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Abstract—In order to compensate severe impairments of renal
function, artificial, extracorporeal devices have been developed
to enable Renal Replacement Therapy. The parameters utilized
for this procedure and the specific patient characteristics sub-
stantially affect individual patient outcomes and overall disease
courses. In this paper, we present a clinical prediction model
for outcomes of critically ill patients who underwent a specific
form of renal replacement, hemodialysis. For this purpose, we
employed two machine-learning models: Bayesian Rule Lists and
Multi-Layer Perceptron. To provide more transparency to the
perceptron model, we applied mimic learning to its output based
on a Bayesian Ridge Regression model. Results show that while
the perceptron model outperforms the rule-based classifier, the
use of the mimic learning approach enables more thorough model
scrutiny by a medical expert, revealing possible model biases,
which might have gone unnoticed, a sensitive issue in a high-
stakes domain such as medicine.

Keywords–Clinical Prediction Model; Renal Replacement
Therapy; Machine Learning; Supervised Learning.

I. INTRODUCTION

The renal system in the human body has the purpose to
excrete predominantly water-soluble metabolites and toxins
in order to maintain a sufficient blood homoeostasis [1]. If
this system is impaired severely, e.g., in the context of an
Acute Kidney Injury (AKI), artificial, extracorporeal organ re-
placement therapy becomes necessary [2]. Therefore, different
Renal Replacement Therapy (RRT) modalities are available.
One example is the hemodialysis, where the solute exchange
takes place via diffusion across a semipermeable membrane
between the blood and the dialysate or dialysis fluid [3].

Dialysis outcomes are highly dependent on both the pa-
tient’s characteristics and clinical parameters, as well as on
the type of the RRT procedure applied [4]. Furthermore, RRT
modalities based on a filtration circuit, such as hemofiltration
or hemodiafiltration are particularly costly, requiring special-
ized equipment and nursing staff [5]. In addition, various
parameters have to be adjusted for each patient, e.g., duration
of the process, the filtration rate and flow rates of the blood and
dialysate. Clinical prediction models can aid in decision mak-
ing by providing nephrologists with more accurate prognostic
information under uncertainty of outcomes [6].

Aside from usual criteria like accuracy or recall, when
employing a machine learning model in the medical context,
one especially important factor is the interpretability of the
model, since doctors must take full responsibility for the
respective decision and therefore require a high degree of trust
on the model [7]. As such, one can roughly distinguish between
two categories of machine learning algorithms: interpretable
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Figure 1. Our machine-learning setup modeled as a FMC block diagram. We
incorporated a multi-layer perceptron and bayesian rule lists

machine-learning model.

and non-interpretable. One example for interpretable models
are Bayesian Rule Lists (BRL) [8]. By presenting itself as
if...then...else lists, it is easy for humans to comprehend
both the decision making and the individual influence of
each parameter on the outcome. In contrast, the Multi-Layer
Perceptron (MLP) model is usually more accurate, but non-
interpretable, since the weights of the nodes in the hidden
layers are all that is exposed to the outside. Due to the fact
that different loss and activation functions take effect when
updating those weights, the abstraction to the original input
data is just too cumbersome for a human to grasp.

In order to overcome the tradeoff between interpretability
and accuracy, we employed a strategy called mimic learn-
ing [9]. By training an interpretable model on the predictions
of the more accurate, non-interpretable model, we gain insight
into its decision process and can therefore enhance the non-
interpretable model’s intelligibility.

Our contribution consists of a Clinical Prediction Model
(CPM) to prognosticate patient-specific outcomes after RRT
in the Intensive Care Unit (ICU) as modeled in Figure 1
using Fundamental Modeling Concepts (FMC) block diagram.
We evaluated the performance of two different models, BRL
as the interpretable variant and MLP as its non-interpretable
counterpart. After that, we employed mimic learning to help
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overcome the tradeoff between accuracy and interpretability
and provide some insight into the decision parameters of the
MLP. We then interviewed an expert in the field of Nephrology
for scrutiny of the models thus developed.

