bhattacharyya Distance DB, which measures the similarity 
of two discrete distributions. DB obtained as follows: 
 Given a specific session and a specific exercise, every 

feature listed in Section IV is extrapolated from the raw 
inertial data of all 4 sensors.  

 Potential outliers in the feature distribution are then 
detected and replaced via Winsorization.  

 Once the outliers are replaced, the feature vectors for 
the left and right leg are considered as input of the DB 
calculation with their associated averages and standard 
deviations. This process is repeated for every exercise, 
session and feature. As a result, after M sessions, for 
every feature the distance vector C is obtained. 

An accurate assessment of a patient’s performance 
requires the selection of the informative features from every 
category, excluding those uninformative or redundant. Some 
features can be informative for some exercises and being 
redundant for others; thus, it is important to define an 
automatic method for selecting those features.  

A common technique for feature selection is the Least 
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Absolute Shrinkage and Selection Operator (LASSO) [10]. 
This regression tool requires to define an output in order to 
adjust the weights of a linear model which defines the 
features to be selected. As shown in [10], this output was 
defined as linearly increasing from the first to the last test 
session, with this period ranging from 4 to 12 days in the 
experiments carried out by the authors. However, even 
though this assumption can be accepted for the short period 
of time immediately following surgery, it may be unrealistic 
when analyzing rehabilitation outcomes for a longer period 
post-surgery and also pre-surgery.  

An alternative feature selection approach recently studied 
is the Clustering Coefficients of Variation (CCV) [11], 
which is a light-weight and efficient method based on 
feature variability. The features are clustered according to 
their CV, and then the optimal cluster of features for the 
model is chosen. Features showing the most variation 
between limbs and between different sessions over the 
course of the rehabilitation represent informative features to 
be chosen. Therefore, for each M-dimensional distance 
vector C calculated, the associated CV is obtained. If the 
CV is lower than one, than the associated distance vector is 
discarded. Following this initial selection, the remaining 
distance vectors are normalized through the standard score 
approach and then considered as points in an M-dimensional 
space where they are clustered via a weighted K-means 
clustering (K = 2 [11]). The normalization step before the 
clustering is important in order to guarantee that different 
scaling between the features could not impact the clustering.  

 

 
Figure 2.  Scoring algorithm. 

As a result of the weighted K-means, the features are 
divided in two clusters. For both clusters, the normalized 
distance vector C are averaged among all the features, 
resulting in two M-dimensional scoring vectors. These 
scoring vectors are then rescaled so as to be within the range 
[0-1]. A high score indicates a large distance in performance 
between limbs, and vice versa a low score represents a small 
difference. One of the two clusters (and associated scoring 
vectors) provides the optimal feature subset, and this 
selection is realized by using Hyper-Pipes [11].  

To the best of the authors’ knowledge, it is the first time 
that a combination of Bhattacharrya distance and CV-based 
weighted K-means clustering is investigated for monitoring 
patients’ progress in a rehabilitation context. A summary of 
the scoring algorithm used is illustrated in Figure 2. 

VI. RESULTS 
In each session, each exercise was divided in two separate 

tests (both logged for 60 sec), and in each of the two tests a 
series of repetitions have been carried out by the subject. 
The overall number of repetitions recorded for all the 
sessions was: 184 hamstring curls (92 left / 92 right), 134 
flexion/extensions (67 left / 67 right), 66 half squats, 478 
strides for both legs when walking at 3 km/h, and similarly 
544 strides when walking at 4 km/h, and 512 strides when 
walking at 6 km/h.  

WIMUs have been attached to the anterior tibia, 10 cm 
below the tibial tuberosity, and to the lateral thigh, 15 cm 
above the tibial tuberosity using surgical adhesive tape. For 
each test, the features, separated for every category as 
described in Section IV, were extrapolated and compared 
among the different sessions after applying the scoring 
method defined in Section V.  

Finally, in order to have the same reference system for 
both WIMUs worn on the same leg, the method proposed by 
Seel et al. [12] has been adopted to virtually rotate around 
an axis the raw inertial data recorded on the shank. As a 
result, for all the WIMUs involved, the x-axis represents the 
mediolateral axis, the y-axis is the anteroposterior one, 
while the z-axis is the vertical axis. Thus, the plane y-z 
represents the sagittal plane. 

Results for the metrics associated with gait, RoM and 
kinematics are described in the following subsections. 
Results for additional metrics are still under analysis and 
will be described in future works. 

A. Gait Metrics 
Considering the gait results at 3 km/h, the metrics which 

are clustered and show patients’ progress during 
rehabilitation are SwP and StP. The resulting score shows a 
clear increase in association to the second session (due to 
the early stage of the recovery process post-surgery), with a 
consecutive decreasing trend converging toward the score 
value reported in the pre-surgery session. A similar behavior 
is also shown in the gait exercise walking at 4 km/h, also 
including GCT in the selected features.  

 

 
Figure 3.  Score indicator. Gait features  
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The score highlights a peak in the post-surgery early 
stage with an evident convergence towards zero in the 
following sessions. Finally, SC is the only feature selected 
for the gait at 6 km/h. The score calculated for the pre/post-
surgery is comparable (although this exercise was not 
recorded in the first two sessions after surgery because of 
patient’s impairment) even though an unexpectedly large 
value is obtained in the long-term session as shown in 
Figure 3. 