The remainder of the work is structured as follows: In
Section II we place our work in the context of related work.
We present our incorporated data and models in Section III
and present results of our work in Section IV. We discuss our
findings in Section V followed by the conclusion in Section VI.

II. RELATED WORK

Machine learning research in Nephrology has been tradi-
tionally geared towards kidney disease detection using decision
trees and naı̈ve Bayes [10, 11]. However, those models tend to
be less accurate when compared to more advanced models,
which prompted the community to experiment with other
methods. Vijayarani and Dhayanand and Sinha and Sinha used
Support Vector Machine (SVM) and Artificial Neural Network
(ANN) for prediction of kidney disease with encouraging re-
sults [12, 13]. In a similar fashion, Lakshmi et al. compared the
three models regression, random forest and ANN, proposing
the latter for better performance and accuracy [14].

The enhanced performance with modern machine learning
tools, however, is achieved at the expense of model inter-
pretability. The ability to explain and interpret decision is
a key requirement in medical applications. In the context
of machine learning, Lipton placed the particular focus was
on identifying decision boundaries and ascertaining the in-
fluence of specific feature for improved interpretability [15].
Approaches have been developed to achieve interpretability
of black box models, such as the classification vectors ap-
proach by Baehrens et al. and the Locally-Interpretable Model-
agnostic Explanations (LIME) by Ribeiro et al. [16, 17]. In
particular, Katuwal and Chen applied the LIME technique for
achieving interpretability of random forests for predicting ICU
mortality, achieving accuracies of 80 % [7]. Still in the medical
domain, Hayn et al. quantified the influence of individual
features on particular decisions made by a random forest in
clinical modeling applications [18].

Unlike previous work, we focus specifically on the task
of outcome prediction of RRT patients while comparing two
types of models side-by-side, one interpretable (BRL) and
another non-interpretable (MLP). For aiding the interpretability
of the complex model, we made use of the mimic learning
technique as proposed by Che et al. in lieu of the LIME
method employed in extant research, because we aim to obtain
a global understanding of the model’s inner workings rather
than explain individual instances of classification [7, 9]. Che
et al. used Gradient Boosting Trees as mimic learning model
while we applied Bayesian Ridge Regression (BRR) since their
output more closely resembles logistic regression, a technique
widely employed in medicine.

III. METHODS

In the following, we share details about methods and data
employed for our clinical models.

N=925 dialysis patients 

in the ICU

Excluding 17 peritoneal dialysis patients

N=908 hemodialysis 

patients in the ICU

N=46,476 patients in the 

ICU

Excluding 45,551 non-dialysis patients

N=3,093 hemodialysis 

procedures

Figure 2. Cohort selection of the dialysis procedures based on the MIMIC
III intensive care patients.

A. Tools

We used RapidMiner [19], which allowed us to pre-
pare data, develop and cross-validate first models. The final
models were subsequently implemented with the scikit-learn
library [20] in Python 2.7. The data we used were provided by
the MIMIC III dataset [21] stored in an in-memory database
via an Open Database Connectivity interface [22].

B. Data

The MIMIC III dataset contained hospital admission data
for patient collected over an eleven-year period in a Boston
hospital. As seen in Figure 2, out of the approximately 46,000
patients present in the dataset, we extracted 908 relevant
patients for this paper, totaling approximately 3,000 dialysis
procedures for model training. We had to exclude from the
analysis patients who had undergone peritoneal dialysis, since
they are not relevant in an acute context.

The cohort does not contain patients who underwent
hemofiltration or hemodiafiltration, only hemodialysis patients.
Under hemodialysis, the data comprises both Continuous Renal
Replacement Therapy (CRRT) and Intermittent Hemodialysis
(IHD) modalities, therefore RRT type was a feature in the final
model. We therefore derived another cohort only with CRRT
patients (N=1,163 procedures) and IHD patients (N=1,930
procedures) to ascertain whether results were consistent across
dialysis modalities. We further derived a cohort consisting ex-
clusively of acute patients (N=954 procedures) since patients,
who presented acute kidney injury without previous history of
renal disease, present peculiarities from a clinical standpoint.