B. RoM Metrics 
In the hamstring curl exercise, the mediolateral RoM 

(e.g., over the x-axis) shows a clear trend with a score 
steadily decreasing following surgery. The RoM over the z-
axis is, instead, selected for the flexion/extension exercise. 
Even though there is a general tendency of the score to 
decrease starting from the second sessions, two large scores 
are obtained for the 6th and 8th session, indicating a non-
monotonic improvement. Similar considerations can be also 
drawn for the squat exercise (z-axis RoM), that is a general 
reduction of the calculated score with an exception reported 
in the 7th session.  

 

 
Figure 4.   Score indicator. RoM features. 

Walking tests at 3 and 4 km/h have both selected the x-
axis RoM. In the former case, the score has a large 
difference from the first two sessions, while generally 
decreasing to low score values in the following sessions, 
with results lower than the pre-surgery period. In the latter, 
instead, the RAV score is also showing a decreasing trend 
with an exception in the 7th session. Finally, anteroposterior 
axis RoM is the feature selected for the gait at 6 km/h. The 
score calculated for the pre-surgery session has a much 
larger value in comparison with the remaining session 
following surgery, even though the trend in this period is 
clearly not monotonic. The discussed results are shown in 
Figure 4. 

C. Kinematics Metrics 
In the hamstring curl exercise, the score obtained from 

the features selected considering the sensor attached on the 
shank (e.g., VV and Fluency over the x-, and z-axis) shows 
a clear trend decreasing following surgery, even though the 
tendency in the long-term is not monotonic. Identical 
considerations can be drawn for the thigh sensor (with 

chosen features being RAV, VV, and y-axis Fluency) 
despite an even less flat trend in the late session; indeed, it is 
evident a large score value on the 6th session.  

The flexion-extension exercise is described by similar 
conclusions, but the metrics taken into account are VV and 
z-axis Fluency from the shank, and only z-axis Fluency 
from the thigh. 

Regarding the squat exercise, again the score obtained 
by considering VA and z-axis Fluency from the shank 
generally shows a decreasing trend throughout the sessions. 
However, when observing the score extrapolated from the 
thigh sensor data, no particular correlation is evident due to 
several large values, indicating that the thigh sensor 
placement is not beneficial when analyzing squats. 

For walking at 3 km/h RAV and y-axis Fluency, and KV 
are selected for the shank and thigh, respectively. The score 
trend is comparable for both sensor locations, with a score 
presenting a large difference between pre-surgery and 
immediate post-surgery, and with a decreasing score 
reaching its minimum at the 6th session. However, large 
scores are shown again for the last two data collections. 

 

 
Figure 5.  Score indicator. Kinematics features. 

 
Figure 6.  Score indicator. Kinematics features. 

Walking at 4 km/h is not significantly different, even 
though in this case the selected features are RAV, x-axis 
Fluency, and KV for the shank. The only dissimilarities 
compared to the 3km/h exercise are evident in the larger 
score on the shank in the pre-surgery session and the 
flatness shown in the thigh-related score. 
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Finally, RAV and z-axis Fluency are the feature selected 
from the shank (thigh) for the walking exercise at 6 km/h. 
The score has a general decreasing trend when considering 
the shank data, even though two large values are shown on 
the 6th and 7th session. The data from the thigh, instead, 
show a score comparable between the pre-surgery and the 
long-term period, without any particular trend. Thus, the 
thigh sensor placement may be not beneficial when 
analyzing faster speeds. The discussed results are shown in 
Figures 5-6. 

VII. RESULTS SUMMARY AND CONCLUSIONS 
The focus of this work-in-progress has been on the 

analysis of certain metrics associated with gait analysis in an 
effort to develop a score-based system to aid clinicians in 
the diagnosis and evaluation of gait in a rehabilitative 
context. To summarize, this work analyzed the body-worn 
inertial data collected from a patient over the course of 
rehabilitation defining a score metric from a number of 
features for better understanding and monitoring patient’s 
progress and limbs comparison in several tests. It has been 
also shown that several metrics, gait, joint angle-related, and 
kinematics variables, obtained from acceleration and 
angular rate of the shank and thigh have proved their 
sensitivity for a number of exercises.  

This work presented a wearable inertial system for an 
objective assessment of lower-limbs in patients over the 
course of. The hardware platform adopted for the system 
realization and the data analytics involving inertial data 
collected from thighs and shanks have been described. The 
present study proved that a novel scoring method involving 
Bhattacharyya distance metrics and Clustering Coefficient 
of Variation for feature selection, based on a number of 
well-known metrics extrapolated from inertial data collected 
on the lower-limbs, can be used for defining quantitatively 
patients’ progress when involved in a rehabilitation 
program. Accurate results have been shown in a number of 
exercises. The proposed method is able to indicate which 
features are more informative regarding patients’ 
performance and group them in a single indicator which can 
be easily taken into account by clinicians during their 
analysis. This score indicator represents an important step 
towards the development of an objective model for patients’ 
assessment during rehabilitation.  

As only a single subject has been analyzed for the 
present study, an enhanced number of athletes, with 
homogeneous characteristics, will also be tested to have a 
more robust base and further validate the drawn 
conclusions. Results associated with additional metrics, 
such as jerk, statistical, spectral features, are currently under 
investigation and will help assist in the development of such 
a score-based system as is envisaged by the authors. 
Additional clinical trials are currently being planned to 
further validate the developed model in statistical terms. 
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