In cooperation with the Nierenzentrum Heidelberg, we
conducted interviews with a subject-matter expert in order to
curate a list of suitable features, amounting to about 80 pre-
dictors. Those included patient demographics, such as age or
Body Mass Index (BMI), RRT parameters such as the duration
of the procedure, comorbidities as well as lab values, including
parameters such as serum creatinine and Glomerular Filtration
Rate (GFR) for 24, 48 and 72 hours before the procedure.
Additionally, we included patient vitals and outcomes such as
90-day mortality, renal recovery, mechanical ventilation days
and length of stay in the ICU.
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Missing Data: Due to the manually curated nature of the
MIMIC III dataset, aside from occasional data inconsistencies,
a significant amount of data was missing. For example, the
columns containing serum creatinine and GFR values before
the procedure were missing in approx. 20 % of samples. As
the scikit-learn models need a complete dataset for training, we
decided to impute the missing values using k-nearest neighbors
algorithm (k-NN) [23].

C. Models

In the following, we describe the models and strategies
used as well as the parameters chosen for training for both the
interpretable and non-interpretable algorithms, as well as the
interpretability approach employed.

1) Interpretable - Bayesian Rule Lists: For the interpretable
model, we chose the existing Python 2 implementation of
BRL [8]. Letham et al. describe it as a direct competitor to
decision tree approaches, as the model achieves high accuracy
for classification tasks while still being intelligible for subject-
matter experts. This algorithm tries to derive if...then...else
statements over a dataset with the important criteria of their
being sparse for better human readability. It builds Bayesian as-
sociation rules consisting of an antecedent a and a consequent
b. The consequent has a multinomial distribution over all the
predicted labels y, so that the rules are defined in Equation 1.

a→ y ∼Multinomial(θ) (1)

Mining antecedents from the data generated these rules
and afterwards computing the posterior consequent distribution
over the antecedent lists. BRL have the advantage of being easy
to interpret due to their sparsity while retaining accuracy in
classification. However, there are algorithms providing a higher
accuracy, which also have the capability of more elaborate
parameter tuning. Additionally, the current implementation of
BRL has the shortcoming of a very long runtime and only
being able to classify binary targets. Thus, we had to adjust
the target features accordingly through use of binary operator
for continuous predictors.

Parameters: The sole adjustable parameter in the im-
plementation used was the maximum number of iterations.
Multiple adjustments to this parameter – incl. changes by a
factor of ten – did not result in a significant change, neither
for the runtime nor for the accuracy. For the evaluation, we
chose a value of 50,000 maximum iterations.

2) Non-Interpretable: Deep Neural Network: As non-
interpretable model, we chose the scikit-learn implementation
of MLP, which is able to handle both regression and clas-
sification tasks. Just as other implementations, this network
consists of multiple layers of so-called “neurons”: one input
layer with as many neurons as there are inputs, one output
layer with the size of the number of target features and hidden
layers varying in size and quantity. The log-loss function is
optimized through updating weights for each neuron for each
iteration of model training. The neural network can be defined
as mathematical function f(x) as shown in Equation 2 with
the activation function K and k-times gi(x) representing the
dependencies between functions with an individual weight wi.

f(x) = K

(
k∑

i=1

wigi(x)

)
(2)

MLP are a widely used form of machine learning due to
their versatility and high accuracy. They provide a wealth of
parameters to tune, but finding the right ones for a specific use
case can prove cumbersome. Furthermore, the decision making
process of such a neural network is not comprehensible to a
human and thus provides nearly no interpretability.

Parameters: The amount of parameters to be adjusted
when using neural networks is very high. Performing grid
search over some of the parameters, we found the default ones
from the library to perform the best.
This means the learning rate, which determines the speed and
accuracy of convergence, was set to 0.001. The activation
function, determining the output of the neurons in the hidden
layer, was the rectifier linear unit “relu”. The network consisted
of one hidden layer with 100 neurons. We set the maximum
number of iterations before convergence was set to 200.

3) Interpretability Approach: Mimic Learning: The large
amount of neurons in the MLP and the many parameters
influencing their weights and output make it very difficult – if
not impossible – for a human to understand the influence of
each feature on the training. Therefore, we aimed to provide
some insight into the workings of the MLP by applying a
method called mimic learning. Building upon the approach of
Che et al. we trained an interpretable model – the so-called
mimic model – on the outputs of the non-interpretable model
(MLP). In this approach, the mimic model takes on the same
input features as the non-interpretable model.

For classification tasks, the outputs of the non-interpretable
model are termed soft scores, because as they are probabilities,
they are continuous variables, coming close to the actual
target features. Training the mimic model on the soft scores
allows creating a much smaller, thus understandable, faster
but still equally accurate model. Using the principle Che
et al. called knowledge distillation, it is even possible for the
mimic model to generalize better than the non-interpretable
model [9]. This happens because the non-interpretable model
filters out certain noise in the training data, which could have
a negative impact on training performance of the interpretable
model. For the mimic model, we needed an algorithm, which
was able to predict continuous scores in order to train it on
the aforementioned soft scores. For this purpose, we utilized
Bayesian Ridge Regression.

Bayesian Ridge Regression: Similar to common linear
regression, this algorithm tries to find coefficients for each
input feature so that they map to the target feature, minimizing
loss. In addition to common linear regression, it includes regu-
larization parameters to control the growth of the coefficients.
Therefore, this model is less prone to over-fit while still being
as fast as linear regression.

Furthermore, regression in general has the advantage of be-
ing very fast concerning training time and interpretable, as one
can easily inspect the coefficients for each feature. However,
due to the simplicity of regression models, they usually lack
accuracy when compared to more elaborate algorithms. Very
few parameters can be adjusted for this algorithm and for our
experiments, we applied the default ones. This means that all
regularization parameters were set to 10−6 and the number of
iterations before convergence were set to 300.
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The process logic implemented for the mimic learning
approach is shown in pseudo-code in Algorithm 1.

Algorithm 1: Mimic Learning with BRR
Input: MLP model, Training dataset and Test dataset
Result: Sorted mimic regression coefficients
Obtain soft scores from MPL on Training dataset;
Train BRR model on soft scores and Training dataset;
Apply trained BRR model on Test dataset;
Obtain BRR regression coefficients on Test dataset;
Sort regression coefficients;
Return regression coefficients;

IV. RESULTS

In the following section, we compare the performance of
our interpretable model, the BRL, and our non-interpretable
model, the MLP. Although there were continuous values for
our target variables in the dataset, we had to transform them
into a binary format in order for the BRL classifier to work.
Therefore, we considered the following outcomes:

• 90-days Mortality: Indicates whether the patient has
died within a 90-day period (1 = dead / 0 = alive),

• Renal Recovery: If patient has been for more than
7 days without dialysis requirement, renal function
is considered to be restored (1 = recovery / 0 = no
recovery),

• Ventilation Days: Indicates whether the patient has
been on ventilation for been less than seven days (1
= true / 0 = false), and

• Length of Stay: Points out if length of stay has been
less than 7 days (1 = true / 0 = false).

The complete list of features can be found in Table A.I.

Table I shows general performance of the employed clas-
sifiers according to the AUCROC performance metric. As
expected, the MLP outperforms the BRL classifier in for
virtually every patient cohort and patient outcomes, excepting
the prediction for ventilation days. The mimic approach using
BRL trailed right along the MLP, presenting similar results.
Concerning runtimes, there were considerable differences be-
tween the two classifiers. While the MLP took only a few
seconds to conduct the full training with the configuration
described previously, the BRL needed up to one hour to train
on the same data. Due to the interpretable nature of the BRL,
a medical expert can analyze the importance of single features
directly on the model output.

Figure 3 shows the influence of some features and their
values on the prediction of 90-day mortality. For this outcome,
the Sequential Organ Failure Assessment (SOFA) score was a
key feature. This score is widely used in intensive care for this
very purpose, therefore the BRL classifier correctly detected
this. “CR 24 B” corresponds to blood creatinine 24h before
the hemodialysis procedure and Elixauser is a comorbidity
score. High values for both of these features are associated with
increased mortality, but from the output of the BRL alone it is
hard to ascertain whether it correctly captured this relationship.

Figure 3. Excerpt of the rules from the Bayesian Rule Lists classifier when
predicting 90-day mortality. Abbreviations: SOFA = Sequential Organ

Failure Assessment score, CR 24 B, CR 72 B = Serum Creatinine 24h and
72h before procedure, respectively.

Figure 4. Coefficients of the most important features (last five and top five
after sorting) for the Bayesian Ridge Regression trained as mimic model for
90-days mortality and renal recovery. Abbreviations: CR 24 B, CR 48 B,

GFR 48 B = Serum Creatinine and Glomerular Filtration Rate 24h and 48h
before procedure, respectively, BMI = Body-Mass Index.

For the MLP results to be inspected, we had to apply the
mimic learning strategy discussed. First, we needed to evaluate
if the performance of the mimic model is satisfactory when
being trained on the outputs (soft scores) of the MLP. One
can verify that, while the BRR is still worse than the MLP, it
performed better than the BRL, if only by a small margin. It
is important to highlight, however, that the mimic classifier is
only as good as the predictor it originally learned from.

In Figure 4, we can assess the influence of single features
on a positive prediction of both 90-day mortality and recovery
of renal function. For example, the higher the rightmost
feature, e.g., the age of the patient, the higher is the probability
of the patient to die within 90 days. Conversely, the higher the
leftmost feature, e.g., the hemoglobin value in the blood of
the patient, the less likely the patient is to die within 90 days.
These results were submitted to the appraisal of a Nephrology
expert to establish clinical relevance and adequacy.
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Outcome
Complete cohort Acute patients IHD patients CRRT patients

MLP BRL BRR MLP BRL BRR MLP BRL BRR MLP BRL BRR

90-days mortality 0.84 0.76 0.79 0.83 0.79 0.81 0.83 0.74 0.79 0.77 0.72 0.72
Recovery of renal function 0.91 0.88 0.88 0.86 0.68 0.79 0.90 0.87 0.91 0.86 0.79 0.84
Ventilation days <7 0.81 0.75 0.80 0.64 0.68 0.65 0.81 0.78 0.79 0.77 0.79 0.79
ICU stay days <7 0.83 0.82 0.82 0.78 0.69 0.73 0.80 0.78 0.80 0.73 0.73 0.73

TABLE I. Simulation results displaying Area Under the Receiver Operating Characteristic Curve (AUCROC) for the different analysis cohorts and patient
outcomes. Abbreviations: IHD = Intermittent Hemodialysis, CRRT = Continuous Renal Replacement Therapy, MLP = Multi-Layer Perceptron, BRL =

Bayesian Rule Lists and BRR = Bayesian Ridge Regression.

V. EVALUATION AND DISCUSSION

From a classification performance standpoint, our per-
formed experiments suggest MLP as a suitable classifier for
the given tasks, with BRL as a close second. MLP performed
particularly well for renal recovery prediction, a key outcome
for nephrologists. However, both approaches have issues that
may hinder adoption in clinical practice.

For example, some of the features deemed important for
MLP make sense from a medical standpoint, such as higher
age correlating with a higher chance of mortality. However,
the results also indicate that high levels of creatinine are
associated with lower mortality, which contradict observations
in clinical practice. Additionally, as per Figure 4 Glomerular
Filtration Rate (GFR), a measure of how well the kidneys
are functioning, is associated with higher mortality, a likewise
counterintuitive outcome.

Similarly for renal recovery prediction, where high weight
and glucose levels are associated with poor outcomes, what
contradicts expert knowledge. Furthermore, usually there are
non-linear correlations between certain blood values and mor-
tality (e.g., U-shaped curve), such as potassium, as either too
low or too large values can influence the patient’s health nega-
tively. Such relationships cannot be adequately represented by
the mimic learning approach utilized.

It is important to note that these potential spurious correla-
tions are only illuminated through model interpretability, be it
because of the nature of the model or the application of mimic
learning. Thus, the model interpretability approach employed
gives us the possibility to examine the correlations and create
assumptions which otherwise might just go unnoticed when
using non-interpretable models. The same observations apply
for the output of the BRL. For instance, higher lactate values
usually lead to other complications, but the upper bound of
”infinity” is not meaningful in clinical practice. In order to
refine and validate those assumptions, it is necessary to go
further with the data analysis. Finding actual upper and lower
bounds in the dataset can provide some insight to the actual
values the model considers when making predictions.

Additionally, missing data may have a significant influence
on the quality of the predictions and certain features could
be dropped if they are missing a large amount of values.
By training the regression as a mimic model, we can make
assumptions on how the MLP may make its decisions. There
still is a gap between the performance of the regression model
and the MLP, which makes it difficult to say how close those
coefficients are to the actual influence of features in the MLP.
The mimic model performs worse when being trained on the
outputs of the MLP as opposed to being trained on the real

targets, because it most probably also learns the errors of
the MLP. This can be a resolvable issue by improving the
performance of the MLP through further parameter tuning and
data preparation.

VI. CONCLUSION

In this paper, we compared the performance of different
models when being used in the prediction in the renal context.
An important part is the interpretability of such models to
validate their applicability for decision support. We used a
mimic learning approach to make a MLP interpretable and
compared this output to that of the interpretable model, the
BRL. Preliminary results for prediction of 90-day mortality
enable the exploration of interpretability, showing the influence
of single features.

Future work includes more elaborate use of the data,
meaning inclusion of more features, more elaborate imputation
strategy and collection of more information about the patients.
The binary classification limitation of the current implemen-
tation of BRL can be overcome by using a more advanced
algorithm, such as the one proposed by Yang et al. [24].
When a higher precision is achieved, interpretable models can
be used in the context of a clinical decision support system,
allowing the doctors to validate the decisions and giving
patients insight into their treatment. Likewise, deployment in a
clinical setting requires external validation using datasets from
different institutions. Subsequently, an impact analysis of the
use of such models in a clinical setting should be conducted to
ascertain the impacts on care delivery and patient outcomes.
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APPENDIX

In Table A.I, we share the complete list of features used
for our models.

Category Feature

Demographics

Age
Height, Weight, BMI
Ethnicity
Gender

Dialysis-related
Dosage
Modality
AKI stage

Comorbidities

Aids
Alcohol abuse
Blood loss anemia
Cardiac arrhythmias
Chronic pulmonary
Coagulopathy
Congestive heart failure
Deficiency anemias
Depression
Diabetes complicated, Diabetes uncomplicated
Drug abuse
Elixhauser Vanwalraven
Fluid electrolyte imbalance
Hypertension
Hypothyroidism
Liver disease
Lymphoma, Metastatic cancer, Solid tumor
Obesity
Other neurological disorders
Paralysis
Peptic ulcer
Peripheral vascular
Psychoses
Pulmonary circulation
Renal failure
Rheumatoid arthritis
Valvular disease
Weight loss

ICU scores

OASIS
SOFA
SOFA Renal
SAPS

Vitals

Heartrate
Systolic Blood pressure
Diastolic Blood pressure
Mean Blood pressure
Respiratory Rate
Temperature ◦C
Oxigen Saturation (SpO2)

Laboratory values

Aniongap
Albumin
Bands
Bicarbonate
Bilirubin
Blood Urea Nitrogen
Creatinine 24, 48 and 72h before procedure
Chloride
Glucose
Hematocrit
Hemoglobin
Lactate
Platelet
Potassium
PTT, INR, PT
Sodium
WBC
Glomerular Filtration Rate 24, 48 and 72h before procedure

TABLE A.I. Model features. Note that related features are grouped together.
